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DETECTION OF NON-AFFINE SHAPE OUTLIERS

FOR MATCHED-PAIR SHAPE DATA

Stanislav Katina

ABSTRACT. Cleft lip/palate (CLP) is a relatively common birth defect so dis-
figuring that nowadays it is almost always corrected surgically as early as possible.
The postnatal surgical correction does not, however, result in a normally growing
upper jaw, but instead, owing to scar tissue, one that grows abnormally. It is
important to decide if a clinical treatment group is homogeneous. The example

involves data from digitally processed lateral X-ray films of 48 boys who have
complete unilateral CLP but no other malformation. 22 landmarks were repre-
sented by their Procrustes shape coordinates, principal components of matched-
pair differences were examined, and the distribution of the 48 shape changes was
studied for outliers in the affine and non-affine subspaces of the full Procrustes
shape and form space. To separate outliers from inliers we use bagplots. There

are no outliers apparent in the affine subspace. In the non-affine subspaces, we
found no outliers in the subspace of bending patterns at large scale but four out-
liers in the subspace of local changes at small scale. Almost the same outliers
were found by form-space PCA. These latter are associated with possible creases

of the corresponding thin-plate splines. In those cases we can use the same spline
formalism to relax the outlying form to an inlier by optimal relaxation along

the curve décolletage that weighs bending energy against Procrustes distance
and stop relaxation on the fence. These maneuvers suggest a possibly novel and
interesting fusion of the Procrustes-spline toolkit with outlier detection. They
also have practical implications for craniofacial management of CLP follow-up as
well as suggestive implications for outlier detection in applied craniometrics and
anthropometrics more generally.

1. Introduction

Cleft lip/palate (CLP) is a relatively common birth defect (about 1 per 1000)
so disfiguring that nowadays it is almost always corrected surgically as early
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as possible. The postnatal surgical correction does not, however, result in a nor-
mally growing maxilla (upper jaw), but instead, owing to scar tissue, one that
grows abnormally. For the clinical biostatistician it is important to decide if
a clinical treatment group is homogeneous. In this paper we comment on this
question both as an example of geometric morphometrics (GMM) and as an ex-
ample of the kind of question that craniofacial surgeons might propose in their
role as physical anthropologists, students of the variation of human form.

2. Data

The example involves data from digitally processed lateral X-ray films (un-
der standard conditions—focus-object distance is 370 cm, object-film distance
is 30 cm, magnification is 8.1%) of 48 boys who have complete unilateral CLP
but no other malformation, born between the years 1985–1988. All were surgi-
cally corrected in infancy by the same team of surgeons at the Clinic of Plastic
Surgery in Prague, Czech Republic. Primary cheiloplasty performed according to
Tennison’s method at an average age of 9 month was associated with periosteo-
plasty (without nasal septum repositioning) using a 5–7mm wide and 15–20mm
long periostal flap obtained from the lateral maxillary segment [8]. All patients
underwent palatoplasty at an average age of 5 years, always by method of push-
back with pharyngeal flap surgery. The corrective procedures were implemented
in the patients with persisting soft tissue deformations like lip and nose, lip or
nose [9]. Data are from follow-up at two ages, 10 and 15 years (measured at both
times), within the adolescent growth spurt.

3. Detection and relaxation of shape outliers

22 cephalometric points (landmarks) were represented by their Procrustes
shape coordinates [1], principal components of matched-pair differences were
examined, and the distribution of the 48 shape changes was studied for outliers
in the affine and the non-affine subspace of the full Procrustes shape and form
space [3]. To separate outliers from inliers we use bagplots (bivariate boxplots)
as supplied by R software [5]. Along curve décolletage, we relax the outliers by
flattening the surface in the direction to Procrustes mean shape.

Relative warp analysis (RWA) is modified PCA [1], where relative warps
(RWs) are PCs with respect to the bending energy or inverse bending energy
matrix. Let

xP,i = Vec (XP,i) , i = 1, 2, . . . , n; n = 48

be a 2k-vector of Procrustes shape coordinates, where

XP,i =
(
x
(1)
P,i

... x
(2)
P,i

)
, x

(d)
P,i =

(
x
(d)
i1 , x

(d)
i2 , . . . , x

(d)
ik

)
, d = 1, 2.
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Let xD,i be 2k-vectors (k = 22) of matched-pair differences of vectorized Pro-
crustes shape coordinates,

xD,i = xP,15,i − xP,10,i,

xP,15,i = Vec(XP,15,i) and xP,10,i = Vec(XP,10,i), SD be the covariance matrix
of the data xD,i,

XP,10 =
(
x
(1)
P,10

... x
(2)
P,10

)
= (x1, . . . ,xk)

T

be k × 2 matrix of mean Procrustes shape coordinates xj of 10-year group,
j = 1, 2, . . . , k. Let

L =




S 1k XP,10

1T
k 0 0

X
T

P,10 0 0


, L−1 =

(
L11
k×k L12

k×3

L21
3×k L22

3×3

)
,

where L is symmetric positive definite, the inverse of S exists as long as the
landmarks are at least four in number, not all on one straight line, and also not
in the same place (coincident); then inverse of L exists and is equal to L−1, Sjs =

φ (xj − xs); j, s = 1, 2, . . . , k, φ (x) = ‖x‖
2
2 log

(
‖x‖

2
2

)
, ∀ ‖x‖2 > 0, if ‖x‖2 = 0,

φ (x) = 0; k×k matrixBe = L11 is called bending energy matrix ofXP,10, 2k×2k

matrix B = I2×2 ⊗ Be. There are these constrains of this matrix 1T
kBe = 0,

XTBe = 0, so the rank of the bending energy matrix is k−3. Then the non-zero

eigenvalues of (B−)
α/2

SD (B−)
α/2

are l̂j with corresponding eigenvectors ĝj

(PC loadings, RWs), (B−)
α/2

=
∑

j λ̂
−α/2
j γ̂

T
j γ̂j is Moore-Penrose generalized

inverse of Bα/2. RW scores are defined as rij = ĝT
j (B−)

α/2
xD,i. The effect of

the jth RW can be viewed by plotting

Vec
(
XP (cj, j, α)

)
= Vec

(
XP,10

)
± cjB

α/2ĝj l̂
1/2
j , rj = cj l̂

1/2
j , cj ∈ R

+ (1)

for various values of rj ∈
〈
0,max(|rij |)

〉
(or some magnification of max(|rij |);

alternatively, fixing cj = 1, magnification of l̂
1/2
j as standard deviation of PCj

scores). The effect of the linear combination of RW1 and RW2 can be viewed by
plotting

Vec
(
XP (c1, c2, α)

)
= Vec

(
XP,10

)
± c1B

α/2ĝ1 l̂
1/2
1 ± c2B

α/2ĝ2 l̂
1/2
2 .

A PC summary of the shape data

Vec
(
XP,15,i (α)

)
= Vec

(
XP,10

)
±Bα/2

e

2∑

j=1

rij ĝj = Vec
(
XP,10

)
+

2∑

j=1

ĝj ĝ
T
j xD,i.

If α = 1, bending patterns are at large scale, if α = −1, bending patterns are at
small scale, and if α = 0, then we take B0 = I as the 2k×2k identity matrix and
the procedure is exactly the same as classical PCA of matched-pair differences.
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Any value of α other than zero converts the analysis to RWA of shape covariances
with respect to bending energy instead of Procrustes distance.

To find the affine component we use linear regression model

x
(d)
P,10 + x

(d)
D,i = x

(d)
P,10β

(d)
i + ǫ

(d)
i , d = 1, 2; i = 1, 2, . . . , n,

then
x
(d)
A,i = x

(d)
P,10β̂

(d)
i and XA,i =

(
x
(1)
A,i

...x
(2)
A,i

)

is the affine component of XP,i. In affine subspace, SDA stands for sample co-

variance matrix of xDA,i = Vec(XA,i)−Vec
(
XP,10

)
. Then PCA of SDA is called

affine-subspace PCA.

Let XDF =
(
XD

...xsize

)
, be an n× (2k + 1) matrix with the rows equal to

xDF,i =
(
xT
D,i, ln(CSi)

)T
, i = 1, 2, . . . , n,

and
xT
size =

(
ln(CS1), . . . , ln(CSn)

)
.

Let SDF be the covariance matrix of the data xDF,i. Then PCA of SDF is
called form-space PCA. The first PC represents allometry—shape change during
growth.

Visualization of interpolated shape changes can be done via thin-plate spline
(TPS) deformation grids [1], field of vectors (within the convex hull of reference
shape XP,10, where longer vectors show stronger deformation in the specific di-
rection of the shape change) superimposed with the grid of gray-scale rectangles
with colors corresponding to the Procrustes distances (regions showing milder
deformation are lighter, regions with stronger deformation are darker; the surface
does not show the direction—but only the size—of some shape change).

Let x = Vec (X) be a 2k-vector of vectorized Procrustes shape coordinates.
To relax a configuration x onto the mean configuration xm, seek the config-
uration xr that minimizes the weighted sums of two energies. One term is the

bending energy (xr − xm)
T
B (xr − xm) of xr considered as a deformation of the

mean form. The other term (xr − x)
T
(xr − x) is the sum of squares that corre-

sponds to squared Procrustes distance between the relaxed landmark configura-
tion xr and the vector x actually encountered. For any regularization parameter
(relative weight) λ, we seek the relaxed configuration xr that minimizes the

weighted sum (xr − x)
T
(xr − x) + λ (xr − xm)

T
B (xr − xm) of the energies.

Setting the gradient of this expression to zero straightforwardly generates the
solution

xr ≡ xr (λ) = (I2k + λB)
−1

(x+ λBxm) . (2)

As λ varies, xr (λ) traverses a smooth curve in the space of landmark config-
urations, named curve décolletage [2]. Note that when λ = 0 then xr (0) = x,
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in the absence of any penalty for deviation from the mean configuration xm,
the best fit to any data is the selfsame data. In the other limit λ → ∞, xr tends
to the configuration of zero bending having the least Euclidean cost (ordinary
least square fit to the data, in the affine subspace). Because B is a function
of xm, this formulation is not symmetric in x and xm. By minimizing quadratic
variation, the relaxation is trying to flatten the surface (to make the surface flat,
linear) to the maximum extend consistent with the data.

To generalize the median to higher-dimensional settings, a variety of different
maximum depth estimators have been introduced. They extend, for example,
the halfplane location depth of T u k e y [7]. Let X1, . . . , Xn be independent and
identically distributed bivariate random variables, Xi ∈ R

2, i = 1, 2, . . . , n. For

given observations x = (x1, . . . ,xn)
T
, xi ∈ R

2, we write xi = (xi1, xi2)
T, where xij

are RWj scores (here j = 1, 2). The halfplane location depth of an arbitrary point
θ ∈ R

2 relative to xi is defined as dl (θ,x) = minH # {i : xi ∈ H} , i = 1, . . . , n,
where H ranges over all closed halfplanes of which the boundary line passes

through θ. The deepest location is defined as θ̂dl = argmax
∀θ

dl (θ,x) and often

called the Tukey median [6].

The depth region of depth s is defined as the setDs of points θ with dl (θ,x)≥s.
Equivalently, Ds is the intersection of all closed halfplanes that contains at least
n− s+ 1 observations, hence Ds is a bounded convex polygon, and Ds+1 ⊂ Ds.
The boundary of Ds is a convex polygon, which is called the contour of depth s

(sth depth contour, sth hull). Therefore, each vertex of a depth contour is the
intersection point of two lines, each passing through two observations.

The univariate boxplot is based on the ranks since the box goes from the
observation with the rank

⌊
n
4

⌋
to that with the rank

⌈
3n
4

⌉
, and the central bar of

the box is drawn at the median. A natural generalization of ranks to multivariate
data is the notion of halfspace depth [7]. Using this concept in shape analysis, we
propose a bivariate boxplot (bagplot) with the bag, that contains 50% of the data
points xi, a fence that separates inliers from outliers and a loop indicating the
points outside the bag but inside the fence [6]. The loop plays the same role as the
two whiskers in one dimension, so we could call this plot also “bag-and-bolster
plot” to stress the analogy with “box-and-whisker plot”. Like the univariate
boxplot, bagplot visualizes several characteristics of the data—location, spread,
correlation, skewness, and tails. The construction of bag B is as follows. Let #Ds

denote the number of points contained in Ds. One first determines the value s

for which #Ds ≤
⌊
n
2

⌋
< #Ds−1 and then interpolates linearly between Ds and

Ds−1, relative to θ̂dl, to obtain the set B (the bag B is a convex hull). The fence

is obtained by inflating B, relative to θ̂dl, by a factor 3 [8]. The loop contains all
points between the bag and the fence and its outer boundary is the convex hull
of the bag and the non-outliers. The points outside the fence are flagged as the
outliers.
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Above mentioned Tukey depth and depth contoures can be directly applied
to PC1 and PC2 scores to detect possible outliers [4]. Furthermore, the bagplot
fence can be used as stop-rule for relaxation of the configuration x, where this
rule can be seen as multivariate winsorization.

4. Results and conclusions

In the non-affine (non-uniform) subspaces using RWA, we find no outliers
in the subspace of bending patterns at large scale but four outliers in the sub-
space of local changes at small scale (Fig. 1; see also equation (1)).

Figure 1. Results of RWA of matched-pair differences in non-affine sub-
space of local changes with small scale (α = −1; RW1 and RW2 scores with

the bag and the fence of the bagplot (middle); TPS deformation grids and
field of vectors superimposed with the grid of gray-scale rectangles with
colors corresponding to the Procrustes distances of the mean shape XP,10

to the Vec
(

XP (cj , j, α)
)

(see equation (1)) indicated by the tips of the
arrow heads in the middle figure).

Almost the same outliers are found by form-space PCA (Fig. 2). These lat-
ter are associated with possible creases (extrema of directional derivative; [2])
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of the corresponding TPS. In those cases we can use the same spline formalism
to relax the outlying form to an inlier by optimal relaxation along the curve

décolletage that weighs bending energy against Procrustes distance (Fig. 3; see
also equation (2)).

Figure 2. Results of form-space PCA of matched-pair differences; PC1 and
PC2 scores with the bag and the fence of the bagplot (middle); TPS defor-
mation grids and field of vectors superimposed with the grid of gray-scale
rectangles with colors corresponding to the Procrustes distances of the
mean shape XP,10 to the Vec

(

XP (c1, 1)
)

in PC1.

Figure 3. Relaxation of Procrustes shape coordinates; TPS deformation
grids and field of vectors superimposed with the grid of gray-scale rect-
angles with colors corresponding to the Procrustes distances of the shape
XP,10,29 to the shape XP,15,29 (left) and to the final relaxed shape XP,15,29

(right); curve décolletage of the shape XP,15,29 (×—shape XP,10,29, big

•—shape XP,15,29, small red •—relaxed shapes XP,15,29; middle); the dif-
ference of XP,15,29 and XP,10,29 in the subspace of the first two RWs is
visualized in the scatter-plot of Fig. 1 as the most right •.
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For biostatisticians, these maneuvers suggest a possibly novel and interest-
ing fusion of the Procrustes-spline toolkit as the part of GMM with another
theme, outlier detection, of the standard modern data-analytic toolkit. They
also have practical implications for craniofacial management of CLP follow-up
as well as suggestive implications for outlier detection in applied craniometrics
and anthropometrics more generally.
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[9] VELEMÍNSKÁ, J.—ŠMAHEL, Z.—KATINA, S.: Development prediction of sagittal in-

termaxillary relations in patients with complete unilateral cleft lip and palate during pu-

berty, Acta Chirurgiae Plasticae 49 (2007), 41–46.

Received October 31, 2011 School of Mathematics and Statistics

The University of Glasgow

University Gardens

G12 8QW Glasgow

SCOTLAND, UK

Department of Applied Mathematics and

Statistics

Comenius University

Mlynská dolina
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