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Finally one can define a second, IP,, (or third, IP;, etc.,) ionization potential which
represents the smallest amount of energy needed to detach an electron from the singly
charged cation (or doubly charged cation etc.) produced after the first (or second
etc.) ionization.

A* S5 A te-  AH=1P,
A2* 5 A3* 4 e AH=1IP,

etc.

The second IP is always larger than the first, in spite of the fact that the electron
often comes from the same sub-shell, since the outermost electron in the ion is less
effectively shielded than in the neutral atom. For example in the carbon atom the
effective charge seen by a 2p electron is equal to 3.25 in the neutral species but 3.60
in the singly charged cation. The six ionization potentials for carbon are:

IP, =113eV 1P, =479eV  IP,=392.1¢V
1P, =244¢V  IP,=645eV  IP, = 490.0eV

2p electrons 2s electrons 1s electrons

(b) Electron affinity

The electron affinity (EA) measures the capacity of an atom to accept an extra
electron. The production of a stable anion is an exothermic process (AH < 0), but
conventionally, values of the electron affinity are reported after reversing the sign.
The larger the value of the EA the greater the stability of the anion A~ relative to
a neutral atom A plus an electron

A+e” > A" AH = —EA

By analogy with our analysis of the variations found for the IPs we can correlate
the values of the EAs with the properties of the orbital that receives the extra electron.
So for the case of chlorine, with a valence electron configuration 3s23p°, this electron
has to occupy the last free place in the set of 3p orbitals whose orbital energy is
—13.7.¢V. On the most naive level the gain in energy associated with the electron
capture process should therefore be close to this value, i.e., the EA should then be
close to +13.7 eV. However the value measured experimentally (3.6 eV) is far from
this figure. This is a very general result as may be seen by a comparison of the EA
values given in Table 2.7 with the orbital energy values of Table 2.4. A part of the
solution to this problem is immediately apparent once we realize that the electron
affinity of an atom is identical to the ionization potential of its singly charged negative
ion.

A” > A+e” AH = EA(atom A) = IP(ion A7)
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Table 2.7: Electron affinities expressed in eV.

1 18

H ‘ He
0.75 2 13 14 15 16 17 0.0
Li Be B C N (0] F Ne
0.62 0.0 0.28 1.26 0.0 146 |  3.40 0.0
Na Mg Al Si P S Cl Ar
0.55 0.0 0.44 1.39 0.75 2,08 3.62 0.0
K Ca Ga Ge As Se Br Kr
0.50 0.0 0.30 1.23 0.81 2.02 3.37 0.0
Rb Sr In Sn Sb Te I Xe
0.49 0.0 0.30 1.1 1.07 1.97 3.06 0.0

Thus our arguments above concerning the difference in first and second ionization
potentials of neutral atoms are applicable to this case too. For carbon, for example
the three ionization potentials to consider are:

IP of C~ (=EA of C) = 1.26 eV
IP of C (IP)) = 11.3 eV
" IP of C* (IP,) = 24.4 eV

¥

Each time the number of valence electrons changes by one, the corresponding
ionization potential varies by around 10 eV for carbon. Z* for the three species are
2.90 (C7), 3.25 (C) and 3.60 (C™). ‘

A second observation concerning the figures of Table 2.7 are the zero values of
the EA for some atoms. Thus for Be, N and Ne no stable anion exists. For Be and
Ne this result is easy to understand. The added electron would have to occupy the
next highest sub-shell since both of these species have full sub-shells. This costs energy
and the overall process of electron attachment is unfavorable. As a result all of the
elements of groups 2 (valence configuration ns?) and 18 (valence configuration ns’np®)
have zero electron affinities.

The realization that the EA of A is just the IP of A~ enables a further correlation
with our earlier discussion. 2-19a shows a plot of the observed EAs for the 2p" series.
Notice that it has the same saw-tooth behavior as that seen in 2-18a for the ionization
potentials of the neutral atoms. The EA drops between carbon and nitrogen in just
the same way that the IP drops between nitrogen and oxygen. From Table 2.6 we
can construct a qualitative prediction of the variation across the p" series by adding
to a sloping background, increasing with increasing Z, the effect of the difference in
exchange energy between anion and neutral atom (2-19b). The critical electron count
associated with the saw-tooth discontinuity is different by one electron from that
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EA(eV)

0 11 Y T 1
Be B C N O F

’/I,IIII
Be B C N O F

2-19a 2-19b

found in 2-18 for the IPs since there we were concerned with the difference in exchange
energy between neutral atom and cation. In general, given the exceptions associated
with the ns2, ns*np® and ns*np® valence configurations we have described how EA
tends to increase on going from left to right across the table.

The general ideas of this chapter would predict an increase in the electron affinities
on moving from the bottom to the top of a column of the periodic table mirroring
such predictions found experimentally for the ionization potentials. This is in general
true but with the exceptions that the elements of the second row of the table (B-F)
have smaller values than those of the third row (Al-Cl). To summarize, the electron
affinity has a tendency to increase on moving from left to right across a row of the
periodic table from column 13 to column 17 and on moving from bottom to top with a

reversal of this order between second row and third rows. The halogens have the largest
electron affinities.

2.6.3. Electronegativity scales

As we indicated in the first chapter, it is important to have an idea, albeit qualitative,
of the way an atom polarizes the electron cloud within a molecule, that is to say its
capacity to attract electron density. The quantity which we use to characterize this
property is the electronegativity. It is not feasible to measure experimentally the
polarization created by the presence of given atoms in molecules, but it is very useful
to employ an electronegativity scale which allows a qualitative feeling for the concept.

There are three scales commonly in use. The first two are defined using some of
the atomic properties which we have just described.

(i) Mulliken’s scale. The electronegativity, x(A) of an element A is proportional
to the sum of the ionization potential (IP) and the electron affinity (EA).

y(A) = K[1P(A) + EA(A) + C]

where K and C are constants.
(i) The Allred—Rochow scale. Here the electronegativity is proportional to the
attractive force exerted on the outermost electron by the nucleus, via the
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following relationship

AA) = KZ*[r* + C

Here K and C are constants (different from those in (i)) and r is defined as the

covalent radius of the atom. The values of this parameter for atoms of interest

come from experimental data on the bond lengths in molecules containing

the atom concerned. The covalent radius for chlorine, for example, is just half

the Cl—Cl distance in the Cl, molecule. In practice the values for » are close
to those found for p, the atomic radius we defined earlier (Section 2.5.3).

(iii) Paul?ng’s scale. The third scheme is defined using some molecular properties.
P'auhng noticed that the bond dissociation energy, D,g, of a heteronuclear
diatomic molecule AB is generally larger than that of each of the AA and BB
bond dissociation energies. For example the dissociation energy of HF is
570 kJ mole~* but those of H, and F, are 436 and 159 kJ mol ™! respectively.

Table 2.8: Three electronegativity scales, (a) Mulliken, (b) Allred-Rochow, and (c) Pauling.

H
3.1
Li Be B C N 0 F .
a 1.3 2.0 1.8 27| 34 39 4.4
Na Mg Al Si P S Cl
1.2 ‘; 16 1.4 2.0 2.4 2.7 35

H
g3
Li Be B C N o) F
b 10| 15 20| 25| 31| 35| 41
Na | Mg | Al Si P S Cl
10 1.2 15| 17| 21| 24| 28
H
2.2
Li Be B C N o) F
[V 1.0 1.6 2.0 2.6 3.0 3.4 4.0
Na | Mg | Al Si P S Cl
09| 13 16| 19| 22| 26| 32
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In Pauling’s scale the difference in electronegativity between A and B is
determined by the values of the diatomic dissociation energies.

[x(A) — X(B)]Z = K(Dpp — /Daa % Dyg)

Pauling set the value for fluorine at 4.0.
The variations in electronegativity across the periodic table are very similar and
independent of the scale which is used. Table 2.8 shows values for the first three rows.
We notice that the electronegativity increases on moving from left to right across the
periodic table and from bottom to top.

In Table 2.8 the most electronegative element is fluorine and the least electro-
negative is sodium. For the first two scales the variation in y ‘across the periodic
table is easy to understand given our carlier discussion of the concepts of 1P, EA,
Z* and p. Pauling’s scale though, is perhaps the one most commonly used. We note
though that there is no value of the electronegativity for the noble gases (column
18) since there are no diatomic molecules for these atoms. The Mulliken and

Allred—Rochow scales do not suffer from this problem.

2.6.4. Electronegativity, orbital energy and orbital radius

A result which we will often use in the rest of this book relies on the comparison
between Tables 2.4 and 2.8. This is that the valence s and p orbital energies vary in a
way which is paralleled by the variation in atomic electronegativity. Thus the steady
increase in electronegativity in the series boron (2.0), carbon (2.6), nitrogen (3.0),
oxygen (3.4) and fluorine (4.0), corresponds with a steady lowering of the 2p orbital
energy; — 5.7 (B), —10.7 (C), —12.9 (N), — 15.9 (O) and —18.6¢eV (F). In the same
way, the more electronegative the atom, the more contracted the orbitals (Table 2.3).

EXERCISES

Single-electron atoms
2.1 Consider the hydrogen atom in the 3p excited state

(1) Which electronic transitions are possible with emission of energy?
(i1) Ca}culate the wavelengths of light associated with these transitions. (In SI
units, Ry =218 x 107'8J; h=6.62x 1073*Js; c=3x 108 ms™ 1)
Recall that wavelength and frequency are related via the expression Av = c.
(iii) Determine the ionization potential for hydrogen in this*excited state in eV
and in kJ mol~'. Recall N, (Avogadro’s number) = 6.02 x 10?3,

22 (i) Calculate (in eV) the IPs of the ions He* and C3* in their ground electronic
. state. (Ry = 13.6eV.)
(i) Consider the Li?* cation in its second excited state. What is the degeneracy
o_f the wavefunctions describing this state? What is the ionization potential
(in eV) of the ion in this state?

Many-electron atoms
2.3 Consider the sulfur atom (Z = 16)

(1) Give the electronic configuration of the lowest energy state.
(ii) Calculate the radii of the different occupied AOs for this atom (equation

(41)).

2.4 Calcu.late the radii of the atoms of fluorine (Z =9), chlorine (Z = 17) and
bromine (Z = 35). Which is the most, and which the least, polarizable?

25 G‘ive the electronic configuration for platinum (Pt, Z = 78) which is in accord
with Klechkowsky’s rule. Knowing that the 6s and 5d levels are very close in
energy, suggest two other configurations which should be close in energy to this.

2.6 Consider all the atoms with Z less than or equal to 20. In their electronic ground
state

(1) Wh@ch of them are diamagnetic?
(11) Wh¥ch of them have a single unpaired electron?
(iii) Which of them have two unpaired electrons?
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Analytic calculation of the orbital radius

2.7

2.8

Recalling that the radial probability density dS/dr of an atomic orbital is defined
as: dS/dr = R2 (r)r? calculate the position of the maximum in this density for

n,l

the 1s, 2s and 2p orbitals of the hydrogen atom. The analytical expressions for
the different functions are given by equations (28)—(30).

An approximate expression for the radial part of the orbital wavefunctions of
many-electron atoms was proposed by Slater.

R, (r) = N(r/ao)"™" exp(—Z*r/nao)

where N is a normalization constant. Calculate the radius of an orbital of this
type. You should recover equation (41).

Orthonormalization of the hydrogen wavefunctions

2.9 Show that the 1s function (equation (28)) of the hydrogen atom is normalized,

given that the volume element dt expressed in spherical polar coordinates is
dt = 2 sin 0 dr d0 d¢ (r goes from O to infinity, 0 from O to 7 and ¢ from O to
2m). Show that the radial and angular parts of the wavefunction are normalized
independently of each other. Note that

J x2 exp(—ax) dx = 2/a’

0

2.10 (i) Show that the 1s and 2s functions are both orthogonal to the three 2p

functions. This result will be able to be established using the angular parts
only of the respective analytic functions given by equations (28)—(30).
(ii) Show that the 1s and 2s functions are also orthogonal. Use the relationships

J x% exp(—ax) dx = 2/a® J x3 exp(—ax) dx = 6/a*.

0 0

Part Il
Building up molecular
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structure




Interaction of two
atomic orbitals on
different centers

The attempt to use quantum mechanics to provide an electronic description of
molecules raises a number of difficulties, some of which have already been encoun-
tered in the treatment of the isolated atom. Others are directly connected with the
polyatomic nature of the molecule. The Schrodinger equation, which in principle
allows the calculation of the molecular wavefunction, is much more difficult to solve
than in the case of the many-electron atom. (The exception to this statement concerns
molecules with a single electron such as H,*.) The most usual resolution of this
problem makes use of a number of simplifying assumptions. The picture which results
provides an excellent approximation to the real state of affairs.

3.1. Basic approximations

Three approximations are frequently used to calculate the molecular wavefunction.

3.1.1. The Born—Opp’enheimer approximation

In a molecule the nuclei move together as a block during the displacements associated
with translation and rotation, and move relative to each other during vibrations. All
of these motions carry a contribution to the total energy of the molecule and have
to be taken into account in the determination of the total wavefunction of the system
since it depends both upon the nuclear coordinates (R) and the electronic coordinates
(r).

The Born—-Oppenheimer approximation writes the total wavefunction Y, R) as a
product of two parts; one E(R) which describes the nuclei and the other ®,,(r) the
electrons

F(r, R) = O, (r)E(R) ()

The justification for this is that since the nuclei are so much heavier than the electrons,
they move much more slowly. Thus equation (1) represents a description of a set of
mobile electrons moving in the field of frozen nuclei. Within the framework of this
approximation the Schrddinger equation as a function of the coordinates of all the
particles, nuclei and electrons, is replaced by one which still contains the electron
coordinates as variables but uses a fixed geometry for the nuclear ones. The problem
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is thus reduced to solution of ®,(r) at a given molecular (i.e., nqclear) geometry. In
this way the energy of the system may be calculated as a function of geqmetry l;gf
performing a series of computations at different values of the set of coordlnate?, R
In what follows we will restrict ourselves to the study of the molecular electronic

wavefunction ®,(r).

3.1.2. The orbital approximation

We described the use of this approximation in Chapter 2 when stuflying the electronic
situation in many-electron atoms. It is used both for atoms of t.hls type and also fqr
molecules since it is not possible to find an exact analytic solution for the elect.romc
wavefunction for systems containing more than a single elect'ron. An approximate
solution is found by writing the many-electron wavefunction as a product of

one-electron functions
(Del(eb 62, L] en) = ¢1(€1)¢2(€2) LR ¢rl(8n) (2)

The one-electron functions ¢; are called the molecular orbitals (MOs) of the system
onsideration.

un’(ll"flre (r:nolecular case poses another problem however. Remember that fgr atoms the

one-electron functions are the atomic orbitals y;, whose mathematical form is

derived from those found for the hydrogen atom. These, of course, are known exaptly.

It is not at all clear though how to choose the form of t.he mol§cular orbitals,

¢1, G2y .- ¢y, but One approach is almost universally used in chemistry.

3.1.3. The form of the MOs: the LCAO approximation

The simplest form used for describing molecular orbitals is the lingar combinatign of
atomic orbitals (LCAO) approximation. We write the molecular orbital (¢;) as a linear
sum of contributions from the atomic orbitals of the molecule ;

¢ = Zcinj (3)

In this expression the c¢;; are the coefficients or the We?ights of the AO y; in the
molecular orbital ¢;. A simple justification for the validity of the apprgach,.ls that
‘0 the interior of the molecule an atom does not completely lose its identity and
retains many of the characteristics of the isolated atom. For exarpple the elements
having a large electron affinity and a large ionization potential, are the.most
electronegative elements, and those which have a tendency to attract elec;trons in the
molecule. In equation (3) the AOs, y; are supposedly knqwn and we just h_ave to
determine the coefficients ¢;;. In principle there are an infinite number of functions y;
(1s, 2s, 2p, 3s, 3p, etc.) for each atom, but in order for the pr(?blem to be manageable
we need to truncate the summation in expression (3) by selecting a reasonable number
of AOs. Two simplifications narrow this choice.

(i) Orbitals describing core electrons are ignored. This is understandable in part
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from the contraction of these orbitals. Their amplitude is only large close
to the nucleus and they play a negligible role in the formation of chemical
bonds. Although it is not a quantum mechanical approach, we recall here too
that Lewis’ theory only considered the valence electrons when viewing bond
formation (Chapter 1).

(ii) Included for each atom in the sum of equation (3) are all the occupied valence
orbitals and also those orbitals, which might be empty in the isolated atom
but have the same value of the principal quantum number. For example for
carbon (1s*25*2p®) only the 2s and 2p orbitals are included, for hydrogen (1s2)
the 1s orbital and for helium (1s?) the 1s orbital. For lithium (1s22s') we use
both 2s and 2p orbitals. (Some variations on this are used for transition metal
systems.)

The LCAO theory is not an approximation in itself. If it were possible, the
calculation using an infinite set of AOs should lead to an exact solution for the MO.
It is the restriction that the set of AOs included is limited to a small number which
introduces the approximation. In fact it works well for much of the periodic table
but it is often necessary to increase the ‘basis set’ to be able to calculate the MOs
and properties of several molecules.

Determination of the form of the MOs, ¢;, reduces to finding the set of coefficients
c;; which characterize it. In practice these may be calculated using a result from the
variation theorem. Essentially this theorem states that if we have a wavefunction
such as that of equation (3), then the best approximation to the energy can be
achieved by minimizing the analytical expression for the energy with respect to all
of the ¢;;. This leads to a direct determination of these coefficients. When the
coeflicients are known, the calculation of the energy of the orbital (¢;) follows via a
relationship of the type used for the many-electron atom in Chapter 2 (equation (38)).
However in this book we will follow a different path. We shall show that the orbital
problem may be analyzed in a very qualitative way and one which relies on a number
of simple rules, based on symmetry, electronegativity and on the relative energies of
the AOs of the isolated atoms. In this chapter we will treat the simplest cases one
could imagine, namely MOs which are linear combinations of only two atomic
orbitals.

3.2. Construction of MOs

Let us consider two atoms A and B each carrying a single atomic orbital, y, and ,
respectively (3-1). We shall see that this in fact is not the great restriction it appears

X X2
3'1 A B

at first sight. The MOs of the molecule AB are simply the linear combinations of the
AOs g, and y,. In current parlance we say that the AOs y, and y, interact to give
the MOs of the AB molecule. The simplest situation of this type corresponds to real
systems such as H, or H,* (x; = x, = lsy), He,* or He, 2" (x, = y, = 1sy.) and
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HeH* (yy = 1Sues X2 = Lsu)- Although an analysis of this problem will be quite
sufficient to understand the structure of these small molecules, the principal motiva-
tion is the generation of a set of general rules which may be applied to the more

complex systems which we will discuss later.

3 9.1. Interaction of two identical AOs

In the homonuclear diatomics, such as H,, H,*, He," or He,?*, the two atoms, A
and B, are the same. We will call them A, and A,. The two AOs y; and yx, are
identical with the same form and the same energy, but they are centered at two
different points in space, x; on A, and y, on A,. The formation of the MOs in these
systems therefore results from the interaction of two degenerate atomic orbitals.

(a) Study of the electron density

Within the framework of the LCAO approximation, each MO may be written as a
simple linear combination of the two AOs

¢ =cixy + CaX2 4)

So for each MO there are two coefficients to calculate, ¢, and c,. We can see how
various restrictions on their relative values arise by study of the probability density
for an electron located in a given MO. As described earlier (Section 2.1.1) the
probability density is given by the square of the wavefunction:

¢* = (cixs + cax2)? = cixi + ¢35 + 2¢iCax1Xa ©)

This expression may be divided into three parts. The first, ¢3y2, is only important in
those regions of space where x, itself is large, namely in the vicinity of atom A;. The
integral [ c}x} dv may be written as ¢2{y; | x1> using the notation introduced in
Chapter 2. It represents, approximately, the probability of finding the electron close
to atom A,. In the same way, the integral of the second term c2{x, | x2» gives the
probability of finding the electron close to atom A,. The last term 2¢;¢,<x1 | %22 is
only important when both x; and y, are non-negligible, namely in the region
between the two atoms A; and A,.

(b) Some mathematical descriptions of the MOs

Some very important results may be derived from the symmetry properties of the A,
diatomics. Since the molecule is symmetrical about the A—A bond, the two nuclei
are completely equivalent. Put another way, the electrons in the molecule have the
same probability of being close to atom A, as they do of being close to atom A,.
This means that the two terms describing the electron probability from the quantum

mechanical description must be equal i.e.

C%<X1 | x1> = C§<X2 | %2 (6)
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Since y; and y, are normalized ({
g Xl 1> =t | 1) = 1) the
restrictions on the values of the coefficients, namély;)<2> ) S

Cf = C3 . ¢y = icz (7)

This is a very important result. It means that starting from two AOs, ,, x, one can
{3 2 A2

COI]StaIlt N+, ] Vo '

¢y =No(x1 + 22) ¢_=N_(x1 — %2) (®)

To obtain N, we must normalize these functions. For ¢

<¢+ | ¢+> =1
NECxs Lt + <o 122> + 240 [ 1)) =1 ©)

X1 | %2 is the overlap inte
) gral, S, between the two AO i
The orbitals are normalized so that ® ; and 7, (Section 2.1.20).

N2(1+1+425)=1
Ny = 1/[2(1 + 5)]"? (10)

An analogous calculation for the orbital ¢_ leads to

i

N_ = 1/[2(1 — §)]'? (11)
The two MOs for the homonuclear diatomic molecule thus become

1

b+ - -
[2a —s)1'”

1172 (X1 + x2) ¢- (X1 — 12) 12)

I S
T2 +95)

So, starting off from two AOs i

. : . , X1 and y,, we have obtained two MOs and
Thls relationship betwe'en the number of AOs and the number of MOs t}(ﬁe; generqzl;e;
is a general one, even in more complex systems; n AOs give rise to n MOs. If we
calculate the overlap between the MOs we get -

1
(pil )= m«h 210 + <xa 1 az) — < 12> — <z 1))

1
_m(1+S—S—1)

=0 (13)
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Thus, just as atomic orbitals on the same atom are orthogonal, so molecular orbitals
are orthogonal to each other.

(c) The form of the MOs

In the orbital ¢ the atomic orbital coefficients have the same sign, and thus they
add together, a condition which we describe as being in phase. If we consider a point
outside the region of space between the two nuclei, close to A, and therefore far from
A, the form of the wavefunction shows that the amplitude of ¥, is small but that of
x; large. Thus in this region the MO ¢, has practically the same form as the AO
y,. Correspondingly, in the region close to A, and far from A,, ¢, resembles the
AO . It is in the internuclear region where ¢, is distinctly different from either y;
or y, alone. In fact x; and X, have similar contributions in the internuclear region
and neither is negligible. The in-phase addition of y, and y, in this region leads to
an amplitude of ¢, which is clearly larger than that from x; or alone. This
characteristic appears in the schematic contour diagram for the ¢, function shown
in 3-2. Thus the function ¢, is characterized by a large amplitude in the internuclear

region.

+ — -

In contrast the amplitudes of the two functions and y, are subtracted in the
¢ _ orbital where the coefficients of y, and y, are opposite in sign, or out of phase.
As before, close to the nuclei the wavefunction strongly resembles x; or x, but in the
internuclear region, the subtraction of the two functions leads to a small amplitude
of ¢_. If we consider a point, M, equidistant between the two nuclei, then by
symmetry at this point the contributions from y; and ¥, are exactly equal but opposite

in sign. The result is simple

3-2

$-(M) = 1, (M) — 2,(M) =0 (14)

The plane which bisects the A—A axis is thus a nodal plane. A contour diagram is
shown in 3-3, and just as for the atomic orbital case the change in sign of the function
is shown by the use of dashed lines. Thus the MO ¢ _ is characterized by a small

amplitude in the inernuclear region.

3-3

Conventionally we describe MOs in terms of the contributions from the AOs from
which they are derived. The signs of the AOs are indicated by the conventions adopted

3-5
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in Ch.aptgr 2 (2-4). When the function is positive the orbital is hatched and when the
functl_on is negative it is unhatched. Additionally the size of the AO used reflects the
magnitude of its coefficient in the LCAO expansions; the larger the coefficient, the
la‘rger the orbital size. In ¢, (3-4) the AO coefficients are equal in absolute’size
(circles of the same radius) and are of the same sign (circles which are either both
hatched or both unhatched since ¢, and — ¢, have the same physical significance.)
II} ¢_ (3-_5) the coefficients are again equal in absolute value (same radius) but nO\;v
different in sign (opposite hatching characteristics). The schematic representation of
a molecular orbital gives the relative signs and relative weights of the coefficients.

34 0. H or @_@

(d) Bonding and antibonding orbitals

Le;c1 t:bs return to the probability density functions associated with the two MOs ¢,
and ¢_.

1
2 = 2 4 .2
o5 20 +5) (1 + 12 + 2x122) (15)

F

¢z (3 + 25 — 2x122) (16)

21 -9)

Ignoring the normalization term the two density functions differ only in the sign of
the cross term 2y,%,, which we recall, is only important in the region between the
nuclei. In ¢, this density adds to that already associated with the nuclei (x} + x3)
and an electron occupying this orbital has an increased probability, relative to tlfe
atoms of finite separation, of being between the nuclei. An electron in this orbital
lies at a lower energy than one in an isolated AO. Although the detailed breakdown
of the energy is beyond the scope of our approach, both the kinetic and potential
energy of the electron are reduced. We can see that the electron between the two
nuc!el is attracted to both, rather than just a single nucleus, and in this orbital, where
the n}ternuclear probability is enhanced via the term 2y, x,, this is important. Because
of this energetic stabilization this orbital is called a bonding orbital.

The converse is true in ¢ _. Here the electron density 2y, x, is subtracted from the
terms a§soc1ated with the density around the nuclei (x2 + x3). There is now a reduced
prqbabllity of finding the electron between the nuclei, and the stabilization described
abov§ for the bonding orbital is absent. In fact the electron is less stable in this orbital
than in an isolated orbital. Such an orbital is called an antibonding orbital.

The term 2y, y, clearly plays an important role in determining the energetics here.

l
|
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Figure 3.1. Molecular orbital diagram showing the interaction between two identical
atomic orbitals in a homonuclear molecule.

Its integral over all space 2y, | %2 is twice the overlap integral between and
2. This overlap controls the way molecular orbitals are constructed and is a crucial

ingredient in the formation of a bond between two atoms.

(e) Molecular orbital energies: interaction diagrams

The energies of the two MOs ¢, and ¢_, in contrast to the energies of the AOs
from which they are derived, are not equal. Summarizing the discussion above, the
bonding orbital ¢, is stabilized and the antibonding orbital ¢ _ destabilized with respect
to the energies of the starting AOs.

Let us call AE* the stabilization energy of the bonding orbital (AE™ = &(x1) —
e(¢4)) and AE™ the destabilization of the antibonding MO (AE~ =¢(¢-) — e(x1))-
These two quantities are thus, by definition, positive, and a general result connecting
the two is that the stabilization of the bonding orbital (AE™) is smaller than the
destabilization of the antibonding orbital (AE ™).

It is now possible to construct an interaction diagram between the two atomic
orbitals y, and x, in Figure 3.1. The atomic and molecular levels are represented
by horizontal lines arranged in order of increasing energy. Since the AOs y; and X,
are degenerate they lie at the same level on the diagram. Reading the diagram is
made easier by including the graphical description of the orbitals. (In fact we have
simplified the diagram a little here. Since the normalization constants, equations (10)
and (11) include S (>0) the coefficients for the bonding orbitals are smaller than those
for the antibonding ones.)

The strength of the interaction between the AOs is measured by the stabilization
AE*, or the destabilization AE ™, of the bonding or antibonding orbital respectively.

As we have noted these depend upon the size of the overlap integral (S) between the
two AOs. The larger the overlap the larger those energies AE " and AE™, as shown
in 3-6. The two quantities AE™ and AE™ are proportional to the overlap integral S.
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3.2.2. Interaction of two different AOs

::f(;[ nlllss ac;)enlsllodtei hthe case ‘c))é a diatomic heteronuclear molecule AB, in which the two
e same. We assume once again that each atom ’ i
_ : only has a single A
((;)}Cllo :eIL /?Oalrl}d ()52 on B) and that their energies are different (the en)e/rgy of %Nei:ll ‘tg
gy e‘:’v h:;:é)ez tilall—; tl}13at oIfI x1)- An example of a molecule of this typz)e is the
O e , B=He, y; = lsy, x, = lsy,, &, = —13.6eV and ¢, =

(a) Expression for the MOs

Th . . b .
theeh(le;ffglr:igigl?n of tllle d;talls of the molecular orbitals is more complex than in
case. In effect the symmetry argument d i
e 0 0 et o guments used before which allowed
: nd ¢ _ do not hold here. Th
different and the electron d+ iti i R gt St s
. ensities associated with A and B d ¥
practice we need to perform a calculati o i e
ation to uncover th i

there are two rules which apply in general. © nature of the orbitals, but

(i) The interaction of two AOs ( i
‘ _ %1 and y,) which are non-degenerat
” })ongmg orb'1tal ((/J)Jf) and an antibonding orbital (¢ _). enerate Jeads o a
S?artt ed bcgldlng orbital the larggr coefficient is associated with the AO which
ed off at lower energy and in the antibonding orbital the opposite is true

the larger coefficient is associ i i
e, ssociated with the AO which started off at higher

In oth j
5 Oond;r \Z:);f:sl\;vhen g, < &1 the bonding orbital is largely located on y, and the
. in% j ”l[‘ ge ergfeéy l(:iqalzzedbon x1- Using our pictorial scheme the two orbitals
: -7. ibonding orbital, ¢ _, in which the i i
b« : , O, coefficients are of diff

gns, has a nodal surface. Since the absolute values of the atomic orbital coeﬂic?:ll:;

X € mld a i i
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3-7 A—B
(b) The interaction diagram

rate case, the important electron density lies be?tvs{een t.hednuc'ltel
in the bonding orbital ¢, where the two AOQOs are in phase. Co/r;trar1w1se thlse ¢ :élstlhz
i i ion i ibonding orbital ¢ _. As a consequ

truded from this region in the antl'bcl)t‘l ‘
Lsoililing orbital is stabilized below the initial level of the deeper-lying AO and the

. oo o . rev AO. We can profitably
antibonding orbital is destabilized above the higher energy i TSk

(= — just as 1
¥ (=g(y,) — () and AE™ (=e(d-) — &(1a)) Jus ' :
SZ?? eJl?sf as(bef‘éﬁé)AE * <+ AE ~. This collection of results is shown in the orbital

diagram of Figure 3.2. -
As before the interaction be'tw
S. The larger S the larger the int

Just as in the degene

een the two AOs depends upon the overlap integral
eraction. For the non-degenerate case we can §h0w
that it is proportional to the square of Fhe overlap integral. /anotg.e:i1 lfsactr;)}rlewil;:;e;i
important here is the energy separa.tlon between the twlo or ;Ag.: i
intracton btxeen the o ot s oun 8 B he funrion S, This
general the two quantities an are pr iona Junction 3 o o or
i icable for the case where Ae is large enough. :
tc;cl)f)rsreltuzg ;ir%niﬁei?fscdescribed earlier the interaction energy 1s proportional to S

alone. .
Now it is possible to qua
neglect of the core orbitals in the construc

litatively justify the approximation which i.nvolved
tion of the molecular orbital diagrams.

. ; . : nt
Figure 3.2. Molecular orbital diagram showing the interaction between two differe

atomic orbitals in a heteronuclear molecule.
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These orbitals lie so deep in energy that there is a large energy separation
between them and the valence orbitals (large Ag). In addition they are strongly
contracted, have small orbital radii and thus have extremely small overlap with
orbitals (of any type) on adjacent atoms (small S). These two factors both contribute
to negligibly small interactions between these two sets of orbitals and are usually
ignored.

3.2.3. Orbitals with zero overlap

Recall that when two orbitals interact, the stabilization of the bonding MO
which is formed is proportional to S if the starting orbitals have the same
energy and to S2/Ac¢ if they don’t. In both cases if the overlap integral between two
orbitals centered on different atoms is zero (i.e., orthogonal orbitals) then there will be
no interaction between them. This apparently trivial result is, in fact, quite important.
Since formation of a bonding molecular orbital results in deformation of the electronic
cloud and allows an electron simultaneously to interact with both nuclei, if § =0
then there will be no such deformation and no resulting stabilization.

3.3. Application to some simple diatomic molecules

We will limit these examples to those ions and molecules formed from those atoms
with a single valence orbital, namely H and He. In what follows we will describe the
electronic energy in a molecule E_ as a simple sum of the energies of the individual

electrons; E, = ) n;e; where n; is the number of electrons occupying the MO ¢; with
energy ¢;. i \

3.3.1. Level filling rules

Once the MOs have been constructed from the AOs we must now put electrons into
them to generate the electronic structure for the molecule. The orbital filling rules
are just the same as for AOs.

(i) The MOs are filled in order of increasing energy.
(i) Each MO cannot accommodate more than two electrons. These two have
opposite spins.

In some systems, more complex than those envisaged here, fewer electrons will be
present than needed to fill a given set of degenerate orbitals and we will need to
place these electrons in different orbitals with their spins parallel according to Hund’s
rule. In molecules, contrary to the success of the rule in atoms, Hund’s rule sometimes
breaks down. However the exceptions are infrequent and will not be discussed here.

3.3.2. Systems with two or four electrons

The ‘general result, derived above, is that when two orbitals, degenerate or not,
interact a bonding orbital is formed which is lower in energy than either of the AOs,
and an antibonding orbital formed, which is higher in energy than either of the AOs.




