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(i) Find two resonance forms which have no charge separation which are also
important in the description of the molecule.

(ii) With the help of these resonance structures provide a rationale for the
differences in bond lengths measured experimentally for this molecule.
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1.6 (i) Give a Lewis structure for cyanamine H,NCN which does not place formal
charges on the atoms. What is the spatial geometry for this structure?
(i) Generate another Lewis structure by delocalizing the lone pair on the
amino group. What is the geometry associated with this structure?
(iii) Experimentally it is found that the amino group is slightly pyramidal and
the inversion barrier very small. Explain this result.

1.7 Collect together all the molecules with the formula H,C,O in which the octet
rule is satisfied at each atom.

(i) Give the Lewis structure and the geometries of the two molecules contain-
ing the C—C—O unit.
(ii)) Do the same for a cyclic molecule.
(iii) Give a structure for the molecule containing the C—O—C unit. Show that
one cannot be written without charge separation. Complete the description
[ of the molecule knowing that the two CO bonds are equal.

1.8 (i) Show that there exists for the carbon monoxide molecule (CO); (a) A Lewis
structure where the octet rule is obeyed at each atom but which contains a
separation of charge, and (b) a Lewis structure which does not have a
separation of charge but does not obey the octet rule.

(i)) Consider the bond between M and CO in an MCO species where M is a
Lewis acid, i.e., contains a vacant site (M for example could be a transition
metal). Using the resonance forms found above write down the different
bonding schemes for the M—CO bond in the two following cases; (a) M
does not contain a lone pair, (b) M has a lone pair able to be delocalized
in addition to a vacant site.

2 Properties of atoms

A number of experimental observations have shown that the movement of micro-
scopic particles cannot be correctly described within the framework of classical or
Newtonian mechanics. Since the development of quantum mechanics in the 1920s,
this tool has become indispensable in understanding phenomena at the microscopic
scale, from those associated with the atomic nucleus to those associated with
molecules. The cornerstones of this approach require a substantial body of mathe-
matical background but we will limit ourselves to just enough needed for an
elementary description of atomic structure. We shall unashamedly sidestep many
proofs and concepts which are too complex for this book and refer the interested
reader to more specialist books in the bibliography.

2.1. Elements of quantum mechanics

Just as in classical mechanics, quantum mechanics possesses its fundamental equa-
tion, the Schrddinger equation from which, in principle, most properties may be
derived. We will illustrate some of its general characteristics by using the hydrogen
atom as an example. This, with its single electron moving around a nucleus
comprising a single proton, is surely the simplest system which one can study.

2.1.1. Schrodinger’s equation

Within the language of quantum mechanics the electron is not described as a point
mass associated with a trajectory in space, but rather as a wave represented by the
mathematical function ¥ whose value depends upon the X, y, z coordinates of the
space which it occupies. ¥ is usually referred to as the wavefunction. This very
non-classical idea makes contact with the notion that atoms consist of a collection
of electrons surrounding a nucleus in the following way. The square of this function
W¥2(x, y, z) represents the probability density of finding the electron at this point.
(Sometimes ¥ will turn out to be a complex function containing real and imaginary
parts. In this case we need to use PW* where ¥* is the complex conjugate of V). In
other words the probability dP of finding the electron in an infinitesimal volume dt
centered around the point given by the coordinates xo, yo, Z is given by the expression

dP = ¥*(xo, Yo, Zo) d7 M
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The probability of finding the electron somewhere in space has to be unity and so
the function W has to satisfy the relationship (2), where the integration takes place
over all space. We say that ¥ is normalized.

j Y2(x, y,z)dt = 1 (2)
space

The function W is determined by solution of the Schrédinger equation (3). Here
is an operator, called the Hamiltonian

HY = EY ‘ (3)

which operates on the function W and transforms it into another function. E is a
scalar whose value is equal (in the cases we shall study) to the energy of the electron.
Solution of equation (3) consists, therefore, of finding those functions, which after
being transformed by the operator #, may be written as a product of the original
function multiplied by a scalar. Such solutions are called the eigenfunctions of the
operator # and the scalars with which they are associated, the corresponding
eigenvalues. We finally note that from all the possible solutions we only retain those
which make physical sense, namely those which are normalized as in equation (2).
Solution of the Schrédinger equation amounts to searching for the collection of pairs
(W, E;) which satisfy the relationships (2) and (3).

The principles behind the solution of the Schrodinger equation are difficult to
illustrate in a simple fashion, but we can give a simple analog from the field of
vector geometry. Let us consider an operator (R) which behaves like a planar mirror
(2.1) and search for the eigenfunctions (v) and eigenvalues (1) obtained by solution

3 —
v R_v:= V3

2-1

of the equation Rv = Av. Obviously there are two types of functions. Those (for
example v,, v,) which lie completely in this plane are transformed by the mirror plane
operation into themselves and are therefore associated with an eigenvalue of +1 (i.e.,
Ro, = (+1)v,). Those which lie perpendicular to the plane are transformed into
vectors pointing in the opposite direction and therefore have an eigenvalue of —1.
(i.e., Rus = (—1)v;.) Three solutions of Rv = Av are therefore (v, +1), (v5, +1) and
(v5, —1).

Among the various solutions of the Schrédinger equation, that which corresponds
to the lowest energy of the system (¥,, E,) has a special importance. This is the state
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of ‘the system, the ground state, which is the most stable. All the other solutions
(¥, E;) correspond to excited states.

2.1.2. Some important properties of the eigenfunctions

Some of the properties of the eigenfunctions of the Hamiltonian operator will be
useful to us in what follows in subsequent chapters. To establish these we need first
to state that the operator S is linear, that is to say it satisfies the relationships

H(AY) = AH#(F) “)
H(Y; +¥) =AHW) + A (Y)) )

(a) The sign of Y

Let us suppose that ¥, is a normalized solution of the Schrédinger equation associated
with an eigenvalue E; such that

HY, = EY, 6)
with

f W2 dr= 1 ; ™
space

Let us consider for the moment the function AW;, where A is a scalar. Combining the
relationships (4) and (6) we get

i

HY,) = AA (¥;) = AE;Y; = E(AY)) ®)

Thus the function A, is also a solution of the Schrédinger equation and is associated
with the same eigenvalue (E;) as ¥, itself. This function has to be normalized such that

J Q¥ dr=1 ie. AZJ ¥2de=1 )
space space

so that A2=1 or A= +1. There are therefore two solutions for A, the first
corresponding to the initial function ¥; (A = 1) and the second to its negative, —',
(A = —1). Thus if ¥, is a normalized solution of the Schrédinger equation, so is its
negative, —¥,, and thus corresponds to the same electronic description as a result.
A physical sense may not then be attributed to the sign of the wavefunction. The function
W; may be used as equally well as its negative —¥,.

(b) Overlap and the orthogonality of eigenfunctions

- The overlap integral of two functions ¥; and ¥, is the integral over all space of their

product. We use a useful notation, due to Dirac, to write this in a condensed
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fashion

V| Y = f W, d (10)

space

where dr is the infinitesimal volume element. (Equation (10) describes the situat'%on
for real functions ¥. For complex functions we need to use the expression
fspace Pi'¥; dt where W is the complex conjugate of ‘¥;.) One of tt.le proper.tles of
the set of eigenfunctions ¥ is that the overlap integral is zero (equation (11)) if t'hey
are different but of course equal to unity (equation (12)) if they are normalized
according to equation (2).

(¥ | Py =0ifi#] 11
¥ | ¥y =1 (12)

Thus the collection of eigenfunctions of the Hamiltonian operator form a set of

orthonormal functions. . . .
An analog might be the set of orthogonal vectors i, j, k normalized to be of unit

length which are orthogonal and define the x, y and z directions of three-dimensional
space.

(c) Degenerate solutions

Suppose for the present that we have two different solutions ¥; and ¥; which are
associated with the same eigenvalue E, i.e.,

HVY, = EY, (13)
HY, = EY, (14)

We say that these two solutions are degenerate. Applying the Hamiltonian (?peraFor
to an arbitrary linear combination of them (4%; + ©¥;) and using the relationships

of equations (4), (5), (13) and (14), we get

HOY, + p¥) = A () + pA (Y)) = AEY, + uEY; = EQY; + p¥)) (15)

Thus all linear combinations of two degenerate eigenfunctions are themselves eigenfunc-

tions of the Hamiltonian, associated with the same eigenvalue, E.

2.2. The hydrogen atom

2.9.1. Solutions of the Schrodinger equation

Solution of the Schrodinger equation for the case of the movement of a single elegtron
under the influence of the nucleus leads to an infinite set of (¥;, E;). The two particles,
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nucleus and electron, interact via a Coulombic, electrostatic type of interaction and,
if we were going to solve the equation algebraically, we would insert the kinetic and
potential energy into the Hamiltonian to produce (as it turns out) a differential
equation which is readily soluble.

(a) Allowed values of the energies (E;) and atomic spectra

This book is not the place to detail the mathematical solution of the Schrodinger
equation, but highlight the results. First, the eigenvalues of the Hamiltonian, E; are
all negative and second they are inversely proportional to n?, where n is a positive
integer called the principal quantum number.

E, = —Ry/n? n=1,273,... (16)

Ry is a constant with units of energy and equal to 13.6 eV*. The allowed values of
the energy are therefore

E, = —Ry n=1) ground state
E, = —Ry/4 n=2) first excited state
E; = —Ry/9 (n=23) second excited state

etc.

We will always use the convention that the lowest energy state is the one with the
most negative value of the energy. So the electron in the hydrogen atom may not
have an arbitrary energy, but one of the possibilities given by equation (16). We say
that the energy is quantized. It only depends upon the value of the principal quantum
number, .

Suppose that a hydrogen atom finds itself in an excited state (n > 1). The return
of the electron to the electronic ground state with n =1 is accompanied by the
liberation of energy AE equal to the energy difference between the ground state and
the excited state initially populated.

AE = —Ry/n* — (—Ry/1?) = Ry(1 — 1/n?) 17

This change in energy is accomplished via the emission of a photon with an energy
equal to AE. From the Planck—FEinstein relationship the frequency (v) of the emitted
photon is given by

AE = hy (18)

- * An electron volt (eV) is the energy acquired by an electron on moving through a potential difference of

Roc Vqlt. Although it is not an SI unit, it is frequently used to measure energies on the atomic scale. In
numerical calculations its SI equivalent, 1 eV = 1.602 x 1071° J should be used (see exercise 2.1).
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where h is Planck’s constant (h = 6.62 x 1073*J s). Thus the frequency of the photon E (eV) 4
emitted in the present case is given by

o
w b g

hv = Ry(1 — 1/n?)

ie., + '

v = Ry/h(l — 1/n?) (19)

S I3 S

Paschen

When the excited state is sufficiently high in energy (n > 2) the electron doesn’t
necessarily have to return to the ground state (n = 1), but can instead move to another ‘ /] V V
p , by LT n=2
excited state (labelled by n') of lower energy than the initial one. This implies n’ < n. Balmer
In this case the frequency of the emitted photon is given by the relationship

v = Ry/n(1/n'* — 1/n?) (20)

As a general result of such processes one obtains for each value of n’ a series of
spectral lines which together constitute the emission spectrum of the atom. They may
be grouped according to the value of n' and are traditionally named after the
physicists who discovered them (Figure 2.1). The Lyman series is a special one in
that it corresponds to the return of excited electrons to the ground state with n" = 1.
The inverse of emission is absorption. A hydrogen atom in its electronic ground
state can absorb a photon, using its energy to move to an excited state. Such an
absorption process can only occur if the photon energy corresponds exactly to the N
energy difference between the excited state and that of the ground state, namely

hv = Ry(1 — 1/n?) 21

—13.6 = .V /
The larger the value of n and therefore the higher in energy the excited state, the Lyman
higher the frequency of the photon needed for excitation. When n — oo the energy
of the excited state tends to zero, giving rise to a situation where the electron and
nucleus are completely separated from each other. This corresponds to ionization of
the hydrogen atom, H » H* + e~, and the energy involved, AE,, is simply given by , the corresponding eigenfunctions. We need three quantum numbers to classify them

n=1

Figure 2.1. Transitions observed in the emission spectrum of atomic hydrogen.

AE, = Ry = 13.6 eV 22)

() The principal quantum number, n, which as we have seen is a positive integer
n=1,23,..).
(i) A secondary quantum number, | often called the angular momentum, or

azimuthal quantum number. It is an integer, positive or zero and is always
less than n.

Thus the quantity Ry is the energy needed to ionize the hydrogen atom in its
electronic ground state (the ionization potential) and is found experimentally to be
just this, 13.6 eV. It is the smallest amount of energy needed to detach an electron
from the atom in its ground state. The energy needed to ionize the atom in an excited
state can be obtained in the same way. In general the rules which define the allowed
frequencies of light for photon absorption are just the same as the ones we have
described above for photon emission.

0<Il<nm (23)

(i) The mggnetic quantum number, m. This is an integer, positive, negative or
zero, lying between the values +1

(b) Nomenclature for the eigenfunctions, '¥;
—I<m< +1 (24)

The principal quantum number n is sufficient to characterize the allowed values of

; : ; ; .. Each ; . .
the energy, but the situation is more complex when it comes to a description of wavefunction ¥, is characterized by a set of three quantum numbers n, I, m.
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The simplest case is that for n equal to 1. Since the quantum number [ has to be
less than n, it must be equal to zero. As a consequence m is also equal to zero. There
is then just a single collection of numbers (n = 1, [ =0, m = 0) which are possible
and these describe a single wavefunction, or solution of the Schrodinger equation.

When n is equal to 2, | may take on the two values 0 and 1. As before if [ is zero
then m must be so too. If however [ is equal to 1, there are three possibilities for m;
— 1,0 and + 1. There are therefore four possible solutions (n, I, m) corresponding to
the set of quantum numbers (2,0,0), (2,1, —1), (2, 1, 0) and (2, 1, +1). These four
functions are degenerate since they correspond to the same value of the principal
quantum number, n = 2, with an energy of E = —Ry/4.

We can simply label these different functions by using a shorthand of the form
nX. where X is a letter used to represent a given value of [ in the following way

m

) 0 1 2 3
X s p d f

There is nothing magical about these labels. They are the first letters of some
descriptive terms early spectroscopists used to characterize atomic spectra (namely
sharp, principal, diffuse, and fundamental) and have been adopted for use in the
present context. By convention when [ is equal to zero (the ns functions) we don’t
need to specify the value of m, since it is always equal to zero. The names of the
different solutions for the hydrogen atom for n up to 3 are given below.

n=1 =0 m=20 1s
n=2 l:o m:() 2S
=1 m= +1 2D 44
m=0 2po

m=—1 2p_4

There are a total of n? solutions with the same value of the principal quantum number

n, and therefore with the same energy, — Ry/n’.
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2.2.2. Description of the eigenfunctions

The vari.ous eiger.lfunctions which describe these electronic situations depend upon
the spatial coorfilpates Le. ¥, ; .(x, y, z). Relying on the spherical symmetry of the
hydrogen atom it is advantageous to express these functions in terms of the spherical
coordinates, r, 6, ¢ shown in 2-2.

x=rsinfcos¢ rel[0, ool
y=rsinfsing 0€e[0, ]
z=rcosf ¢ € [0, 2n[

2-2

(a) Analytical form

Because of the form of the mathematics of the hydrogen atom problem it turns out
thaF thF wavefunctions may be written as a simple product of two functions, one
radial in extent and the other containing all of the angular dependence.

an,l,m(ra 9) ¢) = Rn,l(r) Yl, m(6> ¢) (25)

i

The first term, the radial one (R, (r)) only dependent on r, contains the principal
quantum number n and the angular momentum quantum number [. The second term
Y, .0, ¢), the angular part, only depends on the variables 0, ¢. Both terms are
normalized so that the total wavefunction itself is normalized. The volume element
dr may be written in terms of spherical coordinates as dt = 7% sin 6 dr d0 dé.
Equations (26) and (27) show this process formally.

f R2 (1)r? dr = 1 (26)
0

T 2
j f Y7, (0,¢)sin0dodp =1 27
0 JO

As we will see it will prove very useful to use a pictorial representation for the

i "waveful?ct_ions. However, since they in general depend upon the three variables r, 0

l'ld b, it is impossible to rigorously represent their shape in two dimensions. Thé
i 0st satisfactory way is to draw a contour map of the function by drawing lines of
constant V' in a plane of interest.
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(b) The 1s function (n=1, /=0, m= 0)

The analytical expression for this function is

2 r 1
. LA 28
: [ ageXp< aoﬂm -

The expression doesn’t appear to contain the variables 0 and ¢. In fact the angular

contribution is equal to ./(1/4m). The radial part varies via the term exp(—r/a,) and
the expression 2/ag/* assures that this part of the wavefunction is normalized. g, is
a universal constant of length, known as the Bohr radius, equal to 52.9 pm.

This wavefunction is said to be spherically symmetrical since its value at a point
only depends on the distance of that point to the nucleus. It is thus easy to precisely
describe the behavior of the 1s function using a plot of its dependence on 7, the single

variable on which it depends (2-3a). The amplitude of the wavefunction is largest at

A
Vis (30-3/2) { \

A0\
_ 7,

rlay

2-3a 2-3b

the nucleus and decreases exponentially via the term in —r/a,. It is important to
note that the wavefunction has the same sign (positive from equation (26)) for all
values of . The contour diagrams for W, are easy to construct since the surfaces of
constant W are spheres (i.e. constant ) and their intersection with a plane containing
the nucleus are circles (2-3b).

These two representations are not very convenient ones in a practical sense. A
representation which captures the essence of the wavefunction in terms of spherical
symmetry and a sign which doesn’t change with r is shown in 2-4a. W is represented

by a circle centered at the nucleus and containing a positive sign to show that the
wavefunction is positive everywhere. An equally valid possibility is one which
contains a negative sign, indicative of a wavefunction which is negative everywhere.
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Recall that from Sectiqn 2.1.2a this gives a completely equivalent description of the
electron..The convention we will use in this book is shown in 2-4b. Hatching or
shading is us'ed to indicate where the wavefunction is positive, and the circle is left
empty when it is negative.

(c) The 2s function (n=2, /=0, m = 0)

The analytic expression for this function is

L ale-idnl 21
% % ” p 2a0) | Jan (29)

Just as for the 1s orbital the angular part of the 2s function is also constant and

§qual to \/ (1/4m). Thus the wavefunction depends only on r, and as a consequence
1s‘sphericglly symmetrical. Its amplitude tends to zero as r tends to infinity via the
exponential term, just as for the 1s function. What is new here however is that the
term.Z — r/a, goes to zero when r = 2a,, and the probability of finding the electron
‘at.thls distance from the nucleus, described by the surface of a sphere of radius 2a
is 1dentigally zero. We say that the 2s function possesses a spherical node. As deﬁne(g
in equation (29) it is positive when r is less than and negative when r is greater than
2a,4. A surface where the wavefunction is zero everywhere on it is called a nodal surface
The \yauefunction changes sign on moving from one side to the other. '
It is again possible to describe the behavior of W, as a function of r in a simple
way since the wavefunction does not explicitly contain the variables 0, ¢ (2-5a). It

i

A
Vo5 (857 ?
0,2 — g )
0,1 —
0 ~——— [
| | | > w3
0 2 4 6 I
2-5a 2-5b

has. a maximum at r = 0, changes sign at r = 2a,, as indicated by the change from
18;)1}1(; “t/(; dashed contour .lines (2-5b) and then approaches zero as r becomes large. It
k. ver more convenient to use the rqpresentation 2-6 which comprises a pair of
concentric circles, containing plus and minus signs, or hatched and unhatched areas

to describe the sign of the wavefunction as described earlier.
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or

2-6

(d) The 2p functions (n=2, /=1, m= +1,0, —1)

Although the function which describes 2p, is real, it turns out that the fuilcﬁons
describing 2p,, and 2p_; are complex conjugates of eagh other. In generii I e qg
dependence of Y, (6, ¢) turns up in the form ei™* leading to values of.e 5 | an1

e for p,, po and p_, respectively. Since 2p anq 2p_, are de_generate, Judlglogs'y
chosen linear combinations of the two are also valid wavefpnctloIlis‘; as described in
Section 2.1.2c. Thus we could write for one combination (¢' + e ~'*)/2 = cos ¢ and1
(e — e~i¢)/2i = sin ¢ for the other. This leads to two new, real, Qrthonorma
functions. Along with the function for 2p, we now have the three functions

:

¥ ¥ iy _1__ L exp —L> \/E sin 6 cos ¢ (30-3)
| 2 f6a3 a0 2a,) |\ 4n

W, — 1 r exp(—L>_ \/E sin 0 sin ¢ (30-b)
217y - 2 6a(3) aO 2a0 | 471:

1 r r\] /3 ) Y

_ _ _ —cos 6 (30-c)

Tsz - |:2 6(1(3) ao CXp( 2610>_ \/;

These functions take on a simple analytic form by transformati(_)n back to Fhe
cartesian coordinates of 2-2. The angular part of the three wavefunctions of equation
(30) multiplied by r are just the cartesian functions X,y and z. Such a correspondence
leads to the following description of the wavefunctions:

2' — 31-a
W Nx exP<__> ( )
) 2p —— 31-b

¥ Ny exp(——) ( )

(31-c)

This new nomenclature emphasizes the similarities which exist between the three
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functions. Each possesses the same local geometric properties, they just point along a
different goemetrical axis, x, y or z. It is sufficient to take a look at just one of them
(p- for example in equation (31-c)) to be able to understand them all.

For a given value of z the function 2p, has the same value for all points located
at the same distance, r, from the origin (2-7a). We say that this function is cylindrically
symmetrical about the z-axis. On the other hand 2p. is of opposite sign for two points
related by the xy plane, namely z, = —z,, and Fa = 1y (2-7b). This function is thus said
to be antisymmetric with respect to the xy plane. Finally ¥, ,_is identically zero within
the xy plane. This plane is consequently a nodal plane of p,.

A A

szz Zn S A

{ Von,(B) = -y (A)

B

2-7Ta 2.7b

A contour description of the 2p, function is given in 2-8a. As before the change
from solid to dashed contour lines indicates the change in sign of the wavefunction.
Generally we prefer the representation shown in 2-8b, one which contains all of the
essential information about the orbital, namely cylindrical symmetry around the
z-axis, the presence of a nodal xy plane and a function which is antisymmetric with
respect to it. We say that this function has two lobes, one positive (shaded in 2-8b)
and one negative (unshaded).

2-8a 2.8b
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The representations we use for 2p, and 2p, can be obtained from 2-8b by changing
the axis involved, and are shown in 2-9. Notice the special way we draw the 2p,
orbital to indicate that it is directed perpendicular to the page.

2-9 2P, 2P, 2P,

(e) Radial probability density

The probability of finding an electron somewhere is an important concept but one
which is sometimes difficult to portray. Another way which is frequently used to
characterize the wavefunction is the radial probability density which is the probability
of finding the electron in the volume enclosed by the two spheres of radii r and r + dr
(2-10)*. We need to integrate the square of the function over the angular coordinates,

r+ dr

2-10
0 and ¢:
ds = J RZ (1) Y?,(0, p)r* sin 6 dr d6 d¢
0,¢
= R2 (r)r* dr f Y?,(0, ¢)sin 6 dO d¢
0,¢

Taking into account the normalization of ¥, (6, ¢) we obtain an expression of the
form

dS = RZ (r)r* dr (32)

* The form of the volume element as defined here is equal to 4zr? dr, which immediately leads to the
possibility of calculating dS via the relationship dS = ¥*4zr? dr. However this is only the case for a
spherically symmetrical function (i.e., s functions) whose probability density, W2, is constant within the

volume considered.

PROPERTIES OF ATOMS 43

RZrZ (361)
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Figure 2.2. Radial probability densities for the functions V/,, /,; and V/,,,.
The radial probability density is then written as
dS/dr = R,i,(r)r2 (33)

This is shown for the 1s, 2s and 2p functions in Figure 2.2. In each case the density
1s zero at the nucleus and tends to zero as r tends to infinity. It is also zero for the
case.of the 2s function at r = 2a, where there is a spherical node. Each curve has a
maximum value, located at » = g, for the 1s function and clearly at larger r, at 5.24a,
and .4a0 for the 2s and 2p functions respectively. (The 2s function has a smaller
maximum at r = 0.76a,). These maxima correspond to the most probable distance
of finding the electron from the nucleus. The value of » to which they correspond
characterizes the spatial extent of the wavefunction, or its ‘radius’. The radii of the
2s and 2p functions are clearly larger than that for the 1s function. This is a general
result which may be extended to all the hydrogenic wavefunctions. The radius of the
wavefupction (defined as that radius where there is a maximum in the radial
probability density) increases with n (and is close to n%a,) but depends only slightly

- on the value of /.
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2.2.3. Electron spin

The characterization of the electron by a wavefunction of the type we have
described uses just three quantum numbers, n, | and m. A complete description
of the electron in the hydrogen atom however, requires consideration of a further
concept. In addition to the classical ideas of mass and charge, the electron possesses
a permanent magnetic moment, p. It is difficult to visualize this purely quantum
mechanical concept in classical terms, but it too is quantized. The magnetic moment
may take one of two values and is generally expressed in units of Bohr magnetons

(up) viz:
p= —2mpuy

Here m, is called the spin quantum number which may only adopt one of two
values +1. By convention an electron with m, = 1 is called an electron with o spin
and one with m, = —% is called an electron with 8 spin. It is necessary to use these
four quantum numbers, n, I, m and mq to completely characterize the electron in the
hydrogen atom. :

The experimental demonstration of the existence of a magnetic moment associated
with the spin of the electron is due to two physicists, Stern and Gerlach. If one sends
a beam of silver atoms (an element containing a single unpaired electron) through
an inhomogeneous magnetic field it splits into two as indicated by the development
of two separate regions of metallic silver deposited on a plate downstream of the
magnet. The existence of just two areas of metallic silver show that the magnetic
moment can take just two values. The atoms with m, = 1 are deflected one way and
those with m, = —3 the other.

2.2.4. Hydrogen-like atoms

An exactly analogous treatment to the one we have just given for hydrogen is
applicable to all hydrogen-like atoms, namely those that possess a single electron
moving around a nucleus of charge +Ze. These are the ions Het (Z = 2), Li**
(Z=3) and Be*" (Z=4) etc. The results pertaining to these situations are
qualitatively identical to those found for hydrogen itself in terms of the form of the
wavefunctions W¥,,, ¥,,, ¥,, etc. Again the energy only depends on the principal
quantum number, n. There are however several quantitative differences which

appear.

(i) The eigenvalues are of the form E, = — RyZ?/n® leading to the important result
that the energy of the orbital is lowered as the nuclear charge increases.

Thus whereas the energy of the 1s orbital is —13.6 eV(—Ry) in hydrogen,
it is —54.4 eV(—4Ry) in the helium cation, He*. This lowering of the energy
arises from the stronger electrostatic interaction between electron and nucleus
as the nuclear charge increases.

(ii) The analytical expression for the eigenfunctions may be generated from those
obtained for hydrogen by replacing a, by ao/Z in the relevant equations. For
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example the expression for the 2s function is

Y, = l: /Z—3 <2 — Zr) exp(—ZT>] L (34)
8(13 ag 2(10 \/E

This last point is important for it shows that the wavefunctions in the
hydrogen-like atoms are more contracted, i.e., of smaller spatial extent than
in hydrogen itself. So, whereas the radial maximum in the radial probability
function for the 2s orbital is about 5a, (265 pm) in hydrogen it is about
5(ag/Z) = 2.5a, (132 pm) in He*.

2.3. Many-electron atoms

In the case of hydrogen and hydrogen-like atoms an analytic solution of the
Schrédinger wave equation is possible. The single interaction between electron and
nucleus is simple to treat but the quantum mechanical problem for the situation
where there are in addition interactions between electrons, the case in the many-
electron atom, prevents such an analytical result. Since it is impossible to find the
exact analytical wavefunctions for the Hamiltonian operator applicable to the
many-electron atom, it is necessary to make some approximations in order to
determine the wavefunctions which best approximate the state of affairs.

2.3.1. The orbital approximation

Let us call ¢, the set of three spatial coordinates (x;, y;, z;) appropriate to the electron
i. Thq wavefunction which describes the collection of electrons depends on the
coordinates of all the electrons and may be written as a many-electron function as

lIl(elﬂ €50t s €y 5ez) (35)
This function is a solution of the Schrodinger wave equation:
HW(e, ey .r€,...,6,)=E¥(e,ey...,¢,...,¢,) (36)

In the orbital approximation one looks for solutions which approach that of the
many-electron function by writing a product of single-electron functions, y; which
only depend upon the coordinates of a single electron.

Wie, ez s, ..5e) = xi(e)ra(es) ... xile) ... xle,) (37

The single-electron functions are called the atomic orbitals (AOs) of the atom. They
are themselv?s.solutions of an equation (38) which although having the same form
as the Schrédinger equation, is considerably simpler since it only contains the
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coordinates of a single electron.
hyie;) = € xder) (38)

There are an infinite set of solutions y; associated with the eigenvalues ¢;, the energies
of the atomic orbitals, y;. The wavefunction W, describing the many-electron atom
is thus the product of a given set of the y;, the choice of which is determined by a
set of rules which we will describe later (Section 2.3.4b).

2.3.2. Mathematical description and nomenclature of atomic
orbitals

By analogy with the eigenfunctions for the hydrogen-like atoms, each orbital y is
written as a product of radial and angular functions

Xn,l,m(r’ 0’ (P) = R"‘,(l') YI, m(0> (P) (39)

The angular part of this expression, ¥ (0, ¢) is identical to that found for the
hydrogen atom and is determined by the values of the two quantum numbers [ and
m. The radial part, set by the values of the two quantum numbers n and [, is
determined by both the nuclear charge and the presence of the other electrons (see
Section 2.5.2). Its functional form is thus expected to be rather different from the
R, ((r) of the hydrogen atom. As before, each orbital is characterized by the three
quantum numbers n, [ and m appropriate for the one-electron atom. The rules which
determine the allowed values of these quantum numbers are also the same as those
for the hydrogen-like atoms; n=1,2,3,...,0<I<n and —I! <m < +1. Ortho-
normal AOs, described as before, with the labels 1s, 2s, 2p etc., result.

The close similarities between the AOs for the many-electron atom and the
wavefunctions for the hydrogen atom and the hydrogen-like atoms means that,
although it is not strictly correct we use the same language to describe the orbitals
in one- and many-electron atoms. Irrespective of whether the functions are deter-
mined via the orbital approximation or as exact solutions of the wave equation for
one-electron atoms, we shall use the term atomic orbital (AO) for both.

2.3.3. Atomic orbital energies

For the hydrogen-like atoms we saw that the energy of the atomic orbital (g,), in
this case the same as the eigenvalue E, only depends upon the principal quantum
number n (¢, = E, = —RyZ?*/n?). Classification of the AOs in terms of increasing
energy doesn’t pose any particular problem. The energy of the orbital increases with
increasing n and orbitals with the same n are degenerate, 2s and 2p for example. The
situation is more complex in many-electron atoms. In many-electron atoms, the energy
of an atomic orbital depends on the two quantum numbers n and .

An immediate consequence of this result is that AOs with the same n and [ remain
degenerate. For example the three 2p orbitals are strictly degenerate, as are the five
3d orbitals. Such a group of orbitals with the same energy is called a sub-shell, the
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term she]l itself is reserved for all the orbitals with the same n. In this way the 2 shell
(n = 2) is made up of the two sub-shells 2s and 2p.

There are two general rules which allow, at least in part, the energetic ordering of
the orbitals

(i) For the same value of [ the orbital energy increases with increasing n. Thus

s T8y T 83, < -

82p<83p<84p<"'
(ii) For the same value of n the orbital energy increases with increasing I. So

823(l=0) <82p (l= 1)
bas (I =0) <3, (I=1) < &5, (1 =2)

These two rules are not, however, sufficient to completely fix the energetic ordering.
For example they do not allow the placement of 2p relative to 3s. However
calculations show that it is the value of the principal quantum number which
dominates here, i.€., €,, < &;,. In fact for all atoms the lowest five orbitals are found
in the following order

s T 655 < &2p < &3, < E3p

Beyo_nd tt}is group the situation gets complicated. For example it is not possible to
predict using these rules the energetic ordering of the 4s and 3d AOs since the actual
state of affairs depends 'on the atom being considered, and sometimes its oxidation
state.

2.3.4. The electronic configuration of atoms

The electronic configuration of an atom is the assignment of the available electrons
to the different sub-shells open to them. The number of electrons in a sub-shell is
generally indicated by an exponent. For example, 1s* signifies the presence of two
electrons in the 1s orbital. We speak then of two electrons ‘occupying’ the 1s orbital.
Two rules limit the configurations which are possible.

(a) The Pauli exclusion principle

One way of stating this is that in an atom no two electrons may have the same values
Jor the four quantum numbers n, I, m, m,. This principle has two important
consequences.

(i) If two electrons have the same spin (that is to say the same value of the spin
quantum number) they must occupy two different orbitals. (i.e., at least one of
the n, [ and m quantum numbers must be different for the two electrons.)




