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Molecular phylogenetics deals with the inference of evolutionary relationships among
individuals, populations, species and higher taxonomic entities using molecular data.
By modelling patterns of molecular change in protein and deoxyribonucleic acid (DNA)
sequences over time, scientists now routinely reconstruct evolutionary histories of
species and evaluate confidence levels of the inferences. Molecular phylogenetic
inferences have been not only supportive of traditional phylogenies, but also
instrumental in resolving some difficult questions regarding branching orders within
many evolutionary lineages. Because of the vast and growing databases of molecular
sequence information, this area promises to be an important key to understanding the
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history and relationships of all life forms on this planet.

Introduction

In the second half of the twentieth century, many laboratory
techniques became available for examining diversity within
and among species by analysis of biologically important
molecules. These include methods based on cross-reactivity
of antibodies, protein electrophoresis, DNA-DNA (deoxy-
ribonucleic acid) hybridization, restriction fragment length
polymorphism and direct sequencing of DNA and proteins
(polypeptides). Of these, direct comparisons of DNA
sequences have been most informative and powerful
(Miyamoto and Cracraft, 1991). Within the last decade,
complete DNA sequences of many genomes have been ob-
tained and the public sequence repositories are bulging with
sequence information for thousands of genes from diverse
species. As of June 2007, complete genomes of 568 organ-
isms, including 49 eukaryotes, have been published and over
2000 more are being currently sequenced (Liolios et al.,
2006) (http://www.genomesonline.org). Thousands of virus
genomes are already available as well (http://
www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html).
Sequence repositories such as NCBI Genbank contain over
65 million sequence records (http://www.ncbi.nlm.nih.gov/
Genbank/index.html). See also: Genome Databases;
Molecular Evolution: Techniques
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By analogy to classical phylogeny reconstruction using
morphology, homologous amino acid or nucleotide sites in
different organisms may be thought of as characters, with
the identity of the nucleotide or amino acid at that site
corresponding to the state of that character for the organ-
ism (Figure 1). Use of molecular sequence data has several
advantages compared to the morphological characters
used traditionally. For instance, no subjective appraisal is
involved in the determination of character state; laboratory
techniques tell us the identity of the nucleotide base at a site.
Another advantage is that the same set of states (four bases
or 20 amino acids) applies to all organisms, and thus we can
directly compare even the most diverse life forms. In ad-
dition, the amount of available data is enormous, and it is
relatively simple to obtain pertinent data for a given set of
species in the laboratory today.

Concurrent availability of low-cost, powerful computers
and new software algorithms has led to the routine use
of molecular sequences in reconstructing evolutionary his-
tories of organisms at various taxonomic levels. In the fol-
lowing, we discuss the methods of molecular phylogenetic
reconstruction for DNA because DNA sequences are used
most widely. These discussions also hold true for protein
sequence data. Detailed account of methods for these and
other types of data can be found elsewhere (Nei, 1987;
Yang, 2006; Nei and Kumar, 2000; Felsenstein, 2004).
See also: Bioinformatics; DNA Sequence Analysis;
Genome Sequence Analysis; Protein Sequence Databases

Methods

Assembling a DNA sequence data set

To infer the evolutionary relationship of a set of organisms
using molecular sequence data, we must first ensure that the
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Site

Dalli sheep G
Sperm whale G
Hippopotamus GA|
Pig G
Human GA|

CTCTAACTGCCACTGACTGAGAGAG- -
TCTAACCACCACTGACTGAGAACT - -
TCTCAC-ACTGCTGATTGAGAACT - - -
TCTGACCAGCGCTGCCTGAGAAAA- - -

Missing data

Insertions/deletions (

—————— TCATCTATGAAGTGCTTTTGC?GTTATTTTAG
—————— TCAACTGTGAAGTTCTTTTGCTGTTATTTCAG
————— TCATGTGTGAAGTTCTTTTGCTGTTATTTC?G
————— TCATCTGTGGGGTTCTTTTGCTGTTGTTGTAG
TAAAGACTACTGACCAAAAAATAATAATAATAATCTGTGAAGTTCTTTTGCTGTTGTTTTAG

Set of sequences

Figure 1 Analignment of a portion of the y-fibrinogen gene sequence from five mammals. Insertion—deletion mutations predicted by sequence alignment are

shown with hyphens (-) and the missing data is shown with question marks (?).

sequences being compared are homologous. We begin by
selecting a gene with a homologue in each organism under
study. In fact, for this purpose, the chosen sequences must
not only be homologous, but need to satisfy the stronger
condition of being orthologous, i.e. having diverged
by speciation events rather than by gene duplications.
Researchers determine sequence orthology by using crite-
ria such as the overall sequence identity and functional
similarity, and through the analysis of multigene families to
which the sequences belong. One must then decide whether
to use the nucleotide sequence of the gene or the amino acid
sequence of its protein product, if any. There are many
considerations involved. For distantly related organisms,
amino acid sequences are often used, because nucleotide
sequences evolve much faster than amino acid sequences
owing to the redundancy of the genetic code. However,
nucleotide sequences can be more informative, for exam-
ple, by allowing a distinction to be made between nucleo-
tide substitutions that do not alter the amino acid encoded
(silent substitutions) and those that do (replacement sub-
stitutions). For intraspecific population genetic studies and
for closely related interspecies studies in mammals, mi-
tochondrial DNA is often used because parts of it evolve
more rapidly than nuclear genes and thus provide more
variation for reconstructing evolutionary history. See also:
Evolutionary Developmental Biology: Homologous Reg-
ulatory Genes and Processes; Human Chromosome Evo-
lution; Mitochondria: Origin; Mutations and the Genetic
Code

Sequence alignment

The next step is to align the corresponding positions in
different sequences. This is not trivial because sequences of
a given gene often differ in length in different species as a
result of insertion and deletion mutations (reviewed in
Kumar and Filipski, 2007). Many computational algo-
rithms and tools are available for this purpose (e.g. Higgins
et al., 1996). They work by inserting place holder symbols,
usually hyphens, in the sequences to maximize the total
similarity at each site, while deducting a cost for each place
holder inserted (Figure 1). At this point, the sequences are of
the same length and can be organized into columns, each
representing a homologous site. Alignment of DNA

sequences from distantly related species or fast evolving
genes is generally more difficult. For this reason, DNA
sequences that code for protein products are aligned by first
constructing an alignment of corresponding amino acid
sequences. The protein sequence alignment is then used as a
guide to obtain the alignment of the underlying DNA se-
quences. See also: DNA Sequence Analysis

Inferring the phylogenetic tree

At this point, we are ready to infer the phylogenetic tree.
The essential structure of the tree is given by its topology,
i.e. which nodes are connected to which others (Figure 2).
Almost all methods for reconstructing phylogenetic trees
produce unrooted trees (Figure 2b). In this case, one may

Exterior
branch

(b)

Figure2 Rooted (a) and unrooted (b) tree of five sequences. Branch lengths
are drawn proportional to evolutionary distance, which can be expressed in
the units of time or the number of substitutions.

e
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‘root’ the tree using a known outgroup sequence. In addi-
tion to the branching pattern, we are usually also interested
in the length of the branches. Elucidation of the branching
pattern is more difficult than the estimation of the branch
lengths. In fact, once the topology has been established, one
can use statistical methods based on least squares or maxi-
mum likelihood approaches for determining the branch
lengths (reviewed in Nei and Kumar, 2000).

Several different methods are available for reconstruct-
ing phylogenetic trees. Most of them use some criterion
(optimality principle) for evaluating the fit of a given data
set to the topology and then search for the tree that gives the
best score in terms of that criterion (see later). If the cri-
terion used is realistic and the data are sufficient, the tree
should represent the true phylogenetic relationship of the
sequences (and thus the associated organisms). In practical
situations, however, this is complicated by the fact that the
number of different tree topologies that can be made from a
set of sequences increases very rapidly with the number of
sequences (Table 1), and we must use heuristics to constrain
the search to find a potentially optimal tree quickly. For-
tunately, the quality of phylogenetic trees produced by
quick heuristics is similar to that obtained with extensive
(or even exhaustive) searches, while more efficient heuris-
tics are being developed to deal with larger trees (Nei and
Kumar, 2000; Felsenstein, 2004; Takahashi and Nei, 2000;
Hordijk and Gascuel, 2005; Stamatakis et al., 2005).

Atpresent, three commonly used tree-building criteria in
molecular phylogenetics are minimum evolution (ME),
maximum parsimony (MP) and maximum likelihood
(ML). Under the MP criterion, the topology requiring
the smallest number of nucleotide changes to fit the ob-
served sequence data is chosen to represent the true tree
(Fitch, 1971). In ML methods, the topology with the great-
est likelihood (probability of being generated) under a
given probabilistic model of nucleotide substitutions is
chosen (Felsenstein, 1981). In the ME methods, the se-
quence data are first transformed into a matrix of distances
between sequence pairs. Then, the total branch length
needed to fit this matrix to each possible topology is com-
puted, and the topology requiring the smallest total branch
length is chosen. The evolutionary distance between a pair
of sequences can be estimated in a number of ways. The

Table 1 Number of possible unrooted trees for different
numbers of sequences

Trees

1

3

15

105

945

10395
135135
2027025
654729075

Sequences

—_ = 0 00 3 O\ L W

— o

ENCYCLOPEDIA OF LIFE SCIENCES © 2008, John Wiley & Sons, Ltd. www.els.net

simplest distance measure between two sequences is the
p-distance, which is the fraction of sites at which the two
sequences differ. The p-distance is known to underestimate
the true amount of evolution because it does not account
for multiple substitutions at the same site. This problem
can be remedied by using a more complex model of nu-
cleotide substitution. A detailed explanation for estimating
distances under different models of substitutions and
guidelines on choosing appropriate distance measures
can be found in Nei and Kumar (2000).

The neighbour-joining method (Saitou and Nei, 1987),
because of its computational efficiency, has been frequently
used in molecular phylogenetics, especially for large-scale
data analyses. It is based on, but does not necessarily opt-
imize, the ME criterion. The neighbour-joining method
works in a stepwise fashion by minimizing the sum of
branch lengths at each step of sequence clustering. The
unweighted pair-group method using arithmetic averages
(UPGMA) is another distance-matrix-based method, in
which pairs of sequences showing the smallest evolutionary
distance are clustered first. This method assumes that
the evolutionary rate has remained constant throughout
the evolutionary history of the given set of organisms. Since
this assumption is rarely met in reality, UPGMA should be
used cautiously for inferring phylogenetic histories. Many
academic software packages are available for computing
distances and inferring phylogenetic trees, for example
(Kumar et al., 2004). See also: Biological Computation;
Molecular Evolution: Patterns and Rates

Maximum parsimony and maximum likelihood meth-
ods are also widely used and each has advantages. MP, for
example, is thought to be nonparametric in the sense that it
does not require specification of a model of evolutionary
change. However, MP is known to be inconsistent under
certain conditions, which means that, even with arbitrarily
long sequences, certain phylogenetic trees will be recon-
structed incorrectly (the so-called long branch attraction
problem, discussed later). This is not a fatal flaw, but such
potential situations need to be watched for (Felsenstein,
2004; Bergsten, 2005).

Maximum likelihood is generally regarded as the ‘gold
standard’ of molecular phylogenetic reconstruction, in
terms of accuracy, but the method does depend on an ap-
propriate model of molecular evolution with accurately
estimated parameters. Another disadvantage of ML is that
it tends to be very time-consuming in terms of computa-
tional effort, and comprehensive searches of tree topology
cannot be made except in trivial cases.

In the last few years, Bayesian methods of phylogenetic
tree reconstruction have become more popular. Bayesian
methods involve similar model-based computations to ML
procedures, but they estimate a posterior probability of the
model given the observed sequence data. Efficient algo-
rithms (e.g. Markov Chain Monte Carlo) for doing this
have enabled Bayesian methods to compete effectively with
ML (Huelsenbeck et al, 2001; Hall, 2005).

The choice of which tree-building method to use is some-
what arbitrary and often depends on time requirements,
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software availability or the philosophical predisposition of
the researcher. This is because: (1) no method is uniformly
better in reconstructing the true tree when the sequence
length is small and (2) all methods tend to perform well given
enough data, except when they are inconsistent (Nei and
Kumar, 2000; Hall, 2005).

Assessing reliability

The next step in constructing a sequence phylogeny is to
assess the reliability of the inferred branching pattern. This
is often accomplished by a bootstrap analysis (Felsenstein,
1985). Bootstrap procedures involve construction of new
sequence sets by resampling with replacement sites (col-
umns) of the original set, building a tree for each new set,
and calculating the percentage of times a cluster reappears
in the bootstrap replications. This percentage is called the
bootstrap value; clusters with a bootstrap value >95% are
widely considered to reflect correct relationships, although
some authors have suggested that 70% may be a more
realistic cutoff point.

Under Bayesian methods of phylogenetic analysis, in-
formation about the reliability of inferred trees is available
in terms of the posterior probabilities (credibility intervals)
without bootstrapping, but these have been criticized as
giving misleadingly high levels of support (Suzuki et al.,
2002; Douady et al., 2003; Alfaro and Holder, 2006; Yang
and Rannala, 2005).

Finally, it is important to remember that measures such
as bootstrap support and posterior probability refer only to
the consistency and reliability of constructing the given tree
from a specific sequence data set, and do not take into
account possible bias in the data set or incorrect model
assumptions. For a detailed explanation of the bootstrap
test and information on other types of tests of phylogenetic
trees, see Nei and Kumar (2000) and Felsenstein (2004).

Major Software Packages for Building
Phylogeny

Hundreds of software packages are available to perform all
of the major types of phylogenetic analysis mentioned ear-
lier. Some are command-line oriented while some have
graphical user interfaces of varying degrees of sophistica-
tion. Most are available on multiple platforms, including
Microsoft Windows, Unix/Linux and Apple Macintosh
operating systems. Almost all are free and have open source
code, but some have a small cost associated with them.
Popular programs for MP analysis are PAUP* (Swofford,
2001) and Phylip (Felsenstein, 1993), while ML methods
are availablein PAML (Yang, 1997), HYPHY (Pond ez al.,
2005) and PHYML (Guindon and Gascuel, 2003). Bay-
esian methods are implemented in MrBayes (Ronquist and
Huelsenbeck, 2003) and Beast (Drummond and Rambaut,
2006), while some programs, such as MEGA (Kumar et al.,
2004; Tamura et al., 2007), integrate several methods under

a user-friendly graphic interface. These programs taken
together constitute the tools used in the overwhelming ma-
jority of published phylogenetic analyses (Kumar and
Dudley, 2007). A more complete list of hundreds of phylo-
geny programs is available from Joseph Felsenstein at the
web site http://evolution.genetics.washington.edu/phylip/
software.html, and a book by Hall (2007) is an excellent
way to get started with molecular phylogenetics.

Impact on Phylogenetics

In general, molecular phylogenetics studies have supported
traditional phylogenies constructed on the basis of non-
molecular characters and provided clarification to debates.
However, there have been some notable disagreements be-
tween molecular and classical phylogenies. One such ex-
ample involves the identification of the closest living
relatives of the hippopotamus (family Hippopotamidae).
Before molecular phylogenetic analyses, Hippopotamidae
was thought to be most closely related to Suina (pigs
and peccaries), within the mammalian order Artiodactyla.
Molecular studies using mitochondrial and nuclear DNA
sequences have now clearly established that Hippopota-
midae is a sister group to Cetacea (containing whales and
dolphins), and that this group is more closely related to
ruminants (cows, sheep and deer) than to pigs and peccaries
(e.g. Gatesy, 1997). Molecular phylogenetics has also re-
solved the human—chimpanzee—gorilla trichotomy (Satta
et al., 2000), identified Chimpanzee Simian immunodefi-
ciency virus as the closest relative of the Human immuno-
deficiency virus type 1 (Paraskevis et al., 2003), and provided
insights into sister group relationships of animals and fungi
(Baldauf and Palmer, 1993). Some other questions still re-
main unsettled, such as the exact timing and pattern of mam-
malian ordinal diversification (Springer ez /., 2003; Murphy
etal.,2007) and the relationship of certain animal phyla (Wolf
et al.,2004; Dopazo and Dopazo, 2005; Putnam et al., 2007),
but these questions only stimulate the collection of data and
the development of new techniques of analysis. See also:
Apes; Artiodactyla (Even-Toed Ungulates Including Sheep
and Camels); Cetacea (Whales, Porpoises and Dolphins);
Fossils in Phylogenetic Reconstruction; Phylogeny Based on
16S rRNA/DNA

Variable Rates

Molecular phylogenetics would be simpler if all sites in a
gene evolved at the same rate (uniform substitution rate
among sites) and if all species evolved at the same rate in a
given gene (equal rates among lineages). Within a gene,
however, certain sites are under stronger natural selection
than others because of their functional importance. This
variability in evolutionary rates among sites is often ac-
counted for in phylogenetic inference by using a variety of
models, including a gamma model of nucleotide substitution
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and models that allow for a certain fraction of sites to not
change (Yang, 1996; Guindon and Gascuel, 2003).

Variable evolutionary rates among lineages

The observed heterogeneity of evolutionary rates among
lineages in a gene is caused partly by the nondeterministic
nature of the evolutionary processes, partly by differences in
intensity and type of natural selection and partly by un-
known factors. Tree-building methods mentioned earlier,
with the exception of UPGMA, do not assume constancy of
evolutionary rate among lineages (molecular clock) and can
thus be used directly. However, some methods are known to
produce consistently incorrect results when the evolution-
ary rates vary significantly among lineages. For instance,
Felsenstein (1988) showed that if a four-sequence tree con-
tains two long and two short branches, then the long
branches tend to cluster together in the MP trees even if they
are distantly related (long-branch attraction problem). One
way to avoid this problem is by using a larger number of
sequences such that the long branches are broken. Another
way to minimize the effect of long-branch attraction is
to use ML, ME or Bayesian methods, as described earlier.
See also: Molecular Clocks; Molecular Evolution: Rates

In summary, molecular phylogenetics has become an
integral part of research endeavours in diverse areas of
molecular biology, population genetics, developmental
biology and evolutionary biology and has implications for
ecology and medicine. We are only at the beginning of this
area of study and rapid growth of data and computational
power should lead to the resolution of many long-standing
problems in these fields.
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