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Protein phosphorylation at serine, threonine or tyrosine residues affects a
multitude of cellular signaling processes. How is speci®city in substrate
recognition and phosphorylation by protein kinases achieved? Here, we
present an arti®cial neural network method that predicts phosphorylation
sites in independent sequences with a sensitivity in the range from 69 %
to 96 %. As an example, we predict novel phosphorylation sites in the
p300/CBP protein that may regulate interaction with transcription factors
and histone acetyltransferase activity. In addition, serine and threonine
residues in p300/CBP that can be modi®ed by O-linked glycosylation
with N-acetylglucosamine are identi®ed. Glycosylation may prevent
phosphorylation at these sites, a mechanism named yin-yang regulation.

The prediction server is available on the Internet at http://
www.cbs.dtu.dk/services/NetPhos/or via e-mail to NetPhos@cbs.dtu.dk.
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Introduction

Protein kinases catalyze phosphorylation events
that are essential for the regulation of cellular pro-
cesses like metabolism, proliferation, differen-
tiation, and apoptosis (Koliba & Druker, 1997;
Hunter, 1998; Johnson et al., 1996, 1998; Pinna &
Ruzzene, 1996; Graves et al., 1997). This very large
family of enzymes share homologous catalytic
domains and the mechanism of substrate recog-
nition may be similar despite large variation in
sequence. Crystallization studies indicate that a
region, between seven and 12 residues in size, sur-
rounding the acceptor residue contacts the kinase
active site (Songyang et al., 1994).

The speci®city of protein kinases is dominated by
acidic, basic, or hydrophobic residues adjacent to
the phosphorylated residue, but the large variation
makes it dif®cult manually to inspect protein
sequences and predict the location of biologically
active sites. This prompted us to investigate if the
fuzzy sequence patterns can be recognized using
arti®cial neural networks techniques. Neural net-
works are capable of classifying even highly com-
plex and non-linear biological sequence patterns,
where correlations between positions are important.
The network recognizes the patterns seen during
ing author:
training, and retains the ability to generalize and
recognize similar, but non-identical patterns. Arti®-
cial neural networks have been extensively used in
biological sequence analysis (Wu, 1997; Baldi &
Brunak, 1998). Since determinants of phosphoryl-
ation sites probably are no longer than about ten
residues, most local sequence alignment tools, such
as BLAST and FASTA, will not be useful for detect-
ing phosphorylation sites due to a large number of
irrelevant hits in the protein databases, even to non-
phosphorylated proteins.

The related proteins p300 and CBP (CREB
(cAMP-response-element-binding)-binding protein)
integrate molecular signals at the level of gene
transcription and chromatin modi®cation. p300
and CBP interact with transcription factors CREB,
Jun and Fos, viral oncoproteins E1a and SV40 large
T antigen, and kinases pp90RSK and cyclin E-com-
plexed cyclin-dependent kinase (CDK)-2 (Shikama
et al., 1997; Ait-Si-Ali et al., 1998). These inter-
actions may possibly be regulated by reversible
phosphorylation of p300/CBP. We demonstrate
that regions of p300/CBP, which have been shown
to interact with other molecules, contain probable
phosphorylation sites. In addition, we describe
sites that possibly are regulated by both phos-
phorylation and glycosylation by N-acetylglucosa-
mine (GlcNac), a regulatory mechanism described
as a yin-yang dynamic phosphorylation/glycosyla-
tion (Hart et al., 1995; Hart, 1997).
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Figure 1. Sequence logos of phosphorylation sites
aligned at the phosphoacceptor residue showing the
Shannon information (in units of bits): (a) 210 tyrosine
phosphorylation sites; (b) 584 serine phosphorylation
sites; (c) 108 threonine phosphorylation sites. Note that
the central residue has been rescaled to a size of 1 bit
(actual size is 4.32 bits).
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Results

The general sequence context at
experimentally verified phosphorylation sites

Based on the large sets of experimentally veri®ed
phosphorylation sites, sequence logos were gener-
ated for each of the three acceptor residues, tyro-
sine, serine, and threonine (Figure 1). The sequence
logos emphasize residues that are frequently found
in the context of the phosphorylation sites. The
logo does not show the speci®city determinants for
a single kinase, but the overall features of all exper-
imentally veri®ed sites.

Tyrosine sequence logo

For tyrosine phosphorylation sites, we found
that tryptophan, a large and rare amino acid, was
never found at positions P ÿ 5 to P ÿ 1 relative to
the phosphotyrosine (PO), most likely due to steric
hindrance (Figure 1(a)). Similarly, cysteine was
never found at positions P ÿ 2 and P ÿ 1, indicat-
ing that tyrosine phosphorylation is unlikely to
occur C-terminally to a disulphide bridge, in agree-
ment with the notion that phosphorylation occurs
where the peptide chain is ¯exible (Tinker et al.,
1988). Methionine was never found at position
P ÿ 2, whereas it was highly abundant at positions
P � 1 and P � 3. Absent residues do not necess-
arily act as negative determinants for the substrate
recognition; this can be shown only by experimen-
tal techniques. The presence of acidic residues,
aspartic and glutamic acid, in the region from pos-
ition P ÿ 5 to P ÿ 1 was noted early in the analysis
of tyrosine phosphorylation sites (Patschinsky et al.,
1982). The relative content of acidic residues varies
from 22 % at P ÿ 5 to 34 % at position P ÿ 1.

It is not clear from the sequence logo whether
many sites contain consecutive acidic residues.
Analysis of 210 tyrosine phosphorylation sites
shows that only one sequence contains four con-
secutive acidic residues at positions P ÿ 4 to P ÿ 1:
Tyr315 in polyoma virus middle T antigen
(EEEEY*MPME)(Zhou & Cantley, 1995). Within
positions P ÿ 4 to P ÿ 1, 78 % of the sites have at
least one acidic residue, 29 % have at least two,
and 8 % have at least three acidic residues. Among
the sites with at least two acidic residues, EE and
ED are the most frequently occurring dipeptides at
positions P ÿ 4 and P ÿ 3. Based on the probability
of ®nding an acidic residue at positions P ÿ 4 to
P ÿ 1, the calculated probability of ®nding two
acidic amino acids is 20 %, which is almost equal
to the observed frequency of 19.5 %.

The motif [N-P-X-Y*], where X is any amino
acid, is recognized by the phosphotyrosine-binding
domain (PTB) present in several signaling proteins,
e.g. insulin-receptor substrates 1-4 (Pawson, 1995).
The observed frequency in the data set of this
motif is 4.3 % of 210 sites. However, the calculated
frequency, based on the frequency of N at P ÿ 3
and P at P ÿ 2, is 1.3 %, suggesting that signi®cant
correlations between these positions occur.

On the C-terminal side of the phosphotyrosine
residue, there is a clear over-representation of
hydrophobic residues (M, L, I, or V) and residues
with a structural role (G or P). The hydrophobic
motif at positions P � 1 to P � 3 has been
described in studies of the speci®city of the Src-
homology 2 (SH2) binding domain (Songyang et al.,
1993). The hydrophobic motif [M/L/I/V-X-M/L/
I/V] was found in 18.1 % of the tyrosine sites at
positions P � 1 to P � 3. The expected frequency of
the motif is 16.4 % based on the observed frequen-
cies for each position, indicating that there is no
signi®cant difference between the observed and
calculated frequencies.

Positions P � 4 to P � 6 are dominated by
glycine, indicating that this region may be
structurally ¯exible. Proline is clearly over-rep-
resented at positions P � 5 (16 %) and P � 9
(23 %), indicating that the structure of the pep-
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tide chain is important. Position P � 7 is domi-
nated by the positively charged basic residues
(K/R [28 %]) and position P � 12 by the rare
and bulky tryptophan residue (10.8 % compared
to 1.2 % on average in natural proteins).

We examined the sites containing either proline
at position P � 9 or tryptophan at P � 12 and
observed that many sites contained both residues.
Most of the sites were known auto-phosphoryl-
ation sites in Src-related kinases (e.g. Src, Hck, Tec,
Fyn) or in receptor tyrosine kinases (insulin-recep-
tor, IGF-1-receptor, PGDF-receptor, NGF-receptor).
In the crystal structure of the insulin receptor
kinase domain, the proline and tryptophan resi-
dues are located in a buried coil region C-termin-
ally of the activation loop containing the auto-
phosphorylated tyrosine residues (Tyr1158,1162,1163).

Serine sequence logo

In the sequence logo of serine phosphorylation
sites (Figure 1(b)), the basic motif recognized by
PKA and PKG at positions Pÿ3 and Pÿ2 was
readily observable (31 % and 27 % R � K at pos-
itions P ÿ 3 and P ÿ 2, respectively). In the motif
of protein kinase C (PKC), basic residues at P � 2
and P � 3 could also be identi®ed. However, these
positions were dominated by glutamic acid, which
is part of the acidic motif recognized by the casein
kinase 2 (CK-2) type kinases. Proline-directed
kinases have a preference for proline at position
P � 1 (13 % of the residues at P � 1), which could
be seen readily from the logo. Rare residues
around the serine residue include tryptophan and
cysteine. Tryptophan is not observed at positions
P ÿ 3 to P ÿ 1 and P � 2, and cysteine never at
positions P ÿ 7 and P ÿ 5.

As described earlier for O-glycosylation sites,
serine residues have a tendency to cluster, and this
is observed for the neighboring positions P ÿ 1 and
P � 1 also, where serine is the most abundant resi-
due (Wilson et al., 1991; Hansen et al., 1998).

Threonine sequence logo

In the sequence logo of threonine phosphoryl-
ation sites (Figure 1(c)), the basic motif at positions
P ÿ 3 and P ÿ 2 was readily observable, as was the
proline-directed motif at P � 1. The PKC prefer-
ence for basic residues at positions P � 2 and
P � 3, and the CK-2 preference for acidic residues
at the same positions could be observed also.

Tryptophan was never found at positions P ÿ 9
to P ÿ 5 or P � 1 to P � 6, but was over-
represented at P � 7 (11 % of the residues).
Cysteine was never found at positions P ÿ 5, P ÿ 3
to P � 1 and P � 4 to P � 12, while asparagine was
never found at positions P ÿ 3, P ÿ 2 or P � 1.
These observations could be due to a smaller
amount of data (108 sites), but for cysteine and
tryptophan these probably re¯ect the fact that
many phosphorylation sites are located in ¯exible
regions of the target molecule.
The frequent occurrence of valine or leucine at
positions P � 3 and P � 4 was investigated further
by analyzing sites containing these features. Eight
sites contained valine or leucine at both P � 3 and
P � 4 (data not shown). We noted that these are
involved in cell-cycle-dependent phosphorylation
and some of them are known as targets of the
CDK-activating kinase. Two of the sites contained
tyrosine phosphorylation sites either at position
P � 1 or P � 2 relative to the phosphothreonine
residue, indicating that they may be targets of
dual-speci®city kinases. However, not all of the
sites contained adjacent tyrosine residues, and
therefore the double V/L motif may be important
for target recognition of CDK-activating and
related kinases. Other kinases that prefer hydro-
phobic residues at P � 4 include AMP-activated
protein kinase and calmodulin-dependent protein
kinase I (Dale et al., 1995).

Another motif found in protein kinases involved
in regulation of cell-cycle was the frequent occur-
rence of proline at P � 11 and glutamic acid at
P � 12. Eleven phosphorylation sites, all in CDKs
or related proteins, contained the consensus
sequence (T*xxV[V/A]TxxYR[A/S]PE), where the
®rst T indicates the acceptor residue. These sites
are clearly related and the conserved residues
might re¯ect the conservation of structural features
rather than conservation of speci®city determi-
nants.

Phosphorylation sites predicted by
neural networks

Sequence motifs composing functional sites in
polypeptides can be complex in the sense that pos-
itional correlations may play an important role.
The amino acids surrounding a phosphorylated
residue may not contribute independently as to
whether a particular site is activated. This means
that simple local alignment methods, or linear
weight matrices based on consensus patterns, may
be unable with acceptable accuracy to separate
true sites from a control set of non-phosphorylated
sites. Rules like ``an acidic residue at P ÿ 2 and no
cysteine at P � 1 will make this site a probable
phosphorylation site'' cannot be taken into
account. Two positions can make only independent
contributions to the overall score.

Training of the neural networks, using different
combinations of input window sizes and training
sets, showed that networks containing no hidden
units (i.e. linear networks), performed worse than
networks containing hidden units (i.e. non-linear
networks). This clearly indicated that correlations
between the amino acids surrounding a phos-
phorylated residue are signi®cant in determining
whether a particular site is phosphorylated. This
was evident also when we compared the exper-
imentally veri®ed data to the kinase patterns in
the Prosite database (Bairoch et al., 1997). Prosite
patterns describe the speci®city pattern of a few
well-characterized kinases and were never
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designed for obtaining a proteome-wide prediction
of phosphorylation sites. However, since Prosite
patterns are the most widely used approach for
predicting phosphorylation sites in novel proteins,
we found that it was relevant to compare them
with our newly developed method.

As shown in Table 1, the tyrosine-speci®c Prosite
pattern matched only 10 % of the tyrosine phos-
phorylation sites, indicating that the divergence of
tyrosine phosphorylation site motifs is quite high,
and hard to describe by a single consensus pattern.
The serine and threonine phosphorylation sites
were somewhat better identi®ed by the Prosite pat-
terns (sensitivity of 48 % and 38 %, respectively).

With non-linear networks, we were able to
obtain much better results. Performance values for
the standard approach for each of the three accep-
tor types are shown in Table 1. Between 65 % and
89 % of the positive sites and 78 % to 86 % of the
negative sites were correctly predicted. The corre-
lation coef®cient ranged from 0.44 for threonine to
0.47 for tyrosine, and 0.75 for the serine sites. How-
ever, a signi®cant number of seemingly false posi-
tive predictions had very high scores, indicating
that these sites actually had properties similar to
those of true phosphorylation sites.

Since the annotation of negative phosphorylation
sites is a problem in the databases, and since some
negative sites eventually will be shown experimen-
tally to be true phosphorylation sites, we con-
Table 1. Predictive performance of the sequence and structur

Residue Method C Sn (%

Y
Prosite
(PDOC0007) 0.28 10
NN-std. 0.47 70
NN-augm. 0.59 87
NN-augm. 0.92 87
Structural-NN 0.46 87

S
Prosite
(PDOC0004-6) 0.67 48
NN-std. 0.75 89
NN-augm. 0.85 96
NN-augm. 0.97 96
Structural-NN 0.50 85

T
Prosite
(PDOC0004-6) 0.60 38
NN-std. 0.44 65
NN-augm. 0.52 69
NN-augm. 0.82 69
Structural-NN 0.38 87

For each of the three residue types (Y, S or T), the predictive perfo
Prosite patterns, indicated by their relevant codes, and neural netwo
(augm.) data sets, are compared. C indicates the correlation coef®c
correctly predicted (or true positives tp), the speci®city Sp indicates
tn indicates the number of true negative sites. The number of phosp
tive sites in the data sets was (Y 319/940), (S 584/3266), and (T 38
The Prosite patterns represent PDOC0004 (cAMP and cGMP-depen
[S/T*]x[R/K]; PDOC0006 (CK-2) [S/T*]xx[D/E]; and PDOC0007
E]xxY*.
structed an augmented negative data set. We used
the optimal neural network parameters found by
the standard approach and selected negative sites
from the entire set of acceptor sites that would not
con¯ict with the known experimentally veri®ed
phosphorylation sites when initially training the
networks.

The augmented data sets contained three to ®ve
times more unique negative sites than used in the
standard approach. Still, the trained networks had
a signi®cantly increased ability to detect the true
sites with an improvement of the order of 10-20 %.
This indicates clearly that there are false negatives
in the publicly available data, and that their effect
can be suppressed by this approach. The corre-
lation coef®cients now range from 0.82 to 0.97,
approaching the optimal value of 1.00. The general
test performance on novel data will fall in between
these values, and those obtained when the net-
works trained on the augmented data sets predict
the phosphorylation status of residues in the stan-
dard unmodi®ed set, see Table 1.

The optimal window sizes were found to be
nine residues for tyrosine and threonine, and 11
residues for serine (data not shown). These values
are in agreement with the general consensus that
the kinase physically contacts a stretch of 7-12 resi-
dues surrounding the acceptor residue (Songyang
et al., 1994).
e-based methods

) Sp (%) tn (%) Data set

100 100 augm.
68 78 std.
69 74 std.

100 100 augm.
40 71 augm.

100 100 augm.
86 86 std.
90 89 std.

100 100 augm.
65 64 augm.

100 100 augm.
52 83 std.
58 86 std.

100 100 augm.
37 59 augm.

rmance of the sequence and structure-based methods is shown.
rks (NN), trained using either the standard (std.) or augmented

ient, the sensitivity Sn indicates the proportion of positive sites
the proportion of all positive classi®cations that are correct and
horylation sites was (Y 210; S 584; T 108). The number of nega-
0/1283) in the standard and augmented versions, respectively.
dent kinase) [R/K][R/K]x[S/T*]; PDOC0005 (protein kinase C)
(general tyrosine kinase) [R/K]xx[D/E]xxxY* or [R/K]xxx[D/



Figure 2. Assembly of 12 tyrosine phosphorylation
site structures superimposed at the central tyrosine.
Only the central tyrosine side-chain is shown, the rest of
the peptides is shown as the Ca peptide backbone.
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Predictions on other phosphoacceptor residues

Serine/threonine kinases are able to phosphory-
late either serine or threonine in the same sequence
context. An example is protein kinase C, which
phosphorylates Thr710 of the rat glutamate receptor
1 precursor (PhosphoBase entry B169,
[RVRKT*KGKY]), and Ser717 of the rat glutamate
receptor 2 precursor (PhosphoBase entry B168,
[RVRKS*KGKY]). We analyzed whether a neural
network trained to predict serine sites would be
able to predict correctly on a number of sites,
where the motif surrounding the acceptor residue
was taken from a known threonine phosphoryl-
ation site and vice versa. For completeness, the pre-
diction on tyrosine sites was included.

The analysis showed that the tyrosine network is
able to predict correctly between 39 % and 41 % of
all serine and threonine phosphorylation sites,
respectively. The serine network predicts 52 % of
the tyrosine sites and 81 % of the threonine sites.
The threonine network predicts 19 % of the tyro-
sine sites and 54 % of the serine sites. Overall, the
serine site network is the most general at predict-
ing phosphorylation sites, correctly classifying
many of the threonine and tyrosine phosphoryl-
ation sites based on their sequence context. The
ability of the serine and threonine networks to
recognize a larger fraction of each other's sites than
of tyrosine sites is consistent with the known speci-
®city overlap of threonine and serine kinases.

Tertiary structure of phosphorylation sites

It is obvious that what the kinase actually recog-
nizes is the three-dimensional structure of the poly-
peptide at the acceptor residue, and not the
primary structure (Johnson et al., 1996, 1998; Pinna
& Ruzzene, 1996; Songyang et al., 1994). From the
available protein structure data in PDB, containing
phosphorylated sequences, we made a superposi-
tion of the local structure of 12 tyrosine phos-
phorylation sites (Figure 2). Interestingly, nine of
the 12 tyrosine side-chains occupied one confor-
mation relative to the Ca atom, while three clus-
tered in another speci®c conformation. This
structural conservation appears in otherwise unre-
lated sequences. Repeating the same procedure for
surface-exposed tyrosine residues not predicted to
be phosphorylated showed that the tyrosine resi-
due occupied a wide range of conformations.

Since phosphorylation sites are predicted to be
located in ¯exible regions in order to be able to ®t
the kinase recognition cleft, we examined the
known PDB protein structures containing phos-
phorylation sites to see whether the temperature
factor (B-factor) was increased. This seems gener-
ally to be the case, and for the insulin receptor
kinase domain, where phosphorylation is known
to occur at Tyr1158, Tyr1162, and Tyr1163, the tem-
perature factor is maximal (maximum occurs at
Thr1154) in the loop region just upstream from and
close to the three phosphorylation sites.
Structure-based prediction

We examined whether a method for prediction
of distance matrices or contact maps could indicate
whether the local structure of phosphorylated sites
is different from that of non-phosphorylated sites.
A neural network was trained using a predicted,
local contact map of a peptide fragment centered
on either positive or negative sites in the data set.
Using the same division of the data as described
for the sequence-based neural network, we found
that the best performance was obtained for a neur-
al network with an input window of 21 residues
for the tyrosine and serine data sets, and an input
window of 25 residues for the threonine set.

Given that this prediction is based on a predic-
tion, the performance was impressively high, as
the sensitivity for positive sites in all three cases
was around 85-87 % (see Table 1). The performance
on negative sites was less impressive, resulting in a
higher level of false positives (between 29 % and
41 % of the negative sites were predicted as posi-
tive sites). It must again be emphasized that false
positive predictions in some cases may be true
phosphorylation sites awaiting experimental dem-
onstration.

In order to compare the performance of the
sequence-based and structural-based neural net-
works on the same data set, we generated a dia-
gram showing the output scores from the
sequence-based network and the structure-based
network (Figure 3). Ideally, we would ®nd most
points on the diagonal, true phosphorylation sites,
should obtain a score close to 1.0 from both
methods and non-phosphorylation sites should get
scores close to 0.0. In reality, the sequence-based
network is performing better than the structure-
based approach and therefore we would expect
points to be better separated in the X-dimension
than in the Y-dimension.



Figure 3. Sequence (x-axis) and structure-based (y-axis) scores on tyrosine phosphorylation sites. True phosphoryl-
ation sites are shown as red diamonds (210 sites), while non-phosphorylation sites are shown as blue crosses
(940 sites).
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Interestingly, a few of the positive sites incor-
rectly predicted as negative sites by the sequence-
based method were correctly predicted by the
structural method. For the tyrosine data set, 17 out
of 27 phosphorylation sites incorrectly classi®ed by
the sequence-based network were correctly classi-
®ed by the structure-based network. Some of the
sites having a very low sequence score, but a struc-
ture score above the threshold of 0.5, include the
autophosphorylation site Tyr1361 [EHIPY*THMN]
of the insulin receptor, Tyr762 [QRSLY*DRPA] of
the platelet-derived growth factor receptor and
Tyr826 [VGPGY*LGSG] of the Ret receptor tyrosine
kinase. These sites do not match well with the typi-
cal consensus features of tyrosine phosphorylation
sites, such as an acidic region upstream of the
acceptor residue or a strong hydrophobic motif at
P � 1 and P � 3. Nevertheless, the predictions by
the structural network indicate that these tyrosine
phosphorylation sites have structural features
resembling those of other tyrosine phosphorylation
sites.

Putative phosphorylation sites in p300/CBP

p300/CBP is a transcriptional adaptor that inter-
acts with transcription factors and is also a histone
acetyltransferase (HAT) (Shikama et al., 1997; Ait-
Si-Ali et al., 1998). Especially in the ®rst third and
the last third of the 2400� residues, p300/CBP pro-
teins many protein-protein interactions have been
shown to occur, and some of these are believed to
be regulated by phosphorylation. Considering the
large number of potential phosphoacceptor resi-
dues in p300/CBP (CBP contains 394 serine, threo-
nine and tyrosine residues, 16 % of the total
number of residues) it would be helpful to identify
the most probable sites before conducting exper-
iments involving site-directed mutagenesis or in
analysis of mass spectra of the modi®ed proteins.
Using the prediction networks, we have found
putative phosphorylation sites. The amino acid
sequences of p300 (accession number Q09472) and
CBP (Q92793) are 63 % identical, which provided
us with an opportunity to compare putative sites
in one protein with putative sites at the same
aligned position in the other. We concentrated on
homologous sites in p300 and CBP with a strong
prediction score above 0.9 (Table 2).

Several of the putative phosphorylation sites are
completely conserved in both molecules, e.g.
Tyr620, Ser1497, and Thr1684 (numbering refers to
p300). Interestingly, three sites utilize serine as the
acceptor residue in one protein and threonine in
the other, e.g. Thr992, Ser1295 and Thr1533 (Table 2).

In the N-terminal third of the molecule, a con-
served tyrosine site at position 620 (641 in CBP)
may be of importance in the binding of CREB,
since interaction in the region from positions 590-
669 of CBP has been reported, see Shikama et al.
(1997) and references therein.

The central part of the molecule (residues 800-
1600) includes the catalytic domain of HAT activity
of p300/CBP. The putative phosphorylation sites
found in this region may be related to regulation
of HAT activity.

The C-terminal part includes a region that inter-
acts with viral oncoproteins E1A and SV40 large T,
transcription factors c-Fos, c-Jun, JunB, YY1 among
others, (Shikama et al., 1997) and references therein.



Table 2. Putative phosphorylation sites in p300/CBP

Protein Position NetPhos Score Acc.res. Sequence

P300 24 0.984 S SPALSASAS

CBP 23 0.987 S SPGFSANDS

p300 620 0.977 Y EGDMYESAN

CBP 641 0.977 Y EGDMYESAN

p300 959 0.946 S PSTSSTEVN

CBP 980 0.953 S SSVASAETN

p300 992 0.961 T EPADTQPED

CBP 1013 0.993 S DPGESKGEP

p300 1135 0.983 T YNRKTSRVY

CBP 1171 0.983 T YNRKTSRVY

p300 1289 0.991 S ENKFSAKRL

CBP 1325 0.975 S ENKFSAKRL

p300 1295 0.984 S KRLPSTRLG

CBP 1331 0.972 T KRLQTTRLG

p300 1346 0.988 S RFVDSGEMA

CBP 1382 0.993 S RFVDSGEMA

p300 1396 0.992 S RVYISYLDS

CBP 1432 0.988 S RVYISYLDS

p300 1446 0.979 Y ECDDYIFHC

CBP 1482 0.979 Y EGDDYIFHC

p300 1497 0.998 S DRLTSAKEL

CBP 1533 0.998 S DRLTSAKEL

p300 1516 0.993 S VLEESIKEL

CBP 1552 0.993 S VLEESIKEL

p300 1533 0.955 T REENTSNES

CBP 1568 0.987 S KKEESTAAS

p300 1684 0.956 T RWHCTVCED

CBP 1721 0.956 T RWHCTVCED

p300 1726 0.995 S AATQSPGDS

CBP 1763 0.995 S PQSKSPQES

p300 1734 0.993 S SRRLSIQRC

CBP 1771 0.992 S SRRVSIQRC

p300 1868 0.935 T TTPQTPQPT

CBP 1902 0.925 T STPQTPQPP

p300 2315 0.992 S QPVPSPRPQ

CBP 2351 0.935 S APVQSPRPQ

p300 2320 0.959 S PRPQSQPPH

CBP 2356 0.959 S PRPQSQPPH

p300 2325 0.984 S QPPHSSPSP

CBP 2361 0.984 S QPPH5SPSP

p300 2328 0.996 S HSSPSPRMQ

CBP 2364 0.993 S HSSPSPRIQ

NetPhos score is the output score from the ensemble of neural networks trained on that acceptor
residue type. The sequence shows the context of the acceptor residue � four residues.
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This region is phosphorylated by cyclin E-Cdk2,
and thereby regulating the HAT activity of CBP
(Ait-Si-Ali et al. , 1998). The region investigated
spanned residues 1890-2441 of CBP, thereby
including the putative phosphorylation sites at
Thr1902, Ser2351, Ser2356, Ser2361 and Ser2364. These
sites all contain an SP or SXP motif, the ®rst of
which is a well-known motif for Cdk-related pro-
line-directed kinases.

Putative yin-yang sites in p300/CBP

The reversible and dynamic modi®cation of a
particular serine or threonine residue by either
phosphorylation or GlcNac-glycosylation has been
named yin-yang regulation (Hart et al., 1995). The
{ Accessible at http://www.cbs.dtu.dk/services/
DictyOGlyc/
addition of the GlcNac sugar moiety prevents the
acceptor residue from being phosphorylated and
represents one way of inhibiting signals that may
otherwise cause abnormal growth or apoptosis.
This mechanism is involved in regulation of the
tumor suppressor protein p53 and the AP1 tran-
scription factor complex.

Based on known sites of reciprocal phosphoryl-
ation/GlcNac-glycosylation, we are currently
developing a neural network-based method for the
prediction of GlcNac sites on intracellular proteins
(R. Gupta, unpublished results), analogous to the
methods available for predicting GalNac-O-glyco-
sylation sites (Hansen et al., 1998) and GlcNac-O-
glycosylation sites in Dictyostelium discoideum pro-
teins (R. Gupta et al., unpublished results). At pre-
sent, the latter method, named DictyOGlyc { is
probably the method that most closely identi®es
sites with features similar to known intracellular
GlcNac-sites.

http://www.cbs.dtu.dk/services/DictOGlyc/
http://www.cbs.dtu.dk/services/DictOGlyc/
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To investigate whether some of the putative
phosphorylation sites in p300/CBP might also be
regulated by GIcNac-glycosylation, we compared
the predictions by the phosphorylation site neural
networks with the output from the DictyOGlyc ser-
ver. The sites that have high scores from both
methods and that have homologous sites in p300/
CBP are listed in Table 3.

Many of the experimentally veri®ed GlcNac sites
contain hydrophobic residues, such as proline, ala-
nine or valine, at the ¯anking positions. This is the
case for the ®ve sites reported here, which all con-
tain either serine or threonine followed by proline.
This feature indicates that cyclin-dependent
kinases or mitogen-activated protein kinases,
which have a preference for proline at position
P � 1, may be the kinases phosphorylating these
residues. Ser2315, Ser2336 and Ser2346 (p300 number-
ing) are all preceded by proline and glutamine and
followed by proline as well as a basic residue (argi-
nine or histidine). Whether these sites are modi®ed
by phosphorylation and glycosylation, as pre-
dicted, awaits experimental evidence.

Discussion

The neural network approach presented here for
the prediction of phosphorylation sites is top-
down, in the sense that an overall, general
approach to kinase speci®city was taken. This is in
contrast to the classical approach, which has been
to use a bottom-up philosophy, where the speci-
®city of a single kinase is studied in great detail.

The classical approach is based on determination
of the activity of puri®ed protein kinases using
in vitro assays with either naturally occurring pep-
tides or synthetic peptides. Using a large number
of peptides, a consensus sequence of the substrate
of a given kinase is obtained (see the review by
Pinna & Ruzzene, 1996).

A new approach has been developed that is
based on the synthesis either by chemical or cas-
sette mutagenesis methods, of fully or partially
degenerate peptide libraries. These libraries are
subjected to phosphorylation by a selected kinase,
Table 3. Putative sites of dynamic phosphorylation/GlcNac-g

Protein Position NetPhos

p300 594 0.719
CBP 615 0.719
p300 1849 0.754
CBP 1884 0.979
p300 2315 0.992
CBP 2351 0.935
p300 2336 0.876
CBP 2372 0.914
p300 2346 0.808
CBP 2382 0.531

NetPhos score is the output score from the ensemble of neural ne
glyc is the score from the GlcNac Dictyostelium prediction server.
residues.
the phosphorylated peptides are separated from
the non-phosphorylated ones and sequenced either
together or as single entities. The data from
libraries are expected to provide optimal sequences
within the limits of preselected peptide length and
degeneracy (Songyang et al., 1994).

The neural network method described here takes
this analysis a step further and includes all phos-
phorylation sites of a certain acceptor type in one
analysis. Using the neural network prediction for
the general prediction of putative sites and the
knowledge of speci®city from the more classical
approaches, it might be possible to develop an
integrated system for accurately predicting the
location of phosphorylation sites and the kinase
that is involved.

Mapping phosphorylation sites on proteins is an
important step towards understanding the catalytic
process itself and the resulting effects on signal
transduction events. Prediction methods have sev-
eral advantages; they are fast, reproducible, pub-
licly available and have been shown to be
suf®ciently accurate (Nielsen et al., 1997, 1999) for
optimizing experiments.

The prediction can assist the experimentalist
who wants to design a mutagenesis experiment on
a newly found protein of possibly unknown func-
tion. The method may be integrated as a part of
proteomics identi®cation approach, where the
whole protein repertoire from a speci®c cell type
or organism is analyzed for post-translational
modi®cations and functionality.

We do not claim that we have included all
known phosphorylation sites in our analysis. Our
main concern is that some of the sites that were
classi®ed as non-phosphorylated sites in the train-
ing data sets may, in fact, be true phosphorylation
sites and thereby bias the predictive performance.
During the analysis we were made aware of sev-
eral sites in the PDGF-receptor that are phosphory-
lated but assigned in the original data set as non-
phosphorylated (Dr L. RoÈnnstrand, personal com-
munication). After reassigning these sites, perform-
ance was clearly increased.

To further improve the method, additional
knowledge about experimentally veri®ed phos-
lycosylation of p300/CBP

DictyOglyc Acc.Res Sequence

0.934 T AIFPTPDPA

0.934 T AIFPTPDPA

0.948 S QGLPSPTPA

0.767 S QSLPSPTSA

0.961 S QPVPSPRPQ

0.768 S APVQSPRPQ

0.816 S QPQPSPHHV

0.825 S QPQPSPHHV

0.928 S PQTSSPHPG

0.952 S PQTGSPHPG

tworks trained on that acceptor residue (Acc.res) type. DictyO-
The sequence shows the context of the acceptor residue � four
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phorylation sites will be needed. Many of the phos-
phorylation sites described in the literature have
not yet been included in PhosphoBase, and thereby
not in this analysis. A search in Medline for the
keyword phosphorylation yields 69,286 hits (phos-
phorylation AND site yields 9044 hits; October
1999). A reasonable estimate of the number of
papers reporting novel phosphorylation sites may
be of the order of 1000-5000. Thus, the continuous
increase of phosphorylation site entries in Phos-
phoBase will make it likely that further improve-
ment of the prediction method can be achieved.

In addition to predicting putative phosphoryl-
ation sites, it would be of great value to get a hint
as to which kinase is likely to interact at this par-
ticular site. We are currently considering different
approaches to achieve this goal. The most obvious
approach is a simple alignment against extended
versions of the known phosphorylation sites in
PhosphoBase, from which the phosphorylation site
annotation might provide information about the
kinase or other interaction partners. A more
advanced approach is to generate sequence pro®les
for all phosphorylation sites being modi®ed by a
certain kinase. A sequence pro®le describes, for
each position, the probability of ®nding each of the
20 amino acids. Predicting the most probable
kinase for a novel phosphorylation site would then
be a matter of aligning the sequence against the
kinase sequence pro®les and report the best match.
The same type of approach could be used to pre-
dict functional domains interacting with phosphor-
esidues, such as SH2 and PcTB domains.

A third approach would involve training a new
neural network to classify substrate sites of known
kinases. For example, PhosphoBase contains infor-
mation about 160 sites for protein kinase A (PKA),
174 sites for PKC and 25 sites for the EGF-receptor
tyrosine kinase. This method will then be
implemented as a post-processing function to the
existing phosphorylation site prediction method.
Thus, the initial putative sites predicted in the
novel protein will be fed to the kinase-classifying
network, which will then output a prediction of
the most probable kinase.

Another very important constraint of the highly
compartmentalized eukaryotic cell is that many
potential protein-protein interactions may never
take place because of topological factors, e.g. one
protein being membrane-bound, and the other
localized in the nucleus. The role of compartmenta-
lized processes for the regulation of the signal
transduction kinase cascades has been shown to be
very important for the correct target-substrate
interactions to occur. During speci®c phases of the
cell cycle, several kinases and phosphatases occur
in speci®c cellular compartments, such as cyto-
plasmic or nuclear/chromosomal regions (Inagaki
et al., 1994). Thus, methods available for predicting
protein cellular localization might aid in deciding
which of the putative sites are most biologically
relevant (Andrade et al., 1998; Chou & Elrod, 1999;
Nakai & Horton, 1999).
Materials & Methods

Data sets extracted from PhosphoBase

Experimentally veri®ed phosphorylation sites were
extracted mainly from PhosphoBase (Kreegipuu et al.,
1999), which is available from http://www.cbs.dtu.dk/
databases/PhosphoBase/.

The phosphoproteins were mostly from mammalian
sources, with a few examples from viruses or plants. The
data set consisted of 584 serine sites (251 protein entries),
108 threonine sites (85 protein entries), and 210 tyrosine
sites (98 protein entries). No sites were identical within a
9-mer sequence. Negative examples of phosphorylation
sites were assigned by two approaches.

(1) The standard approach. For each of the three
acceptor types, a subset of the protein entries were cate-
gorized as being well characterized. All acceptor resi-
dues in the selected subsets, not reported as being
phosphorylated, were assigned as negative sites.

(2) The augmented approach. All acceptor residues in
the entire set of protein entries not reported as being
phosphorylated, were assigned as negative sites a priori.
Subsequently, during initial neural network training ses-
sions, all negative sites predicted as positive sites were
excluded. The resulting data set thus obtained was used
for the ®nal neural network training sessions.

Sequence logos

Sequence logos were used for displaying the position-
speci®c features of complex sequence alignments as
described earlier (Schneider & Stephens, 1990; Blom et al.,
1996). Since phosphorylation sites are quite divergent,
sequence logos are better suited at emphasizing the con-
served positions than a multiple alignment.

Neural networks and cross-validation

The neural networks were of the standard feed-for-
ward type (Minsky & Papert, 1988; Hertz et al., 1991).
Details of sequence encoding, error functions, etc., may
be found elsewhere (Blom et al., 1996). The predictive
performance was monitored using the Mathews corre-
lation coef®cient (Mathews, 1975) during training and
test of the networks.

Phylogenetic trees, indicating the relationship between
the proteins in each of the three data sets (serine, threo-
nine or tyrosine), were constructed using multiple align-
ments and neighbour-joining algorithms of the ClustalW
package (Thompson et al., 1994) and visualized using the
Drawtree program of the Phylip package (Felsenstein,
1989), as illustrated for the tyrosine data set (Figure 4).
Based on the trees, each of the three data sets was
divided into ®ve parts in order to allow for cross-vali-
dated testing. This procedure used four of the ®ve sub-
groups for training, while the last subgroup (non-
sequence similar to the training sets) was used for testing
the performance. Five different networks resulted from
this approach for each of the three phosphoresidues.

The subgroups included related proteins like e.g. the
MAP-kinase family or the Src-related tyrosine kinases
(Hck, Blk, Abl, etc.), ensuring that test performance was
measured on proteins non-homologous to the training
set.

http://www.cbs.dtu.dk/databases/PhosphoBase/
http://www.cbs.dtu.dk/databases/PhosphoBase/


Figure 4. Phylogenetic tree showing the relationship of the phosphoproteins in the tyrosine data set. The circled
branches represent subsets of the proteins with similar sequences, exemplifying the division of the data set.
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Known tertiary structure of phosphorylation sites

The PDB protein structure database was scanned for
proteins with veri®ed phosphorylation sites (Bernstein
et al., 1977). Some protein entries contained annotated
phosphorylation sites with the phosphate group
included in the structure. In other cases, proteins known
to be phosphorylated were found without phosphate
groups in the crystal structure.
We collected all the phosphorylation sites being rep-
resented in protein structures and superimposed those of
similar type, e.g. all tyrosine sites, at the acceptor residue
using the Insight software package. The coordinates of
the CO, Ca, and Cb atoms were used to superimpose the
backbone Ca trace of the different peptide fragments.
Fragments of length 9 (4 � 1 � 4), centered on the accep-
tor residue, were used whenever possible.
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Neural network based on local tertiary structure

A neural network predicting Ca contact maps for pep-
tide sequence inputs was used on peptide fragments
from the data sets, up to a length of 33 residues centered
at the phosphorylation sites (Lund et al., 1997). For each
pair of residues in the input sequence (e.g. residues i and
i � 5), the output from this method gives a probability
score indicating the distance between the two residues
compared to the average distance for all pairs at this
sequence separation. The output was processed in order
to extract probabilities pertaining to 9, 13, 17, 21 or 25
residues centered on the phosphoresidue. The same pro-
cedure was performed for the non-phosphorylation sites.
The resulting data sets consisted of a number of prob-
ability parameters for each peptide (indirectly de®ning
its local structure) for different fragment sizes.

Electronic access

The prediction method can be accessed on the Internet
at http://www.cbs.dtu.dk/services/NetPhos/ or via
e-mail by sending the word `help' to NetPhos@cbs.d-
tu.dk.

The PhosphoBase database is also available on the
Internet at http://www.cbs.dtu.dk/databases/Phospho-
Base/.
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