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We present a Hidden Markov Model method for the prediction of lipoprotein signal peptides of Gram-
positive bacteria, trained on a set of 67 experimentally verified lipoproteins. The method outperforms
LipoP and the methods based on regular expression patterns, in various data sets containing
experimentally characterized lipoproteins, secretory proteins, proteins with an N-terminal TM segment
and cytoplasmic proteins. The method is also very sensitive and specific in the detection of secretory
signal peptides and in terms of overall accuracy outperforms even SignalP, which is the top-scoring
method for the prediction of signal peptides. PRED-LIPO is freely available at http://bioinformatics.bi-
ol.uoa.gr/PRED-LIPO/, and we anticipate that it will be a valuable tool for the experimentalists studying
secreted proteins and lipoproteins from Gram-positive bacteria.
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Introduction

Signal peptides1 in Bacteria are mainly divided into the
secretory signal peptides that are cleaved by Signal Peptidase
I (SPase I),2,3 and those cleaved by Signal Peptidase II (SPase
II or Lsp),4 which characterize the membrane-bound lipopro-
teins. The secretory signal peptides have been extensively
studied for years, revealing a structure comprised of a short,
positively charged N-region, a hydrophobic H-region that spans
the membrane, a C-region of mostly small and uncharged
residues and a cleavage site (known as the A-X-A motif, in
which A stands for alanine and X for any amino acid), that is
recognized by the peptidase that cleaves the peptide and
releases the mature protein.5-7 The signal peptide of bacterial
lipoproteins possesses a similar structure,8 with main differ-
ences being the comparatively shorter length and the unique
pattern in the C-region (which is commonly denoted by [LVI]-
[AST]-[GA]-C and termed as “lipobox”) that is recognized for
cleavage by SPase II.4 The cysteine in the last position of the
particular pattern is indispensable in both Gram-positive and
Gram-negative bacteria, and is necessary for membrane an-
choring. The post-translational lipid modification involves three
enzymes that act sequentially: the prolipoprotein diacylglyceryl
transferase (Lgt), that transfers a diacylglyceride to the cysteine
sulfydryl group, the signal peptidase II (SPase II or Lsp) that
cleaves the signal peptide at the residue before the cysteine
forming an apolipoprotein, and the apolipoprotein N-acyl-
transferase (Lnt) which acylates the R-amino group of the

apolipoprotein N-terminal cysteine forming the mature lipo-
protein.9,10 The proteins carrying a secretory signal peptide can
be directed to the membrane through the action of the Sec
translocase,11,12 although another major pathway has been
discovered, utilizing the Twin-Arginine (TAT) translocase which
recognizes (longer in general) signal peptides that are carrying
a distinctive pattern of two consecutive arginines (R-R) in the
N-region.13-15 Translocation of lipoproteins through the TAT
pathway has been postulated based on sequence analysis,16

but only recently has been proven for Bacteria (Desulfovibrio
vulgaris17) and Archaea (Haloferax volcanii18).

The discovery of globomycin, a specific inhibitor of SPase
II, represented a major breakthrough in the biochemical studies
of lipoprotein maturation.19,20 Bacteria treated with globomy-
cin, as well as SPase II deficient strains, show accumulation of
lipid-modified prolipoproteins.21 Nevertheless, extensive stud-
ies in SPase II deficient strains showed that absence of SPase
II results in rather pleiotropic effects on the composition of
the extracellular proteome, since some prolipoproteins were
released in the medium, whereas the synthesis of others was
strongly reduced.22,23 Conversely, only in the case of Lgt
deficient strains, significantly more lipoproteins are observed
in the growth medium.22,24 The most excellent, however, proof
that a protein is a lipoprotein would be labeling with [3H] or
[14C] palmitate in the presence/absence of globomycin (or in
wild-type and SPase II or Lgt deficient strains), combined with
immunoblotting, immunoprecipitation, protein fractionation
and protease accessibility assays to investigate its extracellular
localization.25,26

Computational prediction of secretory signal peptides was
performed initially using weight matrices.27 However, the
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Neural Networks introduced by the SignalP method,28,29 as well
as Hidden Markov Models (HMM),30 have been proven to be
the most successful methods currently available.31 Recently,
the SignalP method was upgraded, mainly due to better
annotation and selection of the training set, yielding an ever
better accuracy,32 whereas TatP has been presented offering
the most accurate classification of TAT signal peptides.33 A
different approach has been followed in the Phobius method,34,35

where a HMM was used to predict simultaneously the presence
of a secretory signal peptide and the TM topology of a given
protein. Following this approach, the authors showed that they
can minimize the number of signal peptides predicted as
transmembrane (TM) segments and vice versa. Concerning
lipoproteins, for years, regular expression patterns were used
based on the von Heijne rule,8 with various modifications.26,36-38

Recently, a method called LipoP was developed, which is based
on HMMs and was trained exclusively on Gram-negative
bacteria lipoproteins.39 LipoP performs not only lipoprotein
signal peptide prediction but also discrimination from secretory
signal peptides, N-terminal TM helices and cytoplasmic pro-
teins. LipoP has been reported to accurately classify ∼97% of
Gram-negative bacteria lipoproteins with an error rate (on
nonlipoproteins) of approximately 0.3%. When used, however,
on lipoproteins from Gram-positive bacteria, the sensitivity of
the prediction dropped to 90-92%.39 In this work, we present
a HMM-based method for performing the same task that is
trained exclusively on experimentally verified lipoproteins from
Gram-positive bacteria. We performed an extensive literature
search in order to overcome the problem of limited experi-
mentally verification and annotation of Gram-positive bacteria
lipoproteins found in public databases, and in this way, we
collected a data set of 67 such lipoproteins, the largest such
set compiled so far. By analyzing these sequences, we show
that they possess slightly different characteristics compared to
their Gram-negative bacteria counterparts, providing, thus, a
justification of our approach for constructing a different
predictor. The method discriminates also very accurately
secretory signal peptides (and predicts their cleavage site) as
well as N-terminal TM anchored proteins. We show that the
method developed here (PRED-LIPO) outperforms LipoP when
applied to lipoproteins from Gram-positive bacteria, and we
validate it on a number of different data sets. We also show
that the module that predicts secretory signal peptides is also
very accurate and compares favorably even to the currently top-
scoring method, SignalP. Thus, the method developed here
(http://bioinformatics.biol.uoa.gr/PRED-LIPO/) can be used
also as a general predictor for signal peptides of Gram-positive

bacteria, and we anticipate that it will be useful in proteomics
applications and in large-scale genome analyses.

Materials and Methods

The Hidden Markov Model. The Hidden Markov Model
(HMM) that we used is quite similar to the one proposed by
LipoP. It consists of four different submodels (Figure 1), the
Lipoprotein submodel, corresponding to the signal peptides
cleaved by SPase II, the Signal Peptide submodel corresponding
to the secretory signal peptides cleaved by SPase I, the
N-terminal TM submodel corresponding to the N-terminal TM
domain, and a globular submodel used to model the globular
N-terminal domains of cytoplasmic or membrane proteins. The
Lipoprotein submodel (Figure 2) was especially designed to
capture the sequence features of Gram-positive bacteria lipo-
proteins. It contains states modeling the N-terminal n-region,
the hydrophobic h-region and the lipobox (lipoprotein c-
region). We used the same emission probabilities for the states
in each region (with the exception of the lipobox) in order to
avoid overfitting and the allowed transition probabilities were
set in order to model as closely as possible the sequence
features of the known lipoproteins. The secretory signal peptide
model (Figure 3) is very similar to the lipoproteins’ model, with
the exception of the precaution for the existence of longer

Figure 1. The topology of the full model with the four branches (submodels) corresponding to the secreted signal peptides, lipoprotein
signal peptides, N-terminal TM segments and the cytoplasmic domain.

Figure 2. The model corresponding to the lipoprotein signal
peptides. States in the n- and h-region that share the same
emission probabilities are depicted with the same color. The
cleavage site is presented with a dashed vertical line between G
and C. Allowed transitions are depicted with arrows.
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n-regions, the variable length of c-regions and the different
patterns of amino acids at the cleavage site. The TM submodel
is identical to the one used by the HMM-TM predictor for
R-helical membrane proteins,40 whereas the globular submodel
consists simply of a self-transitioning state. The total number
of the model’s states is 134 (including start and end states) with
227 freely estimated transitions. On the other hand, the total
number of freely estimated emission probabilities is 589 (31 ×
19), yielding a total number of freely estimated parameters
equal to 816.

The model was trained using the Baum-Welch algorithm for
labeled sequences41 and the decoding was performed using the
standard Viterbi algorithm,42 although more advanced tech-
niques such as the Posterior-Viterbi decoding43 and the Opti-
mal Accuracy Posterior Decoder44 yield nearly identical results.
With respect to this, the model introduced here differs from
LipoP which uses the Forward decoding algorithm for choosing
between the various submodels. In addition to the Viterbi
decoding which produces the optimal path of states through
the model, and hence predicts simultaneously the type of the
sequence as well as the cleavages site (if any), we also report
the S1 reliability index,45 which takes values in the range 0-1
and it is a measure of the reliability of the prediction, useful in
many situations.

The reported results correspond to a 33-fold cross-validation
procedure, where each set consists of 11 proteins with an
equally balanced number of SPase I cleaved signal peptides (3
or 4), SPase II cleaved signal peptides (2 or 3), TM (1 or 2) and
globular proteins (3 or 4). The training procedure consists of
removing 1 of the 33 subsets from the training set, training the
model with the remaining proteins and performing the test on
the proteins of the set that was removed. This process is
tandemly repeated for all subsets in the training set, and the
final prediction accuracy summarizes the outcome of all
independent tests. For measures of accuracy in each binary
classification problem (lipoproteins vs nonlipoproteins, signal
peptides vs nonsignal peptides), we used the percentage of
correctly classified positive examples (sensitivity), the percent-
age of correctly classified negative examples (specificity) and
the Mathews Correlation coefficient that summarizes in a single

measure True Positives (TP), False Positives (FP), True Nega-
tives (TN) and False Negatives (FN).46 For estimating the rate
of correct predictions in the genome analysis, of particular
importance is also the Positive Predictive Value (PPV) and the
Negative Predictive Value (NPV) defined, respectively, as the
percentage of true positives among the positive predictions
(TP/TP + FP) and the percentage of true negatives among the
negative predictions (TN/TN + FN). The method is available
online at http://bioinformatics.biol.uoa.gr/PRED-LIPO/.

For comparison purposes, we created also two profile
Hidden Markov Models (pHMMs) using the HMMER 2.3.2
package.47 The pHMM is a special case of Hidden Markov
Model and can be seen also as an extension of sequence
profiles. It uses a HMM to model in a statistical manner a
multiple alignment of related sequences. The pHMM, in
contrast to the simple HMM described above, uses position
specific parameters (emission and transition probabilities) and
in general has a larger number of freely estimable parameters.
It is well-suited for modeling protein families, but we used it
here for comparison, since it has been shown that, under
certain circumstances, it can also be used to model the
sequence features of signal peptides.48,49 We created the mul-
tiple alignments as advised previously,48,49 we built the pHMMs
using the hmmbuild command of the HMMER package, and
we performed searches using the hmmpfam command of the
same package.

Data Sets. The Data set that we used for training contained
67 experimentally verified lipoproteins from Gram-positive
bacteria, 127 secreted proteins containing a signal peptide
cleaved by SPase I from Gram-positive bacteria, 111 cytoplas-
mic proteins from Gram-positive bacteria and 58 Gram-positive
bacterial sequences with an N-terminal TM segment that
have their N-terminus located to the cytoplasmic side of the
membrane. The 67 experimentally verified lipoproteins (Table
1) contain the 33 verified lipoproteins previously reported26 that
were used already for the construction of the G + LPP regular
expression pattern. One of these sequences (MBL of Strepto-
coccus equi) could not be retrieved from UniProt and we
identified it using a BLAST50 search against the genome
sequence at http://www.sanger.ac.uk/Projects/S_equi/. In ad-
dition to these and given the low quality of the annotation in
public databases regarding the experimental verification of
Gram-positive bacteria lipoproteins, we performed an extensive
literature search to identify additional such proteins. In total,
we identified additionally 34 such proteins from various species
of Gram-positive bacteria (Mycoplasma, Mycobacterium, Coryne-
bacterium, Spiroplasma, Streptomyces, Streptococcus, Staphy-
lococcus, Bacillus), which are listed in Table 1 along with the
original references. Interestingly, in one of these proteins
(CseA), the start codon reported in UniProt from previous
publications was misassigned,51 and the error was reported to
UniProt database.52 The identified papers provided results of
varying degrees of reliability. The majority of the identified
papers used chemical labeling of cysteine coupled with veri-
fication of the extracellular localization by subcellular fraction-
ization and/or immunoblotting.53-59 Others used site-directed
mutagenesis in the lipobox region,51,60 others relied only in the
results obtained by treatment with globomycin coupled with
subcellular localization techniques,61,62 and one proteomic
study used Lgt deficient strains.24 Finally, several studies were
included based only on indirect evidence63-66 in order to
obtain an as large as possible training set.

Figure 3. The model corresponding to the secretory signal
peptides. States in the n- and h-region that share the same
emission probabilities are depicted with the same color. The
cleavage site is presented with a dashed vertical line between A
and 1 (first amino acid of the mature protein). Allowed transitions
are depicted with arrows.
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The 127 secreted proteins containing a SPase I cleaved signal
peptide were retrieved from the set for training the SignalP
method,30 taking into consideration the corrections made later
concerning wrongly annotated cleavage sites, initial mthionines
and false annotations.32 We did not try to eliminate proteins
translocated through the Twin-Arginine Translocation (TAT)
machinery,13,14 in either the secretory or the lipoprotein set.
The 111 proteins not containing either a signal peptide or an
R-helical TM segment within the first 70 amino acids were
collected from the well-curated data set of Menne et al.,31 that
was used to check the accuracy of signal peptide predictors.
Putative TM proteins in this set were removed using TM-
HMM.67 Finally, in order to model the N-terminal transmem-
brane (TM) domains, we scrutinized various well-annotated
data sets68-71 in order to compile a nonredundant set of
transmembrane proteins from Gram-positive bacteria with
experimentally verified topology. The final set consisted of 22
such transmembrane proteins, and from these, we extracted
the TM segments with orientation from the cytoplasm to the
extracellular space (In f Out), in a procedure similar to the
one followed in the development of LipoP39 and CW-PRED.72

Thus, if a particular TM segment was localized in a 60-residue
long window not overlapping with another TM segment, it was
included in the set. In case of closely packed TM segments from
multispanning TM proteins, we included only the upstream
and downstream regions corresponding to the half of the
proximal loop (extracellular or cytoplasmic).

To have an independent test set to further evaluate the
method and compare it against the other available ones, we
searched once again the recent literature. Experimentally
verified lipoproteins from Gram-positive bacteria are, as we
discussed earlier, very difficult to find. We have found, however,
several proteomic analyses,22,23,73,74 in which dozens of proteins
were identified as potential lipoproteins. By this way, and also
by searching the 278 experimentally verified bacterial lipopro-
teins from DOLOP,36,37 a total number of 117 Lipoproteins have
been collected. From UniProt, following Menne and co-
workers,31 we collected proteins having an experimentally
verified signal peptide from Gram-positive bacteria, and after
removing proteins that are already present in the set of SignalP
(that we used for training), we came up with 89 proteins. The
proteins carrying a secretory as well as a lipoprotein signal
peptide were submitted to redundancy reduction following the
procedures used in SignalP papers28,29 (18 identical residues
in the first 40 residues of the sequence). This reduction was
extended further to the proteins of the training set in order to
have a truly objective evaluation of the accuracy of the method.
Finally, in the set of lipoproteins remained 110 sequences and
in the set of secretory signal peptides remained 80 sequences.

We also retrieved cytoplasmic proteins from UniProt by
searching the “Subcellular Localization” field and excluding
entries marked as “Potential”, “Putative” and “By Similarity”.
Given that the number of sequences was large, these were
submitted to redundancy reduction using full sequences (30%

Table 1. The training set of 67 experimentally verified lipoproteins used in this study. We list the UniProt AC, the organism and
the reference

the 34 newly identified lipoproteins original set of 33 lipoproteins from ref 26

UniProt AC52 organism UniProt AC52 organism

Q8KVR9 Mycoplasma mycoides54 MBL (SEQ1660) Streptococcus equi
O05121 Mycoplasma gallisepticum58 Q9RHZ6 Alicyclobacillus acidocaldarius
Q50327 Mycoplasma pneumoniae57 P06548 Bacillus cereus
P55801 Mycoplasma mycoides66 P00808 Bacillus licheniformis
P29230 Mycoplasma hyorhinis59 Q56247 Bacillus PS3
Q9X775 Mycoplasma agalactiae64 P34957 Bacillus subtilis
P0A671 Mycobacterium bovis60 P24327 Bacillus subtilis
P21625 Spiroplasma melliferum55,56 P46922 Bacillus subtilis
Q46023 Corynebacterium diphtheriae61 Q08429 Bacillus subtilis
O05471 Streptococcus equisimilis62 P24011 Bacillus subtilis
Q70UQ6 Streptococcus uberis65 P46338 Bacillus subtilis
Q9ZEP5 Streptomyces coelicolor51 Q93HZ4 Corynebacterium glutamicum
Q99VY4 Staphylococcus aureus90 O69087 Heliobacterium gestii
Q8VQS9 Staphylococcus aureus90 P14308 Lactococcus lactis
Q5HET4 Staphylococcus aureus53 Q03490 Mycobacterium intracellulare
Q2FI86 Staphylococcus aureus53 Q10790 Mycobacterium tuberculosis
Q7A603 Staphylococcus aureus53 P11572 Mycobacterium tuberculosis
Q99U04 Staphylococcus aureus53 P15712 Mycobacterium tuberculosis
Q600S6 Mycoplasma hyopneumoniae63 P96278 Mycobacterium tuberculosis
Q5ZZQ6 Mycoplasma hyopneumoniae63 P00807 Staphylococcus aureus
P40409 Bacillus subtilis24 Q9ZIN7 Staphylococcus carnosus
P37580 Bacillus subtilis24 Q7CCL6 Staphylococcus epidermidis (strain ATCC 12228)
O34385 Bacillus subtilis24 Q9Z692 Streptococcus equi
O34335 Bacillus subtilis24 O05471 Streptococcus equisimilis
P24141 Bacillus subtilis24 P31306 Streptococcus gordonii Challis
P36949 Bacillus subtilis24 Q00749 Streptococcus mutans
O34966 Bacillus subtilis24 P18791 Streptococcus pneumoniae
O05497 Bacillus subtilis24 P97008 Streptococcus pneumoniae
O31567 Bacillus subtilis24 Q51933 Streptococcus pneumoniae
O34348 Bacillus subtilis24 Q99Y38 Streptococcus pyogenes
P54535 Bacillus subtilis24 Q53919 Streptomyces chrysomallus
O05410 Bacillus subtilis24 Q9X9R7 Streptomyces reticuli
O32167 Bacillus subtilis24 O68456 Thermoanaerobacter ethanolicus
P54941 Bacillus subtilis24
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identities in an alignment of at least 80 residues), and once
again, we removed proteins present (or having a homologue)
in the training set, leaving us with 198 proteins. Finally, to test
our method on TM proteins, we used the 106 experimentally
verified cytoplasmic membrane proteins from Gram-positive
bacteria used for the development of the PSORTB method.75

From this set, we removed proteins present in the training set,
proteins with a putative signal peptide (based on the annota-
tion) and we performed redundancy reduction at 30% identical
residues in an alignment of at least 80 residues, leaving finally
66 TM proteins.

We also validated the method on 109 secreted proteins of
Bacillus subtilis whose signal peptides are sufficient for protein
secretion in a novel expression system,76 and 713 cytoplasmic
proteins from the same organism identified by proteomic
analyses.73 From the work of Brockmeier et al.,76 we also
retrieved 25 proteins with predicted signal peptide that were
not expressed in the heterologous expression system for various
reasons, and 35 proteins that even though expressed they were
not detected in the medium by any of the two reporters used
(Cutinase or Esterase). These data sets were used to further
assess the sensitivity and the specificity of the methods
developed here, since these proteins were predicted to possess
a signal peptide by SignalP. Once again, the proteins in the
independent sets were compared against the sequences used
for training in order to avoid redundancy, and cross-checked
between the sets to avoid mistakes arising from the low-
resolution proteomics experiments. Thus, from the 713 initially
identified cytoplasmic proteins, 11 were also found in the other
two subsets (lipoproteins and secreted), and thus, they were
removed. All the protein sequences were retrieved from Sub-
tiList.77 Finally, we used the complete sequenced genomes of
Gram-positive bacteria from the NCBI repository in order to
perform predictions and compare the results.

Comparison to Other Prediction Methods. For comparison,
we used mainly the LipoP39 method, which is based on HMMs
and was trained on Gram-negative bacteria lipoproteins, since
it is the only available machine learning method for the same
task. LipoP39 possesses a model architecture similar to the one
we used (discrimination between lipoprotein signal peptides,
secretory signal peptides, N-terminal TM helices and cytoplas-
mic proteins). Besides the major difference that the method
was trained on Gram-negative bacteria lipoproteins, another
difference is the fact that LipoP is based on the forward
decoding, whereas the method proposed here is using the
Viterbi decoding algorithm.

Traditionally, the identification of bacterial lipoproteins was
based on regular expression patterns. The first such pattern
was the one proposed by von Heijne, back in 19898 which is
[LVI]-[ASTG]-[GA]-C, requiring only one match to the first 2
positions (for all the patterns here we use the notation of
Prosite78). The most widely used pattern is the PS00013 pattern
of the Prosite database,79 {DERK}(6)-[LIVMFWSTAG](2)-[LIVM-
FYSTAGCQ]-[AGS]-C, with the additional rule that the cysteine
(C) must be between position 15 and 35, and at least one lysine
(K) or arginine (R) must be in one of the first seven positions
of the signal peptide. Recently, this pattern has been replaced
by a Position Specific Scoring Matrix (PSSM) with Accession
number: PS51257; this PSSM was also used in the analysis using
ScanProsite,80 but we chose to keep PS00013 in the analysis
for historical reasons. Later, a pattern especially designed for
Gram-positive bacteria lipoproteins (G + LPP) was developed
based on observations on 33 experimentally characterized

lipoproteins.26Thispatternis:<[MV]-X(0,13)-[RK]-{DERKQ}(6,20)-
[LIVMFESTAG]-[LVIAM]-[IVMSTAFG]-[AG]-C. Lastly, another
pattern was developed by the creators of the DOLOP data-
base,36,37 which is a slightly modified version of the von Heijne
pattern: [LVI]-[ASTVI]-[ASG]-C, requiring the additional rules
that the cysteine (C) must be placed within the first 40 amino
acids, at least one lysine (K) or arginine (R) must be in one of
the first seven positions of the signal peptide, and that this
positively charged residue should be 7-22 amino acids far from
the cysteine. The regular expression patterns used here were
implemented locally using PERL scripts.

Two other advanced methods have been proposed for the
prediction of bacterial lipoproteins. The first one (SPEPlip) uses
a combination of a Neural Network predictor to detect the
presence of the signal peptide, and afterward filters out
nonlipoproteins by using the PS00013 pattern81 This eliminates
much of the false positive predictions made by the regular
expression pattern alone. However, the method was not trained
in experimentally verified but rather on putative lipoproteins,
and moreover, the web-server does not allow massive submis-
sions; thus, we did not use it on our evaluation. Furthermore,
since the method uses the PS00013 pattern, we expect that its
sensitivity would be equal, although it may be more specific.
The second method is based on the concept of probabilistic
alignments of sequences with patterns (motifs),82 and the
authors used as an illustrative example for the development
of the method, the case of Gram-positive bacteria lipoproteins.
Later, they also applied the same method in Escherichia coli
lipoproteins.83 However, the original method was trained on
all B. subtilis putative lipoproteins, and furthermore, no predic-
tion tool is available to run the tests.

Finally, for analyses concerning accuracy in predicting
secretory signal peptides, we also used SignalPv2,28 SignalPv3,32

Phobius34 and PrediSi84 in order to predict the putative signal-
sequences of the proteins tested. We used both the Neural
Network (NN) and the HMM modules of SignalP, trained on
Gram-positive bacteria, using the default parameters, with the
submitted sequences truncated to their first 70 residues.

Results and Discussion

In Figure 4, one can see the different length distributions of
the signal peptides cleaved by SPase I (secreted proteins) and

Figure 4. Smoothened histogram of the length distribution of
lipoprotein and secretory signal peptides of Gram-positive
bacteria. The latter are significantly longer with a mean length
of approximately 31 amino acid (compared to 22). Notice the
second mode in both distributions, accounting for signal peptides
of length approximately 40 amino acids long. These could be
instances of false annotations concerning the initial methionine
or TAT signal peptides (see Results and Discussion).
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those cleaved by SPase II (lipoproteins). Although Gram-
positive bacteria lipoproteins have a comparable mean length
(22 amino acids) to their Gram-negative bacteria counterparts,
the secreted proteins’ signal peptides are significantly longer
(with a mean of 31 amino acids). The amino acid preferences
are highlighted in the Sequence Logo85 constructed using
WebLogo86 in Figure 5, where one can observe some slight
differences from the respective patterns of Gram-negative
bacteria. For instance, alanine (A) is still the dominant amino
acid in position -2, but serine (S) is also very common. In
position -1 (just before the cleavage site), alanine (A) is slightly
more frequent than glycine (as opposed to what is the case in
Gram-negative bacteria). Furthermore, glycine (G) is the most
frequent amino acid in the first position immediately after the
cleavage site (instead of serine). In general, in the first six
positions of the mature protein following cysteine, the most
common amino acids are serine, glycine, threonine and as-
paragine. These observations justify our approach to use a
HMM to model the distinct characteristics of the Gram-positive
bacteria lipoproteins.

The results obtained from the HMM method (PRED-LIPO)
on the 33-fold cross-validation procedure are presented in
Tables 2 and 3. The model performs very well correctly
classifying the 65 out of the 67 lipoproteins (97.01%). Concern-
ing the SPase-I cleaved signal peptides, the method also
produces satisfactory results, correctly predicting the presence
of a signal peptide in 120 out of the 127 proteins (94.49%) and
excludes nonsignal peptides with a rate of 95.12%, giving an
overall MCC of 0.95. These results are comparable with those
reported by SignalP for Gram-positive bacteria (tested on
similar data sets),28,32 which was designed specifically to predict
the secretory signal peptides (and hence not the lipoproteins’
ones). The method developed here is also very specific, as it
can be seen by the rate of false positive findings (Table 3). In
total, it correctly classifies all of the 296 nonlipoproteins as
nonlipoproteins (100% specificity). The method is also very
specific concerning the prediction of secretory signal peptides,
since it wrongly assigns such a signal peptide only in two cases
out of the 236 proteins (0.85% false positives). On the same
data set, LipoP which was developed for Gram-negative

Figure 5. Sequence logo of secretory signal peptides (upper) and lipoprotein signal peptides (lower) of Gram-positive bacteria. The
three regions (n-, h-, and c-region) were aligned as described previously,48,49 and the logo was constructed using WebLogo.86

Table 2. The Results Obtained Using the HMM Method Developed Here in the Form of a Confusion Matrixa

predicted

lipoprotein membrane cytoplasmic signal peptide total

A
Cytoplasmic 0 (0.00%) 2 (1.80%) 108 (97.30%) 1 (0.90%) 111 (100%)
Membrane 0 (0.00%) 52 (89.66%) 5 (8.62%) 1 (1.72%) 58 (100%)

Observed Lipoprotein 65 (97.01%) 1 (1.49%) 1 (1.49%) 0 (0.00%) 67 (100%)
Signal Peptide 0 (0.00%) 3 (2.36%) 4 (3.15%) 120 (94.49%) 127 (100%)

B
Lipoprotein 107 (91.45%) 1 (1.92%) 0 (0%) 5 (9.62%) 117 (100%)
Membrane 0 (0.00%) 26 (83.87%) 0 (0%) 5 (16.13%) 31 (100%)
Cytoplasmic 0 (0.00%) 1 (0.51%) 195 (98.48%) 2 (1.01%) 198 (100%)
Signal Peptide 0 (0.00%) 6 (6.74%) 2 (2.25%) 81 (91.01%) 89 (100%)

a (A) The results on the training set using a 33-fold cross-validation procedure. (B) The results on the independent test set.

Prediction of Lipoprotein Signal Peptides research articles

Journal of Proteome Research • Vol. 7, No. 12, 2008 5087



bacteria performs satisfactory, but it is, as expected, signifi-
cantly worse than PRED-LIPO. LipoP correctly identifies 58 out
of the 67 lipoproteins (86.57%), and correctly excludes 295 out
of the 296 nonlipoproteins (99.66%). The methods that are
based on regular expression patterns and sequence profiles (the
von Heijne pattern, the G + LPP pattern, the PS00013, the
DOLOP pattern and the PS51257 PSSM) perform well filtering
out the nonlipoproteins (98-99%) but fail to correctly classify
large numbers of lipoproteins (67-75% correct classification
rates). The only exception here is the PS51257 PSSM that is
“trained” on a large number of putative lipoproteins and is (as
a PSSM), in nature, very closely related to the HMM models
like PRED-LIPO, LipoP and the profile HMMs developed here.
When looking at the MCC, which takes into account not only
the TP and TN but also the FP and FN, PRED-LIPO (0.97) is
clearly superior to LipoP (0.90) and PS51257 (0.91), whereas
the pattern-based methods follow with correlations ranging
from 0.80-0.88. We have to notice though, that even specifici-
ties larger than 98-99% seem well, when it comes to genome
annotation concerning a rare protein class (such as lipopro-
teins) would produce a significant number of false positive
findings (see below).

On the independent test set (Table 3), PRED-LIPO performs
better than LipoP and the other available methods, classifying
correctly 99 out of the 110 lipoproteins (with sensitivity equal
to 90%). Concerning the specificity of the method in detecting
lipoproteins, PRED-LIPO does not produce once again even a
single false positive finding among the 344 secreted, TM and
cytoplasmic proteins giving an MCC that is equal to 0.93. On
the same data set, the performance and the rating of the
pattern-based methods are similar to the ones in the set of 363
proteins mentioned above. They all are correctly excluding
nonlipoproteins (99-100%) but fail to accurately classify lipo-
proteins with sensitivity better than 90%, yielding MCCs in the
range (0.73-0.91, Table 3B). We should mention here that the
most refined among these patterns (G + LPP), even though
developed based on the 33 experimentally verified lipoproteins

that we also used for training, fails to correctly classify most of
the newly identified cases. This is something known from years
and somehow expected, since it has to do with the generaliza-
tion ability of regular expression patterns. On the other hand,
PSSMs and machine learning methods like HMMs and Neural
Networks have a superior performance since they can (if
trained properly) tolerate unusual examples and classify them
correctly.

Concerning the classification of secreted proteins bearing a
signal peptide cleaved by SPase I (Table 4), the method
correctly classifies 73 out of the 80 proteins (91.25%). The
specificity of the method in detecting secretory signal peptides
is very satisfactory since it wrongly assigns a signal peptide in
2 out of the 198 cytoplasmic proteins and in 3 out of the 66
TM proteins. These results correspond to a specificity of 98.11%
in total with a MCC of 0.90, the best among the available
predictors (including all versions of SignalP). Even though the
sensitivity of PRED-LIPO is worse compared to the other
predictors (except Phobius), its specificity is significantly
superior due to its better ability to correctly exclude proteins
with an N-terminal TM segment (all methods correctly identify
approximately 99% of cytoplasmic proteins). Since in a real-
world application (i.e., when searching a complete genome),
there is a considerable chance that a candidate protein pos-
sesses indeed an N-terminal TM segment, the capability of a
predictor to correctly exclude it is of significant importance.
This was also the rationale behind the development of Phobius,
but as it is apparent from Table 4, PRED-LIPO clearly outper-
forms even this specialized predictor. The overall MCCs
reported here concerning SignalP correspond clearly to lower
valuescomparedtothosereportedintheoriginalpublications28,32

where the authors reported MCCs for the Gram-positive
predictor that was in the range 0.95-0.96. In the evaluation
performed by Menne and co-workers (that included only
SignalPv2),31 the authors did not supply an estimate or MCC
but clearly, the overall false positive rates (13-18% for Sig-
nalPv2) are in accordance to our estimates (13-17% for

Table 3. The Comparison of the Method Developed Here (PRED-LIPO) Concerning the Correct Classification of Lipoproteins (vs
Nonlipoproteins) and the Comparison against the Other Available Methodsa

A on the training set (363 sequences)

correctly identified nonlipoproteins

correctly identified lipoproteins signal peptide cytoplasmic TM proteins total MCC

PRED-LIPO 65/67(97.01%) 127/127(100%) 111/111(100%) 58/58(100%) 296/296(100%) 0.97
LipoP 58/67(86.57%) 126/127(99.21%) 111/111(100%) 58/58(100%) 295/296(99.66%) 0.91
PS00013 50/67(74.63%) 123/127(96.85%) 111/111(100%) 58/58(100%) 292/296(98.65%) 0.80
PS51257 62/67(92.54%) 123/127(96.85%) 111/111(100%) 58/58(100%) 292/296(98.65%) 0.92
G+LPP 55/67(82.09%) 126/127(99.21%) 111/111(100%) 58/58 (100%) 295/296(99.66%) 0.88
Von Heijne pattern 51/67(67.12%) 126/127(99.21%) 110/111(99.09%) 58/58(100%) 294/296(99.32%) 0.83
DOLOP pattern 50/67(74.63%) 126/127(99.21%) 111/111(100%) 58/58(100%) 295/296(99.66%) 0.83

B on the independent test set (454 sequences)

correctly identified nonlipoproteins

correctly identified lipoproteins signal peptide cytoplasmic TM proteins total MCC

PRED-LIPO 99/110(90%) 80/80(100%) 198/198(100%) 66/66(100%) 344/344(100%) 0.93
LipoP 91/110(82.72%) 80/80(100%) 198/198(100%) 66/66(100%) 344/344(100%) 0.88
PS00013 95/110(86.37%) 78/80(97.50%) 198/198(100%) 66/66(100%) 342/344(99.42%) 0.90
PS51257 98/110(89.09%) 77/80(96.25%) 198/198(100%) 66/66(100%) 341/344(99.13%) 0.91
G+LPP 68/110(61.81%) 79/80(98.75%) 198/198(100%) 66/66(100%) 343/344(99.71%) 0.73
Von Heijne pattern 69/110(62.73%) 79/80(98.75%) 197/198(99.49%) 66/66 (100%) 343/344(99.71%) 0.74
DOLOP pattern 77/110(70%) 80/80(100%) 198/198(100%) 66/66(100%) 344/344(100%) 0.80

a (A) The results on the training set using a 33-fold cross-validation procedure. (B) The results on the independent test set.
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SignalPv2 and 7-8% for SignalPv3). The obvious discrepancies
are easily explained by the simple fact that our independent
test set, as well as the one used by Menne and co-workers,
includes proteins with an N-terminal TM segment. Thus, from
the above, it is clear that PRED-LIPO, even though its primary
objective was to predict lipoproteins, outperforms any other
available secretory signal peptide predictor (concerning Gram-
positive bacteria). PRED-LIPO is less specific compared to other
methods; however, it is more sensitive, which is important
when it comes to genome-wide analyses where the majority
of the submitted proteins do not contain a signal peptide.
Concerning the precise location of a cleavage site (Table 5), all
methods perform satisfactory (perhaps with the exception of
Phobius) predicting correctly the cleavage site in 62-79% of
the cases and within (2 residues in 65-86% of the cases.
Interestingly, SignalPv3-HMM seems to perform uniformly
better, outperforming even SignalPv3-NN.

The observation that SignalP is optimized toward sensitivity
(few false negatives), whereas PRED-LIPO toward specificity
(few false positives), is highlighted also in the analysis of the
additional data set that includes 702 cytoplasmic and 169
proteins with putative (i.e., predicted by SignalP) secretory
signal peptides of B. subtilis (of which 109 were detected in
the medium, 35 were not detected and 25 were not expressed
at all). On the secreted proteins, the method correctly classifies
94 out of the 109 proteins (86.24%), whereas among the
cytoplasmic proteins, the method wrongly assigns a signal
peptide in 8 out of the 702 proteins (1.14% false positives).
However, we should emphasize here that this set consists of
proteins that were identified and classified with methods of
varying reliability and the results should be interpreted cau-

tiously. Thus, the 109 secreted proteins in this data set were
selected based on the predictions of SignalP, and their potential
signal sequence was fused to a reporter protein which was
detected in the extracellular medium in a heterologous expres-
sion system. Even in such a case, one cannot ignore the
possibility that the putative signal sequence is in fact an
N-terminal TM segment that directs the protein to the mem-
brane where it is retained.23 On the other hand, cytoplasmic
proteins were detected after separation and analysis of the
cytoplasmic fraction in proteomics analyses. In both cases,
spurious annotations are expected in such a large data set
arising from low resolution experiments and having the above
in mind, and we may re-evaluate now the results of the
independent test set. Thus, among the 8 presumed cytoplasmic
proteins predicted as secreted or TM ones by our method
(“false positives”), there are a lot of hypothetical proteins and
enzymes and noticeably, ComEA87 which is clearly a TM
protein, raising thus the specificity to 99.01%. Among the
proteins that presumably are containing a secretory signal
peptide and were misclassified by our method, noticeable
examples are CccA (cytochrome c550) which is TM-anchored,
Mdr (Multidrug efflux transporter) which is multispanning
membrane protein, rpmGB (50S ribosomal protein L33 2) which
is cytoplasmic, and MotB which is a flagellar protein implicated
in flagellar motor rotation. Interestingly, some of the cytoplas-
mic or secreted proteins misclassified by our predictor (AtpF,
CccA, SpoIIQ) were recently reannotated as TM-anchored ones
based on a combination of low-resolution proteomics analyses
and computational predictions.23 Thus, at least 5 out of the 15
“false negatives” of this set are more likely to be true negatives,
raising the sensitivity to 90.83%, closer to the estimate of the
independent test set mentioned earlier.

On the other hand, among the 25 proteins with a putative
signal peptide (predicted by SignalP) that were not tolerated
in the heterologous expression system proposed in the work
of Brockmeier and co-workers,76 14 (DltD, FliL, LytR, MreC,
PbpB, PhrG, SpoIIP, YocA, YrrL, YrrR, YrrS, YunB, YveB, YyaB)
were classified by our method as transmembrane ones and one
as cytoplasmic (YunA). Of the 35 proteins that were not
detected in the medium, 3 were predicted as cytoplasmic (YwcI,
YpcP, YwgB), 8 as transmembrane ones (YlbL, YoqH, YwdK,
YwqC, YwqO, YwtC, YycP, tatAc) and one (YusW) as a lipopro-
tein. The simple fact that the majority of these proteins are
predicted as TM ones correlates well with the observation that
SignalP is more prone to false positive prediction in this
particular class of proteins. A closer examination of these
proteins reveals further that FliL is a flagelar protein, whereas
YpcP is a DNA polymerase homologue and tatAC is the Twin-
Arginine translocase of the TAT system, making thus unlikely

Table 4. The Comparison of the Method Developed Here (PRED-LIPO) Concerning the Correct Classification of Secretory Signal
Peptides (vs Nonsignal Peptides) and the Comparison against the Other Available Methods

on an independent test set (344 sequences)

correctly identified nonsignal peptides

correctly identified signal peptides Cytoplasmic TM proteins Total MCC

PRED-LIPO 73/80 (91.25%) 196/198 (98.99%) 63/66 (95.45%) 259/264 (98.11%) 0.90
SignalPv2-NN 77/80 (96.25%) 197/198 (99.49%) 24/66 (36.36%) 221/264 (83.71%) 0.71
SignalPv2-HMM 77/80 (96.25%) 191/198 (96.46%) 41/66 (62.12%) 232/264 (87.88%) 0.77
SignalPv3-NN 73/80 (91.25%) 197/198 (99.49%) 50/66 (75.75%) 247/264 (93.56%) 0.81
SignalPv3-HMM 76/80 (95%) 196/198 (98.99%) 49/66 (74.24%) 244/264 (92.42%) 0.82
PrediSi 73/80 (91.25%) 195/198 (98.48%) 49/66 (74.24%) 243/264 (92.05%) 0.80
Phobius 71/80 (88.75%) 196/198 (98.99%) 57/66 (86.36%) 253/264 (95.83%) 0.85

Table 5. The Comparison of the Method Developed Here
(PRED-LIPO) Concerning the Accuracy in Determining the
Correct Cleavage Site in Secretory Signal Peptides and the
Comparison against the Other Available Methodsa

correctly predicted
cleavage site

(percent of correctly
classified proteins)

correctly predicted
cleavage site

within (2
residues (percent of
correctly classified

proteins)

PRED-LIPO 52 (65%) 59 (73.75%)
SignalPv2-NN 58 (72.50%) 64 (80%)
SignalPv2-HMM 62 (77.50%) 69 (86.25%)
SignalPv3-NN 59 (73.75%) 61 (76.25%)
SignalPv3-HMM 63 (78.75%) 68 (85%)
PrediSi 58 (72.50%) 64 (80%)
Phobius 50 (62.5%) 52 (65%)

a The comparison has been performed on the independent test set of
80 secretory signal peptides.
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to possess a signal-peptide. The fact that among these 60
proteins, 27 (45%) were classified as not having a signal peptide
should be an indication that at least some of these proteins
indeed do not possess a SPase I cleaved signal peptide. This
prediction contradicts the predictions made by SignalP, and is
in accordance with the experimental data of Brockmeier and
co-workers.76 Considering also that the false negative prediction
rate of our method concerning signal peptides is in the range
4-9%, it is highly unlikely that in this small set rises up to 45%.
Thus, these results should be evaluated as results providing
evidence for the specificity of our method, taken into account
the experimental information. Furthermore, since we have
shown (as also as Menne and co-workers) that SignalP pro-
duces false positives with a rate ∼7-13%, we expect that,
among the 173 sequences initially used based on these predic-
tions, there would be approximately 12-23 false positives and
indeed, our method excluded 27. Of course, some of these
could indeed possess a signal peptide that for a number of
reasons discussed by Brockmeier and co-workers76 could not
be expressed in the expression system or could not be sufficient
for exporting the particular reporters used to the extracellular
medium. However, these results strongly suggest that the HMM
method proposed in this work is highly specific in detecting
both SPase I and II signal sequences, and even more specific
than SignalP. This is of particular importance, since both classes
of proteins (and especially lipoproteins) are rare ones in a
completely sequenced genome, and when we are making
predictions, we often want these predictions to be reliable.
When a majority of the sequences submitted to such a predictor
do not belong to the particular classes, we then try to avoid
the false positive predictions that would affect the positive
predictive value of the method.

The profile HMMs generated by HMMER were also used on
the independent test sets. However, even though the profile
for lipoprotein signal peptides performed very well (similar to
PRED-LIPO on lipoproteins, and only one false positive on
nonlipoproteins), the model used for secretory signal peptide
prediction performs worse. In particular, although it is equally
sensitive compared to PRED-LIPO, it fails at discriminating
N-terminal TM segments (data not shown). Therefore, we do
not recommend its use. Lastly, we have to mention that, since
we used the training set of SignalPv2, all proteins belonging to
the test set were checked against that set. Thus, some of the
proteins contained in the test were used for training by
SignalPv3, which was trained on a larger data set (153 secreted
proteins instead of 111). Therefore, the results obtained using
SignalPv3 (as well as Phobius and PrediSi) may be biased and
slightly overestimated.

The analysis of the completely sequenced genomes revealed
once again that PRED-LIPO is more suitable (compared to
LipoP and the pattern-based methods) at correctly detecting
lipoproteins in whole genome searches. PRED-LIPO predicts
constantly a slightly smaller number of lipoproteins in the
analyzed genomes (10 490 in total, accounting for a 1.98%), and
given that PRED-LIPO is (as judged based on the training and
test sets) more specific and more sensitive compared to the
other methods, we are justified to conclude that the majority
of them are truly lipoproteins. LipoP predicts 11 000 proteins
in total (2.07%), DOLOP and G + LPP predict even smaller
numbers (9044 and 8801 proteins, respectively) and the von
Heijne, the PS51257 and PS00013 patterns predict 11 902,
12 634 and 12 097 lipoproteins, respectively, clearly producing
overestimates. The detailed results are available at http://
biophysics.biol.uoa.gr/PRED-LIPO-results/. For instance, in the

Figure 6. The posterior probabilities for YhfQ (upper) and HWP (lower) reveal some unusual signal peptides that potentially account
for wrongly annotated initial methionine.
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well-annotated proteome B. subtilis, PRED-LIPO predicts 88
lipoproteins, whereas LipoP 103 and G + LPP 71. Interestingly,
in the same proteome, PRED-LIPO predicts 233 secretory signal
peptides (accounting for 5.676% of the proteome), whereas
SignalP-NN predicts 565 (13.764%) which is clearly an overes-
timate, since all available studies suggest that the “secretome”
of the particular organism consists of approximately 200
proteins.22,23 Thus, it is clear once again that SignalP is
optimized toward increased sensitivity, and relying on its
predictions without for instance taking into account other
factors (i.e., TM predictions) underlies the risk of many false
positives.

Finally, the HMM method developed here is also very helpful
in identifying spurious cleavage sites and wrongly annotated
translation initiation sites. For instance, one of the lipoproteins
contained in the test set (YhfQ) possess an unusual long signal
peptide of 44 amino acids (that among other things, makes the
particular prediction impossible for some of the regular expres-
sion patterns). The prediction made by PRED-LIPO (Figure 6,
upper panel) indicates that residues 1-25 are probably mis-
annotated since the predicted start of the signal peptide is the
methionine at position 26. The reliability of this prediction is
very high (0.989) making this explanation highly probable. XlnC
is another example of a spurious finding. The predicted signal
peptide ends at position 49 and is in agreement with the
experimentally verified site. However, the predicted starting
methionine is at position 21. Interestingly, the particular protein
is proven to be a TAT substrate, providing an explanation for
the unusual length of the c-region of this signal peptide.88

Similar results hold also for a number of other proven TAT
signal peptides (data not shown). Finally, the Hexagonal Wall
Protein (HWP, UniProt AC: P38538) from Brevibacillus cho-
shinensis shows a very similar plot with a high reliability index
(0.963). The predicted cleavage site is identical to the annotated
one (AFA-A, position 54); however, the model strongly suggests
that the initial methionine is the one located at position 31 of
the precursor. Indeed, in the original publication, it is clearly
stated that although the N-terminal sequence of the mature
protein had been determined (AEDTTTA...), the authors were
inconclusive concerning the precise translation initiation site,
since M31, which is in-frame with M1, possesses all the
necessary characteristics to be the starting methionine.89

Conclusions

We have presented a HMM method (PRED-LIPO) for pre-
dicting the secretory and lipoprotein signal peptides in Gram-
positive bacteria and discriminate them from cytoplasmic and
N-terminal TM proteins. The model resembles the well-known
LipoP method which is trained on Gram-negative bacteria, and
is the first such method especially designed for Gram-positive
bacteria. PRED-LIPO is, as expected, superior to LipoP when
tested on lipoproteins of Gram-positive bacteria, and should
be used exclusively for predicting such sequences. One of the
main advantages of the prediction method is the high specific-
ity, since it predicts very few (<0.3%) false positives. Similar
results hold also for the module that predicts the presence of
the secretory signal peptides and this makes PRED-LIPO
comparable even to the top-scoring method SignalP that is
considered to be the most accurate predictor for signal pep-
tides. The secretory signal peptide module of PRED-LIPO was
validated further in various experimentally verified data sets,
and the results strongly suggest that the method is more
specific compared to SignalP and outperforms it in terms of

overall accuracy. The method is freely available online at http://
bioinformatics.biol.uoa.gr/PRED-LIPO/, and we anticipate that
will be a valuable tool for the experimentalists studying secreted
proteins and lipoproteins from Gram-positive bacteria. The
method can be run in two modes, the single sequence mode,
where the user submits one sequence and receives a detailed
output (graphs, reliability, etc.), and in multiple sequence
mode, where the user may submit up to 500 sequences at a
time and receives the summary results (type of signal peptide,
cleavage site) in an easily readable format. The later option
would facilitate large-scale analyses of bacterial genomes and
high-throuput proteomics applications. For larger submissions,
interested users may contact the authors.
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