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ABSTRACT
Motivation: The ‘sequence implies conformation’ princi-
ple has been the motivation for the construction of numer-
ous systems of secondary and tertiary structure prediction.
Computational experiments have shown that this principle
can now be extended to quaternary structure prediction.
This work appears to be the first effort to predict quater-
nary structure properties from sequence.
Results: The software developed to conduct these experi-
ments was the Quaternary Structure Explorer (QSE). Suc-
cessful rule-based classifiers have been found that can
discriminate between the primary sequences of homod-
imers and non-homodimers.
Availability: The homodimer classifier can be accessed at
http://www.mericity.com
Contact: rgar@science.gmu.edu

INTRODUCTION
In a classic experiment carried out in the 1950s, denatured
ribonuclease was found to be fully restored in its catalytic
activity after the denaturing agent was removed (Anfinsen
et al., 1961). This experiment provided strong evidence
for what is now a generally accepted principle: the amino
acid sequence of most, if not all, proteins contains all
the information needed to fold the protein into its correct
three-dimensional structure. At the next level of protein
organization, tertiary structures associate into quaternary
structures forming multimeric proteins. The association of
tertiary structure subunits depends upon the existence of
complementary ‘patches’ on their surfaces. The patches
are buried in the interfaces formed by the subunits and,
thus, play a role in both tertiary and quaternary structure.
This suggests that primary sequences contain quaternary
structure information.

Klotz et al. (1975) reviewed the nature of the quaternary
structure of proteins in a now-classic paper. They distin-
guished a number of quaternary structure properties such
as stoichiometric constitution, the geometric arrangements
of the subunits, the assembly energetics, intersubunit com-
munication, and their functional aspects. In the present
work, only the number of subunits (distinct chains) in a
homo-oligomeric protein was considered; this aspect of

protein stoichiometry will be referred to as the mericity
of the assembled protein.

The actual quaternary properties of proteins must be
determined empirically. The goal of the present work,
however, was to determine the presence or absence
of mericity information in the primary sequences of
proteins using a machine learning method. A software
system was designed to prepare data and to generate
classifiers for the primary sequences of proteins of known
quaternary structure. A classification system capable of
distinguishing among the primary sequences of different
mericities would allow the rejection of the hypothesis that
protein sequences do not contain any quaternary structure
information.

SYSTEM AND METHODS
Machine learning is an active area of research in artificial
intelligence that investigates methods for making and
evaluating classification decisions and predictions by
discovering the patterns that exist in data. It is based on
the idea that objects can be described by the values of their
attributes. If an object can be described with n attributes,
then an n-tuple of values of its attributes, an example, can
be used to represent it. Let X be a sample of N examples,
and let xi = (a1, a2, . . . , an) be an example in X , where
a j is the value of the j th attribute of xi . Assume that each
example has somehow been assigned its correct label yi .
There is an unknown function f such that f (xi ) = yi .
A learning method attempts to construct a function h that
approximates f (Dietterich, 1997).

The quality of h as an approximation can be measured
by its misclassifications of examples. If the examples of
X are classified into two classes labeled ‘positive’ or
‘negative’, then each application of h to an example in
X can result in only one of four types of classification:
a True Positive (TP), a False Negative (FN), a False
Positive (FP), or a True Negative (TN). The corresponding
four classification frequencies constitute the confusion
matrix of h. There is also a related cost matrix that assigns
relative weights to the frequencies; we will assume,
however, that the costs are all equal.

The apparent error rate of h is defined as (FP + FN)/N.

c© Oxford University Press 2001 551

 at M
asaryk U

niversity on A
pril 3, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


R.Garian

It measures the performance of classifier h on the mem-
bers of X . While a low apparent error rate is desirable, it is
not a sufficient criterion for accepting a classifier. A good
h function is expected to perform well on new instances of
similar examples that are not in X ; h’s domain should gen-
eralize to examples beyond the immediate training data. In
those cases when h fails to form a generalization and yet
has a low apparent error rate, it is said to have overfitted
the data.

A basic requirement for good classifier performance
is that the unseen examples be drawn from the same
population as the original sample used in its construction
(Weiss and Kulikowski, 1990; Quinlan, 2000). Each
sample has an associated distribution that will be reflected
in the training data used to construct the classifier. A
classifier’s accuracy is always measured with respect to
the distribution of its training data (Quinlan, 2000).

Classifier performance can be improved by using more
training examples. As the number of randomly drawn
examples from the population increases without limit,
the apparent error rate will approach the true error rate.
In a practical machine learning application, however, the
sample size may be small and the true error rate can only
be estimated.

The k-fold cross-validation method is a robust way of
estimating the true error rates of classifiers for samples
containing at least 100 examples (Weiss and Kulikowski,
1990). This re-sampling method randomly partitions the
training set into k blocks of examples of approximately
equal size. A classifier is then trained on k −1 blocks. The
remaining block is set aside as a test block. This process is
repeated for k iterations, each time setting aside a different
test block. Thus, each of the blocks will serve both as part
of the training set and as a test block.

The average of the error rates observed for each of
the k classifiers is the cross-validated error rate. It is
known to provide an honest estimate of the true error
rate through direct simulation of the performance of
classifiers on unseen examples. Rost and Sander (1995)
have discussed the value of cross-validation in protein
structure prediction.

The Quaternary Structure Explorer (QSE) system was
developed to test the mericity hypothesis using the C4.5
machine-learning program (Quinlan, 1993). This program
generates decision-tree and rule-based models of data. A
decision tree is a labeled graph (similar to a programmer’s
flowchart) consisting of decision nodes, which specify
tests of attribute values, and leaf nodes, which specify
classes. Let T be a set of training examples, then a C4.5
decision tree is constructed as follows: if T is empty,
assign the label of the most frequent class to T . If T
is not empty and contains only examples of the same
class, then create a leaf node labeled with that class. If
T contains a mixture of examples from different classes,

then create a decision node and partition T into disjoint
subsets based on some predefined splitting criteria, so that
each subset corresponds to a possible outcome. Extend
a branch from the decision node to each block of the
partition. Recursively apply these rules to each of the
blocks generated, so that they become more homogeneous
with each successive test. Stop when each block contains
examples of only a single class.

The final tree consists of a root node and a set of paths
that follow the branches and terminate at the leaves. A
path in a decision tree can be translated into a conjunction
of tests that specify a leaf. After some simplifications,
the set of all such conjunction–leaf pairs becomes a rule-
based model of the training data. A rule-based model can
also be viewed as an approximation function h that maps
examples to leaves.

Decision-tree models have been shown to be relatively
insensitive to imbalanced training sets (Drummond and
Holte, 2000). They are known to perform well even though
the distribution may be skewed by having many examples
of one class and few of another. The training set used
by QSE in these experiments, however, was only slightly
skewed toward the homodimers. The various remedies
proposed to alleviate imbalance in training sets and other
learning methods have themselves raised many theoretical
issues, some of which remain unsettled (Provost and
Fawcett, 1997; Drummond and Holte, 2000).

ALGORITHM
The QSE program requires a set of parameters P =
{S, A, W, D, F, k1, k2, p}, where S is the target set of
protein sequences, A is a set of amino acid indices, W
is a set of window sizes used for smoothing, D is a set of
numbers specifying the number of features to be used in
a feature vector (n-tuple) representation of a sequence, F
is a set of feature extraction functions, k1 is the number of
folds to be used in k1-fold cross validation, k2 specifies the
number of trials (resampling runs), and p is the proportion
of the target sequences to be used in the training set with
the remainder held back for testing. Pseudocode for the
QSE system is shown in Figure 1. The code shows that
QSE loops over each of the experimental factors one at a
time to create an experiment E .

Sequence data
In the present experiment, S was a set of homoligomeric
sequences (the target set) obtained from Release 34 of the
SWISS-PROT database (Bairoch and Apweiler, 1996). It
was limited to the prokaryotic, cytosolic subset of homo-
oligomers in the database in order to eliminate membrane
proteins and other specialized proteins. The database
consisted of 1639 homo-oligomeric protein sequences,
914 of which were homodimers and 725 non-homodimers.
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Fig. 1. Pseudocode for the QSE system.

Amino acid indices
The set, A, of 401 amino acid indices was obtained
from the April 1996 version of the AAindex database
(Kidera et al., 1985), which was first developed in 1985
by Kidera et al. An amino acid index is a list of
20 numerical values corresponding to physical, chemical,
and biochemical properties of the 20 common amino
acids. These indices were found to cluster into a small
number of groups: α and turn propensity, β propensity,
composition, hydrophobicity, physicochemical properties,
and other properties (Nakai et al., Tomii and Kanehisa,
1996). Recently, the entire set of 402 indices has been
summarized by just two indices (Hagerty et al., 1999).

Other parameters
In this experiment, only 401 of the indices were used be-
cause one index was incomplete. The remaining parame-
ter settings were as follows: D = {5, 10}, W = {1, 29},
k1 = 10, k2 = 5, and P = 0.66. Two feature extraction
functions were specified in F . Using these parameters, by
varying one factor at a time, QSE generated 401×2×2×
2 = 3208 distinct sets of training data or subexperiments.

Amino acid profiles and feature extraction
A QSE subexperiment consists of a set of feature vectors
(examples) derived from the set of target sequences.
To obtain the feature vectors, the sequences are first
transformed into protein sequence profiles using an amino
acid index as a substitution table to create a discrete
sequence of values, the profile. The profiles are smoothed
by sliding a window of specified length along the sequence
and calculating the mean of the values within each window

to form a new profile. A feature extraction function is
then applied to the smoothed profile to produce a d-
dimensional feature vector.

QSEs feature extraction functions were designed to
extract local compositional characteristics as well as
differences in the relative intensities of the properties
represented by the profile’s amino acid index. The profile
is partitioned into intervals along the ordinate. The number
of points of the profile within an interval is then counted.
This simple binning function was designated internally
by Cumulative Density Distribution Vector (CDDV). A
variant of this function was also defined in which the bins
represent sums rather than counts of profile values.

These functions were designed after consideration of
some of the results of recent work on protein–protein
interfaces by a number of researchers. Their work has
shown that interfaces have complex structures and com-
positions. In addition, the hydrophobic cores of interfaces
are variable and not well-conserved.

In a review of protein dimer structures, Jones and
Thornton (1995) characterized the protein–protein in-
teractions at interfaces. These interactions are driven by
both the hydrophobic effect (Klotz et al., 1975) and the
specificity of the subunits that is due to the complemen-
tarity of their ‘surface patches’. Shape complementarity
is the correspondence of projecting regions of one patch
with depressed regions of the other. It was found that the
interfaces between dimers are more hydrophobic than
the exterior, but less hydrophobic than the interior of a
subunit and that ‘interfaces are discontinuous, segmented
surfaces with between 2 and 15 segments and a mean
of 5.5’. In related work on protein–protein interfaces Tsai
et al. (1997) analyzed the data for 362 representative
oligomeric interfaces and found that the amino acid
composition of the interfaces was more similar to the
composition of the overall protein than to the surface of
the protein.

In a survey of the morphology of 136 homodimeric
interfaces in the Protein Data Bank, Larsen et al. (1998)
found that the pattern of hydrophilicity was quite variable.
A third of the interfaces had a recognizable hydrophobic
core (a hydrophobic patch surrounded by a ring of polar
interactions). The remaining two-thirds of the proteins had
a mixture of hydrophobic patched, polar interactions, and
water molecules scattered over the interface area. Some
of the proteins are associated by extensive interdigitation
of their subunit chains (Larsen et al., 1998). Grishin and
Phillips (1994) addressed the question of the conservation
of residues in subunit interfaces and found that ‘amino
acid residues that make up the hydrophobic core are not
well conserved and evolve nearly as rapidly as the overall
protein sequence, despite their importance to the integrity
of the protein structure and function’.

These results on the nature of protein–protein interfaces
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constrained the possibilities for the design of a quaternary
feature extraction function. They effectively eliminated
the sequence alignment approach from consideration and
suggested the use of the amino-acid profile approach. The
use of profiles also suggested the application of simple
signal processing methods to protein sequences.

Model building
Once the set of profiles are generated and the feature
vectors are created, QSE randomly partitions them into a
training set, T , and a holdout set, H . The holdout set is
used for testing rule-based classifier models constructed
by 10-fold cross-validation with C4.5. The confusion
matrix data for each classifier are collected and later used
to rank the classifiers. In the experiment conducted with
the 401 amino acid indices from AAindex, this process
was repeated five times and generated a total of 3208 ×
10 × 5 = 160 400 classifiers. The classifiers were applied
to the data in the holdout sets created during each of the
five runs of the experiment to obtain their apparent error
rates.

Performance measures
QSE uses several performance measures to evaluate clas-
sifiers. All are derived from the confusion matrix values
for a given classifier, which consists of the frequencies TP,
TN, FP, and FN. The overall accuracy of a classifier is de-
fined as 1 − (apparent error rate) = (TP + TN)/N , where
N is the total number of examples. The TP rate, TPR, is
defined as TP/(TP + FN) and the FP rate, FPR, is defined
as FP/(FP + TN). Since TPR and FPR are independent
of N , they are better predictors than those that vary with
changes in N .

QSE plots the (FPR, TPR) points for all the classifiers in
what is known as ROC-space (Provost and Fawcett, 1997).
This is a region in the x, y-coordinate plane defined by the
corners of the unit square: (0, 0), (1, 0), (1, 1), (0, 1). The
diagonal from (0, 0) to (1, 1) is called the chance line. The
point (0, 1) corresponds to the perfect classifier. Those
points closer to the perfect classifier in ROC-space are the
better classifiers, and those on the chance line are no better
than random guessing. Given two points in ROC-space,
the point higher and to the left of the other represents the
better classifier.

Results
A considerable number of the classifiers were found to
perform at a level better than random guessing. Thus, this
QSE experiment was successful in finding parameters that
can be used to construct classifiers capable of discriminat-
ing between homodimers and non-homodimers. The top
classifier found during this experiment had an apparent er-
ror rate of 34% and an error rate of 28% on the holdout set.
Figure 2 is a QSE ROC-space plot showing the variation in

Table 1. Results of a 10-fold cross-validation run using the parameters found
by QSE

Decision tree Rules

Size Errors (%) Number Errors (%)

Mean 111.3 31.1 58.0 30.0
Standard error 3.5 0.8 3.1 1.0

the overall accuracy of 160 400 classifiers generated dur-
ing the experiment. A line connecting the points with the
greatest ordinates for each FPR value represents the con-
vex hull of the cloud of points. This line of points can be
used to choose the best classifiers with a given FPR.

The highest scoring combination of parameters associ-
ated with this classifier was D = {10}, W = {1}, F =
{CDDV} and A = {index NAKH900111 (Nakashima et
al., 1990)}. These parameters were used in a subsequent
focused experiment using C5, a later version of C4.5, to
investigate the true error rate of the classifiers associated
with these parameters. The mean error rate obtained with
a 10-fold cross-validation run was 30% for the rule-based
model. This is an estimate of the true error rate for classi-
fiers generated with these parameters.

Another aspect of classifier performance is the complex-
ity of fit. This term refers to the preference for classifiers
having fewer decision nodes and fewer rules. Since they
have succeeded in forming more concise generalizations,
they are less likely to overfit the data. The average
decision-tree model required 111 nodes and the average
rule-based model required 58 rules as shown in Table 1.

There are many possible performance measures that can
be computed for a binary classifier. Many of these have
their origin in medical statistics, but they are also used
in information-retrieval and signal-detection theory. The
Matthews correlation coefficient, which varies from −1
to 1, has its origin in early work on secondary structure
prediction (Matthews, 1975). A value of zero corresponds
to random predictions (the chance line in ROC-space). It
provides a single value with which to compare classifiers
at the expense of some loss of information. Table 2 shows
the values of some of the common performance measures
that can be derived from the frequencies provided by the
confusion matrix of the homodimer classifier.

DISCUSSION
The results of computational experiments with QSE sup-
port the alternative to the mericity hypothesis: the feature
vectors used to generate the decision-tree and rule-based
models have been shown to contain mericity informa-
tion, hence the primary sequences of homo-oligomeric
proteins contain quaternary information. The feature
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Fig. 2. ROC-space plot of the (FPR, TPR) pairs of all classifiers generated in the experiment.

Table 2. Some common performance measures derived from the confusion
matrix

TN FN FP TP
433 200 292 714

Sensitivity 0.781
Specificity 0.597
Positive predictive value 0.709
Negative predictive value 0.684
Apparent accuracy 0.699
TP rate 0.781
FP rate 0.402
Matthews correlation coefficient 0.386

vectors appear to capture essential information about the
composition and hydrophobicity of the residues in the sur-
face patches that are buried in the interfaces of associated
subunits. This information is provided in the distribution
of profile values associated with a suitable amino acid
index.

QSE experiments perform an empirically focused search
for quaternary structure-revealing indices in parameter

space. The use of these indices significantly constrains
the parameter space to structurally meaningful regions.
If the AAindex database did not exist, it would have
been necessary to search the entirety of the parameter
space.

These computational experiments have shown the use-
fulness of the sequence profile approach to protein clas-
sification. It should be considered as an alternative when
the sequence alignment method fails or is inappropriate.
Protein sequence profiles were found to provide a natural
way of mining the SWISS-PROT and AAindex databases
for information about quaternary structure.

CONCLUSION
Classifiers were found that are capable of discriminating
between homodimers and non-homodimers. The best of
these, at the present time, has an estimated true error
rate of 30%. Predictions are, of course, probabilistic; only
experimental work can ultimately establish the quaternary
properties of a particular protein sequence. Areas of future
work with quaternary classifiers that are currently being
investigated are the construction of classifiers for the
higher homo-oligomers and the inference of interface
residues from sequence.
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