1 Isotopologues Molecules of ISOTOPOLOGUES have different isotopic composition 1H NMR of CH3CH2OH : consider 1H, 2H, 12C, 13C, 16O, 17O, 18O Some isotopologues: 12C1H3 12C1H2 16O1H System: A3B2C 13C1H3 12C1H2 16O1H System: XA3B2C 12C1H3 12C1H2H16O1H System: A3BXC 288 isotopic varieties, 192 of which magnetically distinct These give rise to 184 1H spectra, 184 2H spectra, 144 13C spectra and 96 17O spectra, all nontrivial and distinct from each other The least abundant of these isotopologues is so rare that one would need over 100 moles of ethanol to have any chance to meet one of its molecules, but that can change completely with isotopic enrichment 2 Isotopomers Molecules of ISOTOPOMERS have the same isotopic composition, the isotope sits at different positions - isotopic isomers Some isotopomers: 13C1H3 12C1H2 16O1H 12C1H3 13C1H2 16O1H 13C1H3 13C1H2 16O1H - Isotopologue 12C1H3 12C1H2H16O2H Constitutional Isotopomers 12C1H3 12C1H2H16O1H 12C1H3 12C2H1H16O1H Stereo Isotopomers (R/S) 3 Isotope Effects M – X n = 1 primary isotope shift M – C – X n = 2 secondary isotope shift (D/H) n(13C) Isotope shift of M signal caused by substitution of H by D, n bonds away Magnitude expressed in ppb, decreases with longer distance, n Generally n(AM) = HEAVY – LIGHT < 0 Heavy isotope shields more 4 Isotope Effect 12 C19 F3I 13 C19 F3I 0.149 ppm 19 F NMR 13 C16 O 13 C17 O 0.025 ppm 13 C NMR CO bond length difference 5 fm 5 Isotope Effect H D (D/H) n(31P) ppm PH3 PDH2  0.804 PH3 PD2H  0.845 PH3 PD3  0.888 6 Isotope Effects Occupation of vibrational levels changes with temperature Level spacing changes with mass of bound atoms 7 Isotope Effect 19F NMR spectrum of [NMe4][TeF7] in CH3CN at 30 ºC [TeF7]- Fluxional All F identical 8 Isotope Effect Central line of the 19F NMR spectrum of [NMe4][TeF7] 9 Tellurium Isotopes Z A NA% I 52 Te 120 0.09 (1) 122 2.55 (12) 123 0.89 (3) ½ 124 4.74 (14) 125 7.07 (15) ½ 126 18.84 (25) 128 31.74 (8) 130 34.08 (62) 10 Satellite Spectra of Si(CH3)4 Isotopomers 28Si(12CH3)4 29Si(12CH3)4 28Si(13CH3)(12CH3)3 Other isotopomers have too low concentration 28/29Si(12CH3)4-n(13CH3)n 1H A B B C C 11 Satellite Spectra [(R2Sn)2(R2SnO)(F)(HONZO)(ONZO)], R = Me HONZOH = salicylaldoxime, ortho-HO–N=CH–C6H4OH 19F Satellite Spectra 12 Resolution enhanced 195Pt-NMR spectrum of K2PtCl4 in D2O showing isotopomers 35Cl 75.5 % 37Cl 24.5 % 13 Satellite Spectra Si C C CH3 CH3 C C H3C H3C 29Si NMR 13C satellites 14 Isotope Effect on Satellite Spectra CH3-CN 15N signal shows coupling to: 1H 3J(1H-15N) = 1.7 Hz 13C 1J(13C-15N ) = 17 Hz The signal appears as a central 1:3:3:1 quartet flanked by 13C satellites The unsymmetrical nature of the 13C satellites arises from 12C/13C isotopic chemical shift perturbation. 15N NMR 12C 13C Isotope Effect on Satellite Spectra 15 Isotope Effect on Satellite Spectra 16 17 Calculation of Abundance of Isotopologues O Pt Pt O H H 1H NMR spectrum 195Pt I = ½, NA = 33.8 % NMR inactive Pt nuclides 66.2 % O Pt Pt O H H O 195Pt Pt O H H O 195Pt 195Pt O H H 18 Calculation of Abundance of Isotopologues O Pt Pt O H H ....zyx i i cbaf    1H NMR spectrum 195Pt I = ½, NA = 33.8 % 19 Calculation of Abundance of Isotopologues Isotopologues and isotopomers ....zyx i i cbaf    fi = the fractional abundance of isotopomer i  = the symmetry number of the parent molecule isotopically pure = the order of rotation group Cn i = the symmetry number of the isotopomer a = abundance of an isotope occuring x-times (in atomic %) b = abundance of an isotope occuring y-times (in atomic %) 20 Abundance of Isotopologues ....zyx i i cbaf    W P W CO CO CO OC COAr Ar Ar Isotopomer i a (0.144) b (0.856) fi WPW 1 a0 b2 0.733 WP183W 1 a1 b1 0.123 183WPW 1 a1 b1 0.123 183WP183W 1 a2 b0 0.021 21 Isotopologues Pt Pt Pt OC CO CO P P P R R R R R R 1+ Isotopomer Pt1 Pt2 Pt3 fi A * * * 0.290 B 195 * * 0.148 C * 195 * 0.148 D * * 195 0.148 E 195 195 * 0.076 F 195 * 195 0.076 G * 195 195 0.076 H 195 195 195 0.038 22 Abundance of Isotopologues Mercuracarborands [Me4N]F [Me4N]+ 23 Calculation of Abundance of Isotopologues yx i i baf    199 Hg I = ½ NA = 16.8% 201Hg I = 3/2 NA = 13.2% other Hg inactive in NMR 19F NMR Only coupling to 199 Hg observed No coupling to 201Hg visible  = 4 a = 16.8 % 199 Hg (active) b = 83.2 % all other nuclides (inactive) 24 Isotopologues/Isotopomers Hg F Hg Hg Hg Hg F Hg Hg Hg F Hg Hg F Hg Hg F F Hg = 199 Hg 4 4 1 1 1 2 A B C D E F 25 Isotopologue Abundances Isotopologue  i x y fi 2nI + 1 A 4 4 0 0.00080 qn B 1 3 1 0.01578 dt C 1 2 2 0.03907 t D 2 2 2 0.07815 t E 1 1 3 0.38703 d F 4 0 4 0.47917 s yx i if )832.0()168.0( 4   26 B5H9 A A A A A B B A A A B A A A A A B A B A A B A A A A B A A B I II III IV V VI BH BH B H HB H B H H H H