C8953 NMR strukturní analýza semináˇr TOCSY, ROESY, Introduction to heteronuclear correlations Jan Novotný 176003@is.muni.cz April 12, 2017 TOCSY & ROESY spin lock - isotropic mixing � series of 180 ◦ pulses � various pulse schemes (MLEV-17, DIPSI,. . . ) � precession around BSpinlock < B0 → “locking" spins in transversal plane (xy) � TOCSY: lower power, offset in the center of spectrum � ROESY: higher power, offset on edge � crosstalk (ROE in TOCSY, J in ROESY) acq t1 t2 90 P E M D tmix Spin Lock TOCSY (TOtal Correlation SpectroscopY) HOHAHA (HOmonuclear HArtmann-HAhn) correlation based on J, like COSY � correlate mutually all protons within a spin system � τmix ≈ 20 − 120 ms � intensity depends on τmix and J value HA JAB ⇐⇒ HB JBC ⇐⇒ HC JCD ⇐⇒ HD Biotin - COSY vs. ROESY (G. T. Crisp and Yu-Lin Jiang, 2001) N1H N3H H3a H6a H6x H6y H4 H5' H4' H3' H2' O NN HH S HH COOH N1H N3H H3a H6a H6x H6y H4 H5' H4' H3' H2' O NN HH S HH COOH HMQC (Heteronuclear Multiple Quantum Correlation) HSQC (Heteronuclear Single Quantum Correlation) correlate 1 H-X (X=13 C, 15 N,...) based on 1 JHX HMQC (a) + more robust experiment + change of parameters - HMBC - lower sensitivity and worse resolution HSQC (b) + better resolution, sensitivity + part of more complex mutlidimensional experiments - less robust H-1 X acq dec 90 90 90 180 1/2J 1/2J t1 (a) H-1 X acq dec t1 d d d d d = 1/4J (b) Practical notes 1H-X HSQC � resolution of overlaps � routine experiments to control biomolecular sample � easy identification of geminal protons � indirect determination of protons bonded to NMR inactive heteroatom � heteronuclear correlation ⇒ no diagonal crosspeak, no symmetry � X decoupled during acquisition ⇒ singlet crosspeak HMBC(Heteronuclear Multiple-Bond Correlation) heteronuclear correlation based on long-range H-X spin-spin interaction( n JHX , n>1 ) � utilizes polarization transfer from H through 2-5 bonds on heteroatom ( 13C, 15N ) � allows to detect quaternary heteroatoms (Cq) or connect signals among isolated spin systems HMBC correct settings of d1, d2 fo evolution of J-coupling necessary � d1=1/2∗1JC−H - (120-180 Hz) � d2=1/2∗2−5JC−H - (3-12 Hz) 1 H X acq t1/2 t1/2 90 90 90 180 d1 d2 90 1H-13C HMBC H4-C4 H2-C2 H10-C10 H9-C9 H7-C7 H8-C8 H7-C9 H7-C8 H7-C10 H9-C10 H2-C7 H4-C6 H2-C6 H4-C1 H7-C1 H7-C2 H9-C1 Colchicine 1D-1H Colchicine - 1H-13C HSQC 8 8 6 6 4 4 2 2 δ2 - 1H (ppm) 120 120 100 100 80 80 60 60 40 40 20 20δ1-13C(ppm) 54 6 3 1 2 11 10 16 14 15 7 8 9 NH 17 18CH3 19 O O O O CH3 22 CH3 21 CH3 20 O CH3 23 O 12 13 Colchicine - NOESY 8 8 6 6 4 4 2 2 δ2 - 1H (ppm) 8 8 6 6 4 4 2 2 δ1-1 H(ppm) 54 6 3 1 2 11 10 16 14 15 7 8 9 NH 17 18CH3 19 O O O O CH3 22 CH3 21 CH3 20 O CH3 23 O 12 13 Riboflavine: DQF-COSY 8 8 6 6 4 4 2 2 δ2 - 1H (ppm) 8 8 7 7 6 6 5 5 4 4 3 3 δ1-1 H(ppm) 5a 9a 6 9 7 8 4a 10a N 5 N 10 NH 3 2 4 N 1 13 14 15 16 17 OH OH OH OH O O CH3 11 CH3 12 Riboflavine: 1H-13C HSQC 8 8 6 6 4 4 2 2 δ2 - 1 H (ppm) 120 120 100 100 80 80 60 60 40 40 20 20 δ1-13C(ppm) 5a 9a 6 9 7 8 4a 10a N 5 N 10 NH 3 2 4 N 1 13 14 15 16 17 OH OH OH OH O O CH3 11 CH3 12 Riboflavine: NOESY 8 8 6 6 4 4 2 2 δ2 - 1 H (ppm) 8 8 7 7 6 6 5 5 4 4 3 3 δ1-1 H(ppm) 5a 9a 6 9 7 8 4a 10a N 5 N 10 NH 3 2 4 N 1 13 14 15 16 17 OH OH OH OH O O CH3 11 CH3 12 Riboflavine: 1H-13C HMBC 8 8 7 7 6 6 5 5 4 4 3 3 δ2 - 1H (ppm) 150 150 100 100 50 50 δ1-13 C(ppm) 5a 9a 6 9 7 8 4a 10a N 5 N 10 NH 3 2 4 N 1 13 14 15 16 17 OH OH OH OH O O CH3 11 CH3 12 Riboflavine: 1H-13C HMBC + HSQC 8 8 7 7 6 6 5 5 4 4 3 3 δ2 - 1H (ppm) 150 150 100 100 50 50 δ1-13 C(ppm) 5a 9a 6 9 7 8 4a 10a N 5 N 10 NH 3 2 4 N 1 13 14 15 16 17 OH OH OH OH O O CH3 11 CH3 12