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Influence of cut-off truncation and artificial periodicity of electrostatic
interactions in molecular simulations of solvated ions:
A continuum electrostatics study
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A new algorithm relying on finite integration is presented that solves the equations of continuum
electrostatics for truncatetand possibly reaction-field correctedolute—solvent and solvent—
solvent interactions under either nonperiodic or periodic boundary conditions. After testing and
validation by comparison with existing methods, the algorithm is applied to investigate the effect of
cut-off truncation and artificial periodicity in explicit-solvent simulations of ionic solvation and
ion—ion interactions. Both cut-off truncation and artificial periodicity significantly alter the
polarization around a spherical ion and thus, its solvation free energy. The nature and magnitude of
the two perturbations are analyzed in details, and correction terms are proposed for both effects.
Cut-off truncation is also shown to induce strong alterations in the potential of mean force for
ion—ion interaction. These observations help to rationalize artifacts previously observed in explicit—
solvent simulations, namely spurious features in the radial distribution functions close to the cut-off
distance and alterations in the relative stabilities of contact, solvent-separated and free ion
pairs. © 2003 American Institute of Physics.
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I. INTRODUCTION placed into a computational bofspace-filling shape, e.g.,
rectangular, and the empty volume is filled by solvent mol-

Computer simulation with an explicit representation of ecules. The system considered in the simulation consists of
the solvent molecules has become a standard tool for inve?— ) Y

tigating the structure, dynamics, and function(bfo-)mol- he _centra! box sur_rounded by an infinite array of periodic

ecules in solutiort-® However, due to important computa- copies Of.'tsehf’ which h_as the .advantage of removing any
tional costs, the system sizes that are accessible t%urface distortion assquated with a solvent-vacuum bound-
such simulations remain truly microscopic (typically ary. There are essentially three methods to handle electro-

<1000 nni). As a direct consequence, the longest-rang tatic i_nteractions in simul.ations _under PBQ) Stra_ight
(>5 nm) component of intermolecular interactions, which istruncation %f7th"e Coulomb interactions at a convenient cut-
generally dominated by electrostatics, cannot be computed ifff distance;” (i) smooth truncation of the Coulomb Inter-
an exact manner. Unfortunately, because electrostatic intefCtions, .9., by means of a switching or Sf}'jg'”,q functidi
actions are of large magnitude, many simulated observabled Py including a react|on2-(1;|eld cglrrecudﬁ;zz zg”') use of
turn out to be highly sensitive to the treatment of these inJattice-sum methodeEwald; P*M,*! or PME™*"methods.
teractions and, due to their long range, to the boundary corf?ut-off truncation reduces the computational costs and the
ditions used in the simulatiofsystem size and shape, finite €fféct of artificial periodicity in simulations. However,
versus periodic systemFor this reason, the approximate Straight truncatior(ST) represents a very severe approxima-
representation of long-range electrostatic interactions ifion, leading to heating as well as important artifacts in simu-
explicit-solvent (bio)molecular simulations is probably lated properties of liquid$?**° solvated ion$’~*° ion
nowadays one of the principal bottlenecks in the accuracy obairs; **~**and biomolecule&>~** Smooth-truncation meth-
these methods. Uncontrolled approximations can give rise t8ds may be applied to reduce the heating caused by the ap-
important artifactgso-called finite-size effectswhich may  plication of a cut-off, but nevertheless retaand sometimes
strongly impair the reliability of many current simulations. amplify) @ number of the undesirable effects of abrupt
There is thus considerable effort in the scientific communitytruncation?1%2":234148-51gyrthermore, these methods are
towards the goal of improving the representation of electrogenerallyad hocand lack any physical basis. An exception is
statics in computer simulations. the inclusion of a Barker—Watts reaction-field correctfor®

The vast majority of explicit-solventbio-)molecular ~ (RF) to the cut-off truncation. This correction scheme ap-
simulations are carried out under periodic boundaryProximately accounts for the mean effect of the medium be-
conditiong'” (PBO). In this case, the soluiio-)molecule is  yond the cut-off sphere of each particle by assuming that this

medium behaves as a homogeneous dielectric continuum of

permittivity equal to that of the solvent. Due to the form of
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high solvent permittivities. Finally, lattice-sum(LS) TABLE |. Generalizations of the continuum-electrostatics approach to

meth0d§0_23'52_54rely on Fourier series to describe the long- modified electrostatic interactions and boundary conditions. The methods

.. . . have been classified using the codes blem solved in three dimen-
range component of electrostatic interactions, i.e., they a% 9 (g0

; ) o s 5iong, 1D (problem reduced to a one-dimensional equation by symmetry
sume that these interactions are exactly periodic within th@nalytical(analytical solution availabjePoissor{based on solving the Pois-
infinite system. Although LS and RF methods rely on moreson equatio) FFT (based on the use of fast Fourier transfornus direct
or IeSS reasonab'e approximations for dea“ng W|th the |0ng(based on solving field equations analogous to Eﬂﬂﬁs.and (6) in real-
range component of electrostatic interactions, an approxi*2°®
mate treatment is certainly preferable to the plain omissiortectrostatics NPBC PBC
of this long-range component, as done in the ST scheme; S D-Por cor 93°  3D.Por cor 5
Nevertheless, some dependence of simulated observables 57 -Poisson(Ref. 93 -Poisson(Ref. 57
- ; . 3D-FFT (Refs. 51, 63, and 64

the cut—offltglssstaSr;ce or sy%grg) size has also been evidenceghnerical iof) 1D-Analytical (Ref. 86 1D-Analytical (Ref. 57
for the LS¥®%%and RE"?® methods. It is therefore of sc,Re 3D-Direcf 3D-Direct
importance to carefully investigate and compare the proper- o _ 3D-FFT (Refs. 51 and 60
ties of the three most common electrostatic schefB@sRF, ~ (spherical iof) 1D-Direct(Refs. 26-28 -
and LS. Anteractions follow from the CoulombCB) potential under NPBC or the

A general strategy to analyze finite-size effects and im-Ewald lattice-su(LS) potential under PBC.

prove electrostatic schemes for explicit-solvent simuIationstifSt calculation on a biomolecule using a finite-difference algorittmany

: . 28,51,52,56—6 alternatives have been proposed, including, e.g., finite-element, boundary-
relies on the use of continuum electrostafits . 1 Glement and inducible-multipole algorithms
the continuum-electrostatics approach, the solute is treated &splutions developed for the special case of a single spherical ion.

a low-dielectric cavity encompassing the solute atomic poinflnteractions follow from the Coulomb potential truncated at a given cut-off
charges and embedded in a dielectric continuum of permit_distance, withoutST) or with (RF) the inclusion of a reaction-field correc-
tivity equal to that of ghggsolvent. In the glassmal !mplemen-eDeveloped in the present article.

tation of the metho&°% the electrostatic potential in the

system is computed by numerically solving the Poiséan

Poisson—Boltzmann, in the presence of implicit Counter'approximate electrostatics and boundary conditions in the

]'CO”S) equatlonr gr:vmg IacceZSI rfo thﬁ (rallectrgstatlc iOI,Vat'orr’simulation. This procedure is illustrated schematically in Fig.
ree energy of the solute. Although there is no choice Ofy ¢, yhe gpecific case of an explicit-solvent simulation em-

boundary conditions that adequately mimics an infinitely di'ploying ST or RF electrostatics under PBC. The quantity

lute sqlutlon in epr|C|t—soIventIS|muIat|0nsZ this is not the AG,, (possibly evaluated for multiple solute configura-
case in continuum-electrostatics calculations. There, thrﬁ

o X i lons) gives the required information to investigate the nature
boundary conditions to solve the Poisson equation are speci-

fied in the form of the potential at the surface of the compu-

tational box. For a reasonably large solute—wall distance,

this potential is well approximated by the solvent-screened

Coulomb potential of the solute charg€dn this way, con-

tinuum electrostatics can be used to estimate, for a given  expLiciT
solute configuration, the electrostatic solvation free energy = SOLVENT
corresponding to exa¢hontruncated Coulomb interactions

(CB) under nonperiodic boundary conditior8/PBC), a

good model for the ideal situation of a solute at infinite di-

lution. This suggests that artifacts linked with the use of IMPLICIT
approximate electrostatic interactions and periodic boundary  soLVENT
conditions in explicit-solvent simulations could be investi-

gated using continuum electrostatics, provided that the

method is generalized to these modified interactions anf!G. 1. Schematic illustration of the procedure used to assess, based on

.. i continuum electrostatics, artifacts linked with approximate electrostatics and
boundary conditions. Such generalizations have recentlXoundary conditions in explicit-solvent simulations. Ideally, an explicit-

—28,51,52,57—6 : s X .
been developé&d for nearly all types of relevant  solvent simulation aiming to describe a solute moledsignbolized by a
electrostatic interaction schemé€B/LS, ST, or RF and black sphergat infinite dilution should be based on a quasi-macroscopic

boundary conditiongNPBC or PBQ, as summarized in system under NPBC together with exact CB interactidap left drawing.

Table I. B . f . | fi . h Due to computational limitations this is not feasible in practice, and one may
able |. By comparing, for a given solute configuration, t €simulate instead a system under PBC with 8T RF electrostatic interac-

outcome of a continuum-electrostatics calculation based Ofions (top right drawing. The corresponding perturbation can be evaluated
modified interactions and boundary conditions with that ofby considering the implicit-solvent analogs of the two cases. Using con-

another calculation based on CB interactions under NPBC H’nuum electrostaticgfor a given solute configuratignthe solvation free
' energies and the direct interactions between solute charges can be computed

is pOSSible to estimate the perturba_tiA'AGsolv of the sol- both under CB/NPBCbottom left drawing; based on a good approximation
vation free energy. The corresponding perturbatdf.;  for the electrostatic potential at the surface of the computational volume
in the direct electrostatic interaction energy between soluténd under ST/PBC or RF/PBGottom right drawing The free-energy

atomic charges is Straightforward to calculate. The SurrgifferenceAAGel represents the perturbation of the electrostatic free energy
’ induced by the use approximate electrostatics and boundary conditions, and

AAGg, of the tWO contributions represents the perturbations 5 key quantity for the analysis of finite-size effects in the explicit-solvent
of the electrostatic free energy of the system due to the use @fmulation.

CB/NPBC ST,RF/PBC
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and magnitude of the corresponding artifacts in explicit-l. THEORY
solvent S'mUIat'QnS' ) A. Continuum electrostatics

Since they ignore the discrete nature of the solvent,
continuum-electrostatics models have some limitations, in- In the continuum-electrostatics approach, a solute—
cluding an important sensitivity to empirical model param-solvent system is modeléor a given solute configuration
eters(atomic charges, atomic radii, solute permittivity, exact@s & set of solute atomic partial charges embedded in a po-
definition of the solute—solvent boundanthe neglect of larizable medium of heterogeneous dielectric permittivity.
nonlinear effectgelectrostriction, dielectric saturatiprand ~ Application of the laws of electrostatics within such a system
the neglect of the detailed solvent structure around the solufgads to the following expressight>>1%*%for the electric
(structure of the first solvation shells, specific hydrogenﬁe'd E(r)
bonds. Furthermore, the electrostatic contribution to the sol-
vation free energy should be complemented by a nonpolar E(r)=v(r)+fff d3r'T(r—r")P(r"), (1)
contribution, typically assumed to be proportional to the RS
solvent-exposed surface area. However, since the preséfhereV(r) is the vacuum fieldelectric field generated by
method relies on the comparison of two closely relatedhe solute atomic partial charges in the absence of polariz-
continuum-electrostatics calculations involving the same pagple mediuny, P(r) the polarizatior{dipole moment density
rameters and solute configuratidfig. 1, bottom drawings  andT(r) the dipole—dipole interaction tensor characterizing
it is likely that errors in the short-range description of solva-the solvent—solvent interactions within the system.
tion cancel out to a large extent. The difference will depend  |n the application of Eq(1), it will be assumed that both
almost exclusively on long-range effects, for which con-spjute—solute and solute—solvent electrostatic interactions
tinuum electrostatics can be expected to be accurate. Thugre described by truncated Coulomb interactions with a
electrostatic free energy differences from continuum electroggrker—Watts reaction-field correctidfi:¢ In the Barker—

statics should be almost quantitatively transposable to intefg/atts scheme, the potential generated lay a unit charge at

pret finite-size artifacts in explicit-solvent simulations. the origin is given by
Inspection of Table | reveals one missing entry. There is
currently no general continuum-electrostatics method to deal 1 1 ar® a+2
with truncated electrostatic interactioiST or RF under wBW(r)_mH(R_r) F TR T 2R ) @)

NPBC, although a method exists in the special case of a ) o ) )
single spherical 0728 [one-dimensional (1D)-Direct ~Where H(r) is the Heaviside functioiH(r)=1 if r>0,
method. The goal of the present article is to describe and () =0 otherwisé, €, the permittivity of vacuum, an® is
apply a general method based on field equations and a finité2€ cut-off distance. The paramete(with O<a<1) deter-
integration  algorithm [three-dimensional (3D)-Direct ~ Mined by the relative dielectric permittivity’ of the me-
method. In addition to dealing with the NPBC case, this dium surrounding the cut-off sphere of each particle through
new method is also applicable to systems under PBC. How- 2(e'—1)

ever, it scales rather unfavorably with the system d&e a=
Ng, whereNy is the number of grid points along each Car-

tesian direction and can only be used for small systems.The function g, in Eq. (2) accounts both for the direct
Therefore, its application is restricted here to the investigacoylombic potential generated by the charge’(term) and
tion of the consequences of cut-off truncation and artificialor the polarization by the neighboring charges of the me-
periodicity of electrostatic interactions in molecular simula-dium outside its cut-off spherer? term). In the present
tions of ionic solvation and ion—ion interaction. These sys-york, the discussion of the general form of the Barker—Watts
tems are very important benchmark systems for evaluatinghteraction functionfBW) will essentially focus on the cases
the accuracy of electrostatic interactions in molecular simuy =0 (e'=1), corresponding to straight truncation of the
lations becaus€) they offer the simplest context to investi- Coulomb interactions without reaction-field correcti@),
gate electrostatic finite-size effects, a(id despite the ap- anda=1 (¢’ —), corresponding to truncated Coulomb in-

parent simplicity of the problem, the accurate determinationeractions with a reaction-field correction corresponding to a
of ionic solvation free energi@s*2°-3>%557%="qnd jon—ion  conducting mediuniRF).

potentials of mean forée®~**°"8-%has turned out to be a When Eq.(2) is applied to the solvent—solvent interac-

surprisingly difficult problem. tions under nonperiodic boundary conditiof$PBC), the
In the present article, the algorithm is described in deipole—dipole interaction tensor reads

tails and the influence of various parameters controlling its

behavior is investigated. The accuracy of the algorithm is _

further tested by comparing solvation free energies computed Trpedr)= RH(RSS_ 2

for a single spherical ion to values estimated through the

2¢'+1 ° )

2
1D-Direct® 2 (NPBC) or 3D-FFTPL% (PBC) methods. Fi- P I S
nally, the present 3D-Direct method is applied to investigate 2R§g 2Rss
the effect of cut-off truncation and artificial periodicity in 5

. . S . . L 1 rer—r<1  «al
computer simulations of ionic solvation and ion—ion interac- = H(Rgg— )| —=——+ — (4)
. 4 ( SS 5 R3 ’
tions. Té€o r S
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where Rgs is the solvent—solvent cut-off distance and the Combining Egs(1), (6), (7), and(8), the equation to be
notationa® b has been introduced for the tensor with ele-solved for the electrostatic fiell(r) reads
mentsuv given bya,b,. Under periodic boundary condi-

tions (PBC), and provided thaRsg is smaller than half the E(r)=V(r)— 3[e(r) —1]E(r)
smallest dimension of the computational b@vhich will be
assumed from here gnthe dipole—dipole interaction tensor + €, lim fff d3r'T(r—r")
reads p—0 RAQ(rip)
1 Irer—-r2l  al X[e(r')—1]E(r"), (€)
Tepdr)= KEOH(RSS_r — =t Qj ®  with T(r) given by Eqgs.(4) or (5). If this equation can be

solved forE(r), the free energy of interaction between the

wherer is the minimum-image vector correspondingrto  spjute atomic point charges and the polarizable medium is
Using the approximation of linear response, the reactionyjyen py

of the polarizable medium is linear in the local electric
fleld 24,25,51,64,8% e

Aez—%ff R3d3rV(r)-P(r). (10)
P(r)= €[ €(r)—1]E(r), (6) _ _ . .
In the special case of a nonpolarizable solute, this quantity
wheree(r) the relative dielectric permittivity of the medium, represents the solvation free energy of the solute.
which may be heterogeneous in space. Typically, one distin-
guishes between solute and solvent regions, characterized b
distinct homogeneous permittivity values.
The dipole—dipole interaction tensdr(r) defined by To transform the solving of E9) into a computation-
Egs.(4) or (5) is singular at the origin. However, the singu- ally tractable problem, three approximations are made. First,
larity is integrable when applying Eq1l). More precisely, the infinite integration domain is reduced to a finite region of

definingQ)(r;p) as the sphere of radiysand surface. (r;p) space. More precisely, two types of computational domains

. Discretization

centered at, one may write are consideredi) A spherical volume of radiuS surrounded
by vacuum under NPBC, dii) a cubic unit cell of edge.
J'JJ d3r'T(r—r")P(r") under PBC. In both cases, the restriction to a finite compu-
I B tational domain is expected to have limited consequences
whenS>Rgsunder NPBC ol >2Rgg under PBC(because
=1(r)+ lim fffl[‘B\Q(r' )d3r’1'(r—r’)P(r’). (7)  the truncation of solvent—solvent interactions largely reduces
p—0 n P

dipole—dipole correlations at large distanggwovided that
the vacuum field is only active over a small region within

The first term can be evaluated as ) X . ) .
this domain(which will be the case due to truncation of the

] 3, , ) solute—solvent interactionsSecond, the solute is assumed to
I(r)=1lim JJJ' AT T(r=r)P(r’) be nonpolarizable and the solvent to be represented by a
p—0 Q(r;p) . cr s
medium of homogeneous permittivity. Thus, the computa-
1 [ s . tional domain comprises two subdomains characterized by
" drme, lim JJL(O )d sVeVs = |P(r) different homogeneous dielectric permittivity values(pds-
0 7 sibly discontinoussolute subdomain of relative permittivity
_ -, . one, and a solvent subdomain of relative permittivéty.
=" a7 |limp JL . dos™ “s®s|P(r) Third, the problem is discretized by paving the computa-
olp=0 (©p) tional domain usingN grid cells, leading to piecewise-
1 - 1 constant representationg and E; (with i=1,...N) of the
=5 J désing cos 6|P(r)=— 3P0 vacuum and electric fields.
ol 0 ° Within these approximations, EQ) becomes
tS) 1
The second equality follows from inserting Edé) or (5), Ein=Viu— T‘TiEm
definings=r'—r, and noting that ap tends towards zero:
(i) The Heaviside function evaluates to one for any finite N S
Rss; (i) the contribution proportional to the unit tensor van- o 1)2}1 vj(1= )0 ;::1 Turi=1)Ej,,
ishes;(iii) P(r') may be approximated b(r) and factor-
ized from the integral. The third equality follows from ap- (1)

plying the gradient theorem and insertifgs 1= —s 3s. where theu andv indexes enumerate Cartesian components,
The fourth equality follows from observing that, due to sym-r; andv; are the center coordinate and volume of grid cell
metry, the off-diagonal elements of the tensor vanish uporhe exterior functions; evaluates to one if; is within the
integration, and that the diagonal elements are all equal. Theolvent subdomain and zero otherwise, and the matrix ele-
fifth equality follows from evaluating one of these diagonal ments of the dipole—dipole interaction teng&uqs. (4) or

elementgintegrands™ 252=co¢ 6) in spherical coordinates. (5)] take the form
z
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Trpecunr) C. Application to solvated spherical ions
3r,0,— 5wr2 as,, _ For a system consisting o_f a single spherical ion of.ra—
=1 H(Rgs—T) 5 R3 (12 dius R, and chargey, centered in the computational domain,
o SS the vacuum field corresponding to ion—solvent interactions
or described by the Barker—Watts scheffey. (2)] is given by
T r r ar
recul) o V(n= - H(R.s—n(r—g— R—g), (20
1 3rr,—8,,r° as,, 0 IS
= ——H(RgsT) =5 + =3 (13 . . . . .
Ame, r Rss whereRs is the ion—solvent cut-off distance. This equation
. . . . is valid under both NPBC and PBC, provided tHat is
Defining the 3 3N-dimensional matrb& as smaller than half the smallest dimension of the computa-
€s— tional box (which will be assumed from here pn
Aigjr=| 1+ =301/ 30, Because the ion is generally small compared to the size
of the computational domain, while the variations of the
—€o(€s— L)vj(1—=6;j) 0T, (ri— 1)), (14)  electric field within the solvent are typically largest close to

its surface, the accuracy of the results will depend crucially
on the detailed representation of the ionic surface. For this
AE=V. (15)  reason, two levels of grid resolution are used. First, a coarse

_ . grid of spacingA is generated, that covers the entire compu-
Because the size of the matexis generally very large, ta4iqnal domain(leading to grid-cell volumes,=A3). Sec-

it cannot be stored in memory and direct methods cannot bgy,q 5| cells of the coarse grid with their center closer than
used to solve Eq(15). Therefore, an under-relaxed Jacobi (,3/2)A from the surface of the ion are further discretized,

method is applied here to obtain successive approximate SPe.. they are replaced by a set of finer grid cells of edge
lutions for the discretized electric field. Given the approxi- — ,-1A "wheren is a positive integefleading to grid-cell

mate solutiorE™ at iterationk, the gridE™"™) at the next o mesgy, = 8%). Any grid-cell center of the finer grid that is

. . . 1 .

iteration is computed as closer thanR, from the ion center is discarded from the
EkD=g®_\D Y AEW -V), (16)  calculation(solute point. In this representation, the vacuum

potential at any grid point is evaluated in practice as
whereD is the diagonal matrix defined by the diagonal ele-

Eqg. (11) can be rewritten in matrix notation

ments ofA, and\ (with 0<\<1) is a relaxation parameter. _q (R ri ar 21
A reasonable initial guess f& is provided by the vacuum " 4me, (Ris=1i) 2 RY) 2D

field scaled by the solvent permittivity, i.e.,
©)_ 1 wherel (Ris—r;) represents the fraction of the grid cell lo-
EM=es V. (17 cated within the ion—solvent cut-off sphéfe.
After solving Eq.(15) for the discretized electric field,
sthe radial polarizatiorp(r) around the ior{Eq. (6)] can be
computed in the form of a histogram. To avoid artifacts

It is easily seen that a self-consistent solution of EH)
must satisfy Eq(15). In order to assess the convergence o
the numerical solution upon iterating, the resid{vath units

of an electric field linked with the use of two different grid spacings, this cal-
culation is based on a uniform grid 8F points obtained by

w0 =N oo (AEW —Vv),|2\ V2 partitioning all cells of the coarse grid into finer grid cells of

= ' (18) edge 6 sharing a common value of the electic field. Under

s vio . e
NPBC, the radial polarization is then computed as
is introduced as a measure of accuracy.
After solving Eq.(15) for the discretized electric field, Prnped M) = €o(€s— 1H(r = R))
the solvation free energy can be evaluateflEas (10); non-

polarizable solute S ow(r g, A E

= , (22
N Zi_oW(ri;ry,Ar)
AGeoy=~ sea(€s=1) 2, vioiVi B, 19 here
where Eq.(6) was used. Note that the solvation free energy  r . =(n+ })Ar, n=0,1,..Nmax (23
solely depends on the electric field within the solvent subdo-
main. Furthermore, due to the form of Ed4), the fieldE;  Ar being the histogram width, and
corresponding to a poiitin the solvent subdomain does not _
depend on the field; at any pointj within the solute sub- AP 1 if rp— zAr<r<r,+ 3Ar o4
domain. For this reason, increased computational efficiency w(rirn,Ar)= 0 otherwise. (24)

can be achieved by omitting all grid points of the solute
subdomain from the definition of the matixand the deter- Under PBC, the periodic copies of the central box must be
mination of the solution of Eq(15). taken into account and E€R2) is modified to
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Predln) = €o(es—LH(r,—R)) der NPBC used a sphere of radiSs-4.0 nm as computa-
tional domain. To ensure that this domain is large enough to
E|ez32 Lo W(ru L ADE B be representative of an infinite nonperiodic system, a number

E|E/32 10 W(r; it Ar) ' of single-ion and two-ion calculations were repeated V@th

=5.0 nm. The observed differences in solvation free energy
(29 were in all cases below 0.1 kJ mdlin magnitude.
with r; ;=r;+LI. In practice, the sum ovéris restricted to The method was first applied to solvated spherical ions.
vectors Wlth integer components in the rafgel malmad:  10NIC Solvation free energigdEq. (27)] and radial polariza-
ensuring a correct description of the polarization uprto tion histogramgEgs. (22) or (25) with Ar=0.025 nm and
=(Imaxt 1/2)L. These polarization histograms can be com-lma=2] were computed for all combinations of the follow-

pared to the idealCB/NPBQ Born polarizatiofi® ing parameters: ionic charge;=1 e, ionic radii R,
=0.2 nm(about the size of N&) or 0.4 nm(about the size
Peorn(T) = a &1 =2 (26) of CI7), cut-off radii Ris= Rss= Rc=0.8 or 1.2 nm, solvent

4 € permittivities e,.=2 (alkanelike solventor 78 (watep, «

Combining Eqs(19) and (21), the ionic solvation free =0 (ST schemgor 1 (RF schemg and NPBC or PBQwith
energy is evaluatetbased on the refined grid of pointy ~ L=2.6 nm). To validate the method, the results are com-
as pared with those of calculations employing other methods

" (Table )), namely:(i) 1D-Direct’?® (NPBC; bin size 0.005

nm, range 4.0 ninor (i) 3D-FFT®° (PBC; 180 grid points
AGgon=— gl 1)2 vioil (Ris=r;) along each Cartesian axis
The method was then used to investigate the effect of
r o ar; periodicity on ionic solvation free energies in systems with
X(ﬁ_ R_I’o’s) i (27 truncated electrostatic interactiofST or RB. To this end,

) ] ionic solvation free energies were computed under PBC us-
This value can be compared to the idé@B/NPBG Bom  jng the above combination of parameters, for cubic box
electrostatic solvation free eneffy edgeslL ranging from 1.6 nmR:=0.8 nm) or 2.4 nm R

. q|2 e—1 =1.2 nm) to 8.0 nm. The effect on periodicity can be quan-
AGIG=— Y Rt (28) tified by the relative periodicity-induced perturbation of the
[0} S

ionic solvation free energy(L), defined as
The application to two(or more spherical ions is

straightforward and only requires the following minor adap- AAGg, (L)

tations: (i) The quantityo; is zero(point discarded from the Y(L)=—rec—

calculation for all grid cells with centers located inside any AGgoly

ion, and one otherwisii) the vacuum fieldv [Eq. (21)] is _

expressed as a sum of contributions arising from each iorWith

(iii ) the solvation free energ¥ G, [EQ. (27)] is expressed

as a sum of contributions arising from each idiv) fine AAG(L)=AGEES(L)— AGNTEC, (29)
grids (spacings<A) are used to describe the close neigh-

borhood of all ions. Finally, the effect of cut-off truncatiofST or RF and

periodicity on the electrostatic solvation contribution

AGg,(d) to the potential of mean force for the interaction
1. COMPUTATIONAL DETAILS between two ions at distana® (under PBC, ions aligned
along an axis of the cubic unit cglivas evaluated for the
special case of chargeg,=*q;=1 e, radii R=R;
=0.4 nm, cut-off radiiRis= Rss= Rc=1.2 nm and for a cu-
coordinate systentsingle ion atz=0: two ions atz= bic unit-cell of edgel =6 nm (PBC). F_or validation, the re-
+d/2, whered is the interionic distande Taking advantage Sults under PBC were compared with those of calculations

employing the 3D-FF$° method(180 grid points along each

of the symmetry of the problem, the storage of the dis- _ : .
cretized vacuum and electric fields is only required for onecartesian axjs The corresponding overall electrostatic con-

quadrant &,y=0) of the computational domain. tribution AG¢(d) to the potential of mean force was also
After an evaluation of the convergence properties of theevaluated as

algorithm, a set of computational parameters was selected

and adopted for all subsequent calculations. The correspond- A Ge(d)=AGgq(d) +,q1aw(d), (30

ing values are as followgunless otherwise specifiedThe

spacings corresponding to the coarse and fine grids were sehered=d (NPBC) or d=min{d;L—d} (PBC), and ¢rgy is

to A=0.1 nm and5=0.025 nm, respectively. The relaxation given by Eq.(2) with «=0 (ST) or a=1 (RF). These pro-

parameterA was set to 0.4. The algorithm was terminatedfiles can be compared with the expected long-range behavior

when the residual® was either below 10° kJmol'!  of the electrostatic potential of mean force for a Coulombic

nm~1e ! or reached a minimum value. All calculations un- interaction between the ions, namely

The solution of Eq(15), restricted to the case of one or
two spherical ions, was implemented & C program. The
single ion or the two ions are placed on theaxis of the

Downloaded 13 Jun 2006 to 128.200.197.134. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 17, 1 November 2003 Cut-off and periodicity effects in simulations of ions 9135

convergence of¥ towardsr is associated with the simul-

_ »pa o--22=02, NPBC 1 taneous convergence aiG{) to a well-defined value
s\ A0, NPBC ] AGg,y, [Fig. 2(b) and Table 1. Because the values of both

£ o oo ra e the minimum residual and the associated converged solva-
IS B ot A=0.6, PBC ] tion free energy are essentially independent of the conver-
2 gence parametey, it appears that the method is nevertheless
T

able to produce accurate results for highvalues. This is
also supported by the observation that &r 2, values of
AGY, when 7W=3kImoltnm te ! typically differ
from the corresponding converged values 7\
<10 ®*kImoltnmte 1) by less than 1%(data not
shown).

-72.5

=775 -

z Although the convergence parameterdoes not influ-
%—é 825 | ence the final values afandAGg,, it has a strong impact
= 5 on the convergence rate. Feg=78, A=0.2 leads to slow
ors | N¥ ‘ . , . convergenceh=0.6 to slow convergence and oscillatory
0 P et e % evolution of AGY),, while the algorithm fails to converge

for A=0.8 (data not shown In practice, it was found that
FIG. 2. Convergence properties of the under-relaxed Jacobi algofEgm A=0.4is the optimal choice in this case, and is also adequate

(16)] used to solve Eq(15). The residuak-® [Eq. (18)] is displayed as a _ .
function of the number of iterationk (a), and the solvation free energy for €5=2 (althOUQh a somewhat Iarger values may Sllghtly

AGU), at iterationk [Eq. (27)] as a function of the corresponding residual accelerate convgrger}cé’his value was adopted for all sub-
7 (b). The system consists of a single spherical ion of chafgel eand ~ Sequent calculations.

radiusR,=0.4 nm in a solvent of permittivite,=78, and is either non- The rates of convergence to the minimunof ¥ ap-
periodic (NPBC; spherical domain of radit®=4.0 nm) or periodidPBC; pear to be very similar under NPBC or PBC, and for the RF

cubic unit cell of edgd.=2.6 nm). Electrostatic interactions correspond to .
the RF scheme, with cut-off radi;s=Rss=Rc=1.2 nm. Three choices of and ST(data not shownschemes. The final values of the

the Jacobi relaxation parameterare comparedfor NPBC, only the curve ~ r€sidual, however, are somewhat lower under NPBC com-

corresponding ta.=0.4 is displayed in@)]. pared to PBQTable II).
AGH(d)=AG2(q,,R)+AGS" (q;,R;) B. Single spherical ion
q,9; The radial polarizatiorp(r) around around a spherical
Are e -t (3)  ion [Egs. (22) and (25)] of chargeq;=1 e and radiusR,
o*s

on _ _ _ =0.4 nm in a solvent of permittivites= 78 is displayed in
whereAGg,,(q,R) is the solvation free energy of an isolated Fig. 3 for different choices of boundary conditions and treat-
ion of radiusR and chargey under NPBC when applying the ments of the electrostatic interactions based on a single cut-

specific electrostatic scheme. off Rc=1.2 nm. The polarization corresponding to the Born
modef® [CB/NPBC; Eq.(26)] or to the lattice-sum cagée S/
IV. RESULTS PBC; computed using the 3D-FFT metfi)dand the polar-

ization computed from the 1D-Direct metHdd® (ST,RF/
NPBC) are also displayed for comparison. For both the ST
The convergence properties of the under-relaxed Jacolsind RF schemes under NPBC, the agreement between the
algorithm[Eg. (16)] used to solve Eql5) are illustrated in  results of the 1D-Direct and of the present 3D-Direct meth-
Fig. 2 for a spherical ion of chargg =1 e and radiusR, ods is excellent over the whole range of distances. The only
=0.4 nm in a solvent of permittivites=78, based on the noticeable difference is the more progressive transition of
RF scheme with a single cut-off radil=1.2 nm and us- p(r) aroundRc in the 3D-Direct calculation for the ST
ing three choices of the relaxation parameteiResults for scheme, which is due to a significantly lower resolution and
the ST scheme are qualitatively very similédata not to the smoothing of the vacuum field at the ion—solvent cut-
shown. Within few iterations, the residuat®¥ decreases off distance[function| in Eq. (21)]. These curves, however,
from about 20 to values below 3kJmdinm e ! [Fig. differ significantly from the Born polarization, corresponding
2(a)]. Convergence to zero residual only occurs when theo the ideal situation of a spherical ion solvated by a non-
solvent permittivity e is smaller than about 10data not periodic Coulombic continuum of infinite extent.
shown. This limited convergence is probably related to the  For the ST case, the polarization curve is discontinuous
presence of a strong discontinuity in the system permittivityat the ion—solvent cut-off distand®s. The polarization be-
at the ion—solvent boundary in the case of high solvent pefow Rg is consistently larger than predicted by the Born
mittivities. For €5 values larger than about 10, the residualmodel, whereas the polarization above is smaller, although
reaches a minimum after a certain number of iteratityysi-  always positive. Underpolarization of the solvent ab&g
cally about 15-20 foh =0.4) and slowly rises again after- is easily understood since the solvent beyond this distance
wards. When this situation occurred, the algorithm was terdoes not feel directly the electrostatic field of the ion. How-
minated at the minimum value of the residual. However, ever, the solvent in this region reacts indirectly to the ionic

A. Convergence properties
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TABLE IlI. Solvation free energyA G, of a single spherical iofiEq. (27)] computed using the 3D-Direct
method(present article The system consists of a single ion of chacge-1 e and radiusR, in a solvent of
permittivity €5, and is either nonperiodiéNPBC; spherical domain of radit®=4 nm) or periodidPBC; cubic

unit cell of edgel =2.6 nm). Electrostatic interactions correspond to either the ST or RF schemes, with cut-off
radii Ris=Rss=Rc. For the RF scheme, the reaction-field contribution to the solvation free energy
[a-dependent term in Eq27)] is reported between parentheses. The converged vadiehe residual is also
indicated. The solvation free energie&Sy, corrected by the inclusion of a self-energy tdig. (B3)] are also
given. For comparison, the corresponding Born solvation free enelfigs(28)] are —342.9 (=78, R,
=0.2nm), —171.4 (=78, R=0.4 nm), —173.7 (=2, R,=0.2 nm), and—86.8 (¢=2, R,=0.4 nm)

kJ mol*.
R| RC T AGsc»lv AG;?)fIv AGgglr\Z

BC Interaction e, [nm] [nm] [kImolinmte '] [kImoll] [kImor!]  [kImol?]
NPBC ST 78 02 08 12 —284.8 —281.7 —370.5
NPBC ST 78 02 1.2 1.2 —306.3 —303.4 —363.4
NPBC ST 78 04 08 0.8 —100.9 —100.F —186.6
NPBC ST 78 04 1.2 0.7 —129.4 -128.8 —186.5
PBC ST 78 02 08 3.0 —-284.1 -280.2 —369.8
PBC ST 78 02 1.2 2.9 —301.0 —297.9 —355.0
PBC ST 78 04 08 2.0 —100.6 -102.4 —186.3
PBC ST 78 04 1.2 1.8 —125.3 —125.7 -182.4
NPBC RF 78 02 08 11 —217.0(37.0) —213.7(37.1] —345.6
NPBC RF 78 02 1.2 11 —259.2 (26.2) —256.3(26.4) —344.9
NPBC RF 78 04 08 0.6 —47.6(23.7) —46.8(23.7f —176.2
NPBC RF 78 04 1.2 0.6 —86.4(22.0) —85.8(22.2fy —172.1
PBC RF 78 02 08 2.8 —214.6 (35.8) —211.0(35.6] —343.2
PBC RF 78 02 1.2 2.9 —253.1(22.3) —249.5(22.5) —338.8
PBC RF 78 04 08 1.6 —475(22.9) —484(23.09 —176.1
PBC RF 78 04 1.2 1.6 —82.3(18.7) —82.3(18.8f —168.0
NPBC ST 2 02 08 0.0 —133.4 —135.2 —176.8
NPBC ST 2 02 12 0.0 —146.7 —148.3 —175.6
NPBC ST 2 04 08 0.0 —45.6 —46.48 —89.0
NPBC ST 2 04 12 0.0 —60.3 -60.8 —89.2
PBC ST 2 02 08 0.0 -133.1 —-135.¢ -176.5
PBC ST 2 02 12 0.0 —145.6 —147.8 —-174.5
PBC ST 2 04 038 0.0 —45.6 —46.3 —89.0
PBC ST 2 04 12 0.0 —-59.6 -60.2 —88.5
NPBC RF 2 02 08 0.0 —99.8(13.7) —101.0(13.8f —164.9
NPBC RF 2 02 12 0.0 —123.1(9.8) —124.4(9.8f —166.5
NPBC RF 2 04 038 0.0 —20.4(9.0) —20.6(9.1} —85.5
NPBC RF 2 04 12 0.0 —39.2(8.3) —39.5(8.4}% —82.6
PBC RF 2 02 08 0.0 —995(13.8) —100.9(13.8) —164.6
PBC RF 2 02 12 0.0 —122.4(9.5) —124.0(9.5y —165.8
PBC RF 2 04 08 0.0 —20.4(9.0) —20.7(9.1f —85.5
PBC RF 2 04 12 0.0 —38.9(8.0) —39.2(8.1 —-82.3
3Solvation free energieAG™! estimated from the 1D-Direct methgRefs. 27 and 2Bare given for compari-
son (ST,RF/NPBQ.
PSolvation free energie&Gg‘fjv estimated from the 3D-FFT methodRef. 60 are given for comparison
(ST,RF/PBG.

field through interactions with the polarized solvent within tial representgfor the solvent—solvent interactionthe cut-

the cut-off sphere of the ion, leading to the observed residuaiff-truncated polynomial of second ordé&erms inr~?! to
polarization. Inside the cut-off sphere of the ion, the solvent ) that leads to the best agreement between Born and effec-
is overpolarized because each solvent volume element onlyve polarizationg’?8 A number of additional results related
interacts with a fraction of the highly polarized solvent to this comparison are derived in Appendix A, namely tlgat
within the cut-off sphere of the ion. This partial interaction the RF/NPBC polarization converges to the Born polariza-
results in a bias of the solvent polarization towards the ion.tion in the limit Rig,Rgg—°; (ii) in the limit of small dis-

For the RF case, the polarization curve is continuous atances(compared toRc), the RF/NPBC polarization con-
Ris, although its derivative is not. The polarization is con-verges towards the Born polarizatiofiii) in the limit of
sistently smaller than the corresponding Born curve over théarge distanceécompared tdR:), the RF/NPBC polarization
whole range of distance, both below and abd¥%g. The becomes proportional 1o 2, just as the Born polarization.
difference between the curves is largest at distances close to For both the ST and RF schemes, the polarization curves
Ris, and becomes progressively smaller at either short ocorresponding to PBC are systematically lowierthe range
long distances from the ion. It has been shown that in thé?, to L) compared to the polarization under NPBC. The
limit of high solvent permittivities, the Barker—Watts poten- reason for this is that under PBC, the solvent in the reference
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05 —— T ergy becomes dramatically more importaht>®°’

04 N L ng/yggcgg:%yﬁcan 1 lonic solvation free energiex\G,,, computed for
o3l ST/NPBC (1D-Direct) i spherical ions with different parameter combinations, elec-
E ° ST/NPBC (3D-Direct) trostatic schemes, and boundary conditions are listed in Table
© 02 F « ST/PBC (3D-Direct) 1 ref . .
= . R, II. The values AGg, computed using the 1D-Direct
01 ¢ mmsann,t L2 L method”?8 (ST,RF/NPBQ or the 3D-FFT methd (ST,RF/

0 R R T o s Sreren s - PBO are also listed for comparison. Note that, while the

e ' | former values are certainly very accurate, the latter values

b -~ CBINPBG (1D-Analytcal) are probably subject to errors of a similar magnitude as the

0413 +LS/PBC (3D-FFT) ] present method. The agreement between the values com-
03 RF/NPBC (1D-Direct) . puted using different methods is in general very good. The
£ o RF/NPBC (3D-Direct) . . .

. 02 | « RF/PBC (3D-Direct) i average and maximal relative differences between the

Eo1l | present 3D-Direct and the reference values are 1.1% and
' t 1.9%, respectively. Not unexpectedly, these relative differ-
0 - ences tend to be somewhat larger forthe smaller ionic

04 06 08 1 12 14 ;-6] 18 2 22 24 26 28 radius, (i) the larger permittivity valueiii) periodic bound-
rinm .. . . .
ary conditions. The following observations can be mé&de:
FIG. 3. Radial polarizatiop(r) around a solvated spherical ifEqgs.(22) the solvation free energies are larger in magnitude for the
or (25)]. The system consists of a single ion of chagge1 e and radius  smaller ion and the larger permittivity value, in qualitative
R,=0.4 nm in a solvent of permittivites="78, and is either nonperiodic ; ; :
agreement with the Born modéij) the solvation free ener-
(NPBC; spherical domain of radi&=4.0 nm) or periodi¢PBC; cubic unit g | . . do f 1) h ISO 0 f |
cell of edgeL=2.6 nm). Electrostatic interactions correspond to either the91€S are larger 'r_] magmtu e for the larger cut-o Ya ue, a
ST (a) or RF (b) schemes, with cut-off radiRs=Rs=Rc=1.2 nm. In  consequence of including a larger amount of polarized sol-
addition to the results of the 3D-Direct meth@atesent articlg the analyti- vent within the cut-off sphere of the ioliji ) the solvation
cal polarization corresponding to the Born moff@B/NPBC; Eq.(26)] and fr nerai re more n ive for th T schem moar
the lattice-sum casfLS/PBC; computed using the 3D-FFT meth(Rlef. ee energies are more negative for the ST scheme compa ed
64)], and the polarization computed from the 1D-Direct metii@efs. 27 t[O the R’_: S_Cheme’ a consequence Ol_‘ the solvent overpolar-
and 28 for the specific interaction schem(&T,RF/INPBG are also pre- ization within the cut-off sphere of the ion for the ST scheme
Shenltfe‘é f°fd comparison T_hz_ Cugogf distance as well as the(Fig. 3) and of the inclusion of an additional positive term in
(half-)box edge(PBC only are indicated by arrows. the solvation free energy for the RF schefeedependent

term in Eq.(27); reported in Table Il between parentheses
unit cell is perturbed by its interaction with the solvent in (iv) the solvation free energies are larger in magnitude under
adjacent unit cellgitself polarized by the periodic copies of NPBC compared to PBC, a consequence of the periodicity-
the ion and, forr>L—R,g, with the periodic copies of the induced solvent depolarization within the reference unit cell
ion themselves. The consequences of these interactions aréfdg. 3); (v) the periodicity-induced perturbation of the sol-
depolarization of the solvent in the reference unit ¢etim-  vation free energy (NPBS PBC) is larger for the smaller
pared to NPBG, and the occurence of negative polarizationion, for the larger cut off, for the higher permittivity value,
values for the solvent in the neighboring unit cells. At largeand for RF compared to ST. The latter effect is a conse-
distances,p(r) displays an irregular oscillatory behavior quence of the larger periodicity-induced solvent depolariza-
with values close to zero at the location of the nearest neighion within the reference unit cell for the RF scheffég. 3).
bor ions(i.e.,L, v2L, V3L, . .. ; data not shown The depo- The values reported in Table Il are strongly cut-off-
larization of the solvent within the reference unit cell is dependent and compare poorly with the corresponding Born
slightly more important in the RF case compared to the STolvation free energies of-342.9 and—171.4 kJmol*
case, which is probably a consequence of the larger magn(<s=78, q,=1 e, R=0.2 or 0.4 nm or —173.7 and
tude of the residual solvent polarization abd®g observed —86.8 kJ mol! (es=2, ;=1 e, R;=0.2 or 0.4 nmi. As
in the RF/NPBC case. In both cases, however, the solverttiscussed in Appendix B, these large discrepancies could be
depolarization within the reference unit cell remains rela-reduced by the inclusion of a charge self-energy term into the
tively small because, due to the truncation of ion—solventotal electrostatic energy of the system. It is also suggested
interactions aR,g<L/2, dipoles in the reference unit cell do that such a self-energy term should be systematically in-
not interact directly with the periodic copies of the ion. Fi- cluded in the total electrostatic energy during molecular
nally, the polarization corresponding to the RF/PBC schemsimulations relying on effective cut-off-based electrostatic
is seen to agree reasonably well with the LS/PBC curve, théteraction functions to ensure the obtension of meaningful
difference being expectedly largest in the neighborhood o&nergies. In this context, a new definitifiag. (B4)] is pro-
the cut-off distance. There is, however, an important differ-posed for the electrostatic interaction energy in simulations
ence between the two schemes. When cut-off truncation ismploying the Barker—Watts reaction-field scheme.
applied, the solvation free energy only depends on the polar- The effect of artificial periodicity on the solvation free
ization in the rangdR, to R,s<L/2 [Egs.(10) and(20)] and  energy of a spherical ion computed using cut-off-ba&&t
the effect of periodicity on the ionic solvation free energy isor RF) electrostatics is illustrated in Fig. 4 for an ion of
expected to be relatively small. If this restriction is removedchargeq,=1 e, a solvent of permittivitye;="78, and for
(e.g., when nontruncated LS interactions are considetee  different values of the ionic radiuR, and cut-off radiusRc .
effect of artificial periodicity on the ionic solvation free en- The relative periodicity-induced perturbatiop(L) of the
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0 a — Based on all available data fet,=78, the constants in Eq.
ooz | o [nn';] [”"Zl | (32) evaluated tou=—2.203 andr=1.290 for the ST
ver 8;2 ?jg scheme, angh=—1.468 andr=0.715 for the RF scheme.
g 004 A48T 04 08 1 This behavior can be contrasted to the case of nontrun-
T oo o ] cated electrostatic interactions. In this case, the solvation free
A aRF 02 12 energy corresponding to CB/NPBC is given by the Born
0,08 RIS expressioff [Eq. (28)]. A corresponding analytical
1 14 18 22 28 3 expressio has been derived for the LS/PBC case, namely
. 1/2 [nm] 2 1L
st b . tspec_ A &1L
ry It:h::*‘iﬁq_ AGso = 8me, € (R * few
}é -15 | ‘*1‘.:“~B.i\‘\ i
é 25| 1\"'\. \L\‘"“\.o_ — _|_4_7T & Z_ﬁ & ’ L1 (33)
N “*\,\_* Ty 3L 45 | L ’
& 35+ -~ .
. i | | *“t\ﬂ with &gy~ —2.837 297. Thus, it follows from Ed29) that:
A 15 2 25 2 2 5
R| 4 R| 1677 R|
LR y(L)= T[EEW"" ?(T) s\ T | (34)

FIG. 4. Periodicity-induced perturbation of the solvation free energy of a ) .
spherical ion. The system consists of a single ion of chaggel e and  In this case, the evolution of(L) towards zero wher

radiusR, in a cubic periodic box of edge filled by a solvent of permittivity ~ >R, is in L', i.e., much slower than the exponential
€,=78. Electrostatic interactions correspond to either the ST or R':distance-dependence observed for cut-off-based schemes

schemes, with cut-off radiR;s= Rss= R . (a) Relative periodicity-induced . . _
shift y(L) in the solvation free enerd{eq. (29)], displayed as a function of [Eq. (32)]. For example, for an ion of radiug,=0.4 nm,

L/2. (b) Logarithm of minusy(L) amplified by Rc/R,, displayed as a (L) evaluates to—0.95 for L/2=0.4 nm, —0.19 for L/2
function of L/2R¢. The dashed lines corresponding to a least-squares fi=3.0 nm, and is above-0.1 for L/2>5.7 nm [compare

[over the interval/(2Rc)=0-2.5] corresponding to either the RF or the with the smaller magnitude and faster relaxation observed
ST schemes. for cut-off-based schemes in Fig(a]. This shows that the
application of a cut-off in the computation of ionic solvation
free energies by explicit-solvent simulation dramatically re-
ionic solvation free energhEqg. (29)] is displayed as a func- duces the system-size dependence of the calculated solvation
tion of L/2 in Fig. 4a). All curves converge to a limiting free energies compared to lattice-sum meth8ds>’ More
value of one wherlL/2>R., indicating that the solvation generally, cut-off truncatiofwith the possible inclusion of a
free energy under PBC indeed converges to its NPBC valutgaction-field correctionefficiently reduces the impact of
when the computational box becomes large compared to tHénite-size effects and artificial periodicity on the energies
cut-off radius. For example, the magnitudewfL) for L/2  and forces in any molecular dynamics simulation. However,
=4 nm is smaller than 10* for all parameter combinations this is at the expense of introducing oth@otentially more
considered. Wher./2 is only moderately larger thaR-,  harmfu) artifacts related with the cut-off truncation itself.
artificial periodicity causes a depolarization of the solvent
(Fig. 3) and a decrease in the magnitude of the solvation free
energy. As a consequencg(L) becomes negative. When
L/2=Rc, the solvation free energy is reduced by 2%—9%
compared to its NPBC value for the parameter combinations The electrostatic solvation free energy profiles
considered. In agreement with previous observatidiable ~ AGson(d) for a pair of monovalent spherical iotsame or
1), the relative periodicity-induced perturbation of the solva-0pposite charges, identical radii of 0.4 him a solvent of
tion free energy(i) increases in magnitude with increasing permittivity es=78 are displayed in Fig. 5 as a function of
ionic radius;(ii) increases in magnitude with increasing cut- the interionic distancel for different choices of boundary
off radius; (i) is larger for the RF scheme compared to theconditions and treatments of the electrostatic interactions
ST scheme. based on a single cut-oR:=1.2 nm. The PBC curves cor-
The different curves in Fig.(4) can be adequately rep- respond to ions aligned along an axis of a cubic unit cell of
resented by exponential functions. This is shown in Fig),4 edgeL=6 nm. The corresponding profiles computed using
where the quantity log[ — (Rc/R;)y(L)] is displayed as a the 3D-FFT metho (ST,RF/PBQ are also displayed for
function of L/(2Rc). The resulting data can be fitted by two comparison.
straight lines, corresponding to the ST and RF schemes, with AS expected, the curves corresponding to the NPBC case
linear correlation coefficientgover the intervalL/(2Rc)  Present a minimunimaximum) at ionic contact for ions of
=0 to 2.5 of —0.9998 and—0.9985, respectively. Thus, identical(opposit¢ charges, and asymptotically converge to
irrespective ofR, and R¢, the relative periodicity-induced @ common value for a given scheme. More precisely, in the

C. Interaction between two spherical ions

perturbation appears to be approximately of the form limit of large interionic distancegisolated iong AGg(d)
converges towards twice the solvation free enek@ys;, of

y(L)~— R 10¢ @R +v. 32  asingle ion QGgj,= —129.4 or—86.4 kJ mol ! for the ST

Re or RF schemes; see Table.lIn the limit d—0 (superim-
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FIG. 5. Electrostatic solvation free energy profilés,,(d) for a pair of FIG. 6. Electrostatic contributioh G(d) to the potential of mean force for
monovalent spherical ions. The system consists of two ions of Rdii a pair of monovalent spherical ions. The system consists of two ions of radii
=0.4 nm bearing identicafa and ¢ or opposite(b and d charges, and R,;=0.4 nm bearing identicala and ¢ or opposite(b and d charges, and
separated by a distanckin a medium of permittivitye;=78. It is either separated by a distanckin a medium of permittivityes=78. It is either
nonperiodic (NPBC; spherical domain of radiuS=4.0 nm) or periodic  nonperiodic(NPBC; spherical domain of radiuS=4.0 nm) or periodic
(PBC; cubic unit cell of edgé =6 nm; ions aligned with an axis of the unit (PBC; cubic unit cell of edgé =6 nm; ions aligned with an axis of the unit
cell). Electrostatic interactions correspond to either the&dnd b or RF(c cell). Electrostatic interactions correspond to either thé&and b or RF(c
and d schemes, with cut-off radRs=Rgs=Rc=1.2 nm. In addition to the ~ and d schemes, with cut-off radiR;s=Rss=Rc=1.2 nm. The ideal long-
results of the 3D-Direct methogbresent articlg the solvation free energies range limitAG!(d) is also presented for comparisfigq. (31)]. It is calcu-
computed from the 3D-FFT methd®efs. 51 and 60for the specific inter-  lated usingAG'%/\ = —129.4 (ST) or—86.4 (RF) kJ mol* (Table Ii).
action scheméST,RF/PBQ and the same value &f are also presented for
comparison.
artifact related to the use of truncated electrostatic interac-
tions. These profiles provide an explanation for a number of
; ; ion observations made in explicit-solvent simulations employing
posed ionk AGsqi(d) converges towards four imesGs, the ST scheme(i) The tendency for ion pairs with like

(zero for ions of identical(opposite charges. .
Under PBC, symmetry and periodicity constraints im_charges gtso “cluster at dlstances. close. to the cu.t-off
distance™®® (ii) the tendency for ion pairs of opposite

pose that the profile possesses a stationary poidt=dt/2 h ¢ id dist | o th t-off
and is symmetrical with respect to this point. This induces anarges 0 Yol islances - close o e cuko

difference between the NPBC and PBC curvesdan the Qistafnce?"‘tz"‘i'g_G(iii) the a:crtifif:ially ir;(i_rl?ase?"‘ogli;"sstgﬁi’t?
interval [0;L/2]. Within this range, the perturbation caused Ity of contact ion pairs for ons of like charges, .

by the introduction of periodicity is attractieepulsive for _('V) the art|f|c_|a||y decreeﬁ%g stability of contact pairs for
ions of identicallopposite charges. However, the magnitude fons of opposite chargés:* .

of the effect is very small. For example, the differences be- In the RF case, the profiles nearly present the expected

tween the values oAGg,(L/2) under NPBC and PBC is beh_avior, namely repulsiofattrgctiqr) for iof‘s of_like (op-.
only about 0.45 kJ mol* in magnitude for all cases consid- posite charges, except for a significant artifact in the neigh-

ered. Thus, in contrast to the case of lattice-sum metfiods, 0rn0od of the cut-off distance. For ions of like charges, a

artificial periodicity has very little influence on the solvation spurious minimum occurs just below the cut-off distances,

free energy profile for pairs of small monovalents ions in aWhIIe for ions of opposite charges, a spurious maximum oc-

solvent of high permittivity when cut-off truncation is ap- °|'S just above the cut-off distance. Although these artifacts

plied. Finally, the agreement between the present calcula{pight affect the populations of contact pairs for ions of like

; i ; i 9
tions employing the 3D-Direct method under PBC and thed’ opposite charges in simulations of ionic solutffi® the

3D-FFT methof is quite good, especially for the ST magnitude of these artifacts is limited compared to the ST

scheme. For the RF scheme, the agreement is slightly Worsg?hiTF’ n azjgr::-ementfwnh t;:r)]reylous ogiervstft‘?‘ﬁtgﬁ ST and
probably due to small differences in the application of arge distances irom tne lon, and for bo € an

boundary smoothing at the ion surface and ion—solvent cutt” schemes, thg '\.IP.BC profiles tend to be close to the ex-
off distance®® pected Coulombic limifEqg. (31)]. However, the exact agree-

The corresponding profiles for the overall electrostaticme_nt Is difficult to assess since po_sitive_deviations oceur,
contribution AG,(d) to the potential of mean forcEEq. WhICh are pro_bably related to the limited size of the compu-
(30)] are displayed in Fig. 6 as a function of the interionic tational domain.
distanced. At short distances, the curves corresponding t
NPBC and PBC are nearly identical. In the ST case, thoé/' CONCLUSION
curves present minim@gnaxima at contact and at the cut-off In the present study, continuum electrostatics was used
distance for ions of identicaloppositeé charges. The pres- to investigate the nature and magnitude of the perturbations
ence of an extremum at the cut-off distance is clearly annduced by cut-off truncation and artificial periodicity in
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explicit-solvent simulations of ions and ion pairs. To this The relevance of these observations can be appreciated
purpose, a new algorithm relying on finite integration wasby recalling the five sources of error related to the computa-
developed to solve the equations of continuum electrostaticson of ionic solvation free energies from explicit-solvent
based on truncate@and possibly reaction-field correcjed simulations relying on cut-off-based electrostatic interac-
solute—solvent and solvent—solvent electrostatic interactionsions: (i) Incorrect polarization of the solvent around the ion
under either nonperioditNPBC) or periodic(PBC) bound- due to truncatedand possibly modifiedelectrostatic inter-

ary conditions. This algorithm was tested and validated byactions;(ii) Cut-off- and system size-dependent perturbation
comparison with available method@®able |) whenever pos- of the solvent polarization due to artificial periodic boundary

sible. conditions;(iii) artifacts at the cut-off distance arising from
In the context of the solvation of a single spherical ion,the finite size of the solvent molecules, and related to the use
the main observations can be summarized as follows: of either a molecular or an atomic cut-offy) artificial heat-

L ) . ing during molecular-dynamics simulations due to the pos-
(A) The application of cut-off truncatiofunder NPBQ sible presence of discontinuities in the atomic forces;

significantly affects the solvent polarization around Yinaccuracy of the ion—solvent and solvent—solvent interac-
spherical ion(lcompared to the ideal Born resultith Y

straight truncatior{ST) of the interactions, the solvent tion funct|o_ns and paramete@orce fields. .
; . - . Only with the understanding of these five sources of er-
is overpolarized within the cut-off sphere of the ion and

underpolarized outside this sphere. When a reaction " and the design of appropriate correction schemes will it

: L . . be possible to obtain accurate ionic solvation free energies
field (RF) correction is applied, the agreement with the - . : . .
. PR from explicit-solvent simulations. The discussimnd cor-
Born (NPBC) or lattice-sum(PBC) polarization is sig- . .
o . . . . rection of the two first sources of error has been the focus of
nificantly improved, the deviations being largest in the

neighborhood of the cut-off distance. the present article. The third problem has been previously

H 2-75,77,78,9
(B) The introduction of artificial periodicity (NPBC discussed by a number of groups: Due to the

_.PBC) when applying cut-off-based electrostaticsf'mte size of solvent molecules, the solvent-generated poten-

leads to a depolarization of the solvent around the ion;[/I ZI a(t:;f:]iig)er:asblfe(ggd;:g; th(;ensﬂ]veattr:ce)rru ;Let-eof? rt]reu)r??z;?/on i
in the reference unit cell. This effect is caused by the Y y dep g

indirect (solvent-mediatedperturbation of the solvent applied on an atomic orona molecular batand in the
o o . latter case, on the choice of a molecular centatthough
molecules in this reference cell by the periodic copies

) T L the debate is not yet completely settled, a number of argu-
of the ion. The depolarization is more significant for ments suggest that molecular truncatibased on the center
the RF scheme compared to the ST scheme. 99

(C) The application of cut-off truncatiofunder NPBG de- of van der Waals interactions for a spherical moletiileep-
creases the maanitude of the ioni lvation f resents the appropriate method for evaluating the solvent-
gnitude of the ionic solvation free en 77,01+ -
,“*while a (generally

R . generated potential at the ion sf
ergy of a spherical joricompared to the ideal Bomn sizeable correction term must be applied if atomic trunca-
resul). The magnitude of this effect is highly sensitive pp

to the electrostatic schen@8T or RF and to the choice tion (or a lattice-sum methOd'lg; 'employed instead. The
. ; : . fourth problem, namely the artificial heating of molecules at
of a cut-off radius. However, as discussed in Appendix . . .
. distances close to the cut-off radius, may be alleviated by the

B, the problem could be largelythough approxi- . . . .
mately remedied in explicit-solvent simulations by the use of an effective truncated electrostatic interaction that is
P y continuously differentiable at the cut-off distance, together

systematic inclusion of an appropriate self-energy termWith atomic truncation. For example, the Barker—Watts

in the total electrostatic energy of the system. Alterna- . . . . o .
9y Y reaction-field interactiolf~2® causes very limited heating

tlvely,.an exact correction term. tp lonic solvg tion free provided that the permittivity of the solvent considered is
energies computed from explicit-solvent simulations

can be obtained by the application of the presemhigh and that arfunusual atomic-cut-off implementation is

continuum-electrostatics method under NPBC or of itsapphed. Finally, in rggard o the f|fth.problem, it should pe
: i 28 stressed that the derivation of force-field parameters for ion—
one-dimensional analdd:

(D) The introduction of artificial periodicity (NPBC solvent interactions based on experimental ionic solvation

. . __free energies makes little sense before the four other prob-
—PBC) when applying cut-off-based electrostatics . . o
. . . _—lems are solvedi.e., methodology-independent ionic solva-
causes a further decrease in the magnitude of the ionic . . -
; . tion free energies can be be obtained from explicit-solvent
solvation free energy. In contrast to lattice-sum . .
7 . e simulations.
methods,’ where this free-energy shift is important .
. . . In the context of the potential of mean force for the
even for relatively large system sizgsroportional to . . . . .
1 : : . interaction between two spherical ions, the main observa-
L™+, L being the edge length of the cubic unit ¢ethe . . )
) s . ; tions can be summarized as follows:
effect decays rapidly with increasing system siga®-
portional toR™* exp(—cL/R), R being the cut-off dis- (A) The application of cut-off truncatiotunder NPBQ in-
tance in the case of cut-off-based electrostatics. Here duces serious artifacts in the overall electrostatic con-

also, an approximate correction term was deril/ed. tribution to the potential of mean force for the interac-
(34)] that can be applied to correct ionic solvation free tion between two spherical ions. As previously
energies evaluated from explicit-solvent simulations observed in explicit-solvent simulations, these lead to
under PBC. spurious features in the radial distribution functions
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,é2,43

relative stability of the contact, solvent-separated and  P(r)=9(r)+ K(r,r")p(r")dr’
free ion pairs’®-424457.808 hege effects are reduced
(although not compleletly eliminate¢dy the applica- for r>R,, (A1)
tion of a reaction-field correction. ) i

(B) The introduction of artificial periodicity (NPBC toget_her withp(r) =0 for r<R, . The mhomogeneous_term
_.PBC) when applying cut-off-based electrostatics ap_g(r) is related to the vacuum field generated by the ion
pears to cause very small changes in the electrostatic q,
contribution to the (minimum-image potentials of 9(=7-
mean force for small monovalent ions in a solvent of
high permittivity. A rather weak periodicity-induced and the kerneK(r,r’) to the form of the solvent—solvent
perturbation was also reported in this case for latticeinteractions
sum methods! However, the causes of the limited

close to the cut-off distan and to artifacts in the es—1 frmss

€5 Jmax®, Ir—Rsd)

€s

-1 ar
_H(R|s_r)(r_2—§§), (A2)
IS

4 2 1\212 2rp2 2
overall effect are different. In the cut-off case, both theK(r )= (at2) r*+[Rss—(r")°]°—2r Rsst+ (r")“]
solvation free energy profile and the direct ion—ion in-" "’ 16r°R3g '
teraction are almost unaffected by periodicity. In the (A3)

lattice-sum case, both contributions are largely af-
fected, but the two perturbations nearly cancel eacrrari
other.

First, it is shown that in the limiR;g,Rgs—, the po-
zation defined by Eq(Al) converges to the Born polar-
ization [Eq. (26)]. Due to the form of Eq.(A2),

Explicit-solvent simulations of ion solvation and ion— Mg —«[9(1) ~ Peor(r)]=0. It is thus sufficient to prove
ion interactions are currently in progress to confirm the vathat the integral term in EA1) vanishes in the limit of an
lidity of the above considerations derived from a continuum-infinite solvent—solvent cut-off radius. In this limit, the lower
electrostatics analysis, and their compatibility with thebound of integration can be set Rys—r. Forr’ within the
results of simulations employing lattice-sum methods. interval Rgs—r to Rsstr, K(r,r’) is positive and possesses

a single maximum af’=(R3s+r?)Y2 with K(r,¥")=(a

+2)/(4Rs9. Assuming that the polarization is positive and
ACKNOWLEDGMENTS finite over the whole range of distand¢with a maximum
valueP), upper and lower bounds can be given to the inte-
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Rgs—r
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APPENDIX A: POLARIZATION IN THE S2rpKR(rT)=——Pg (A4)
BARKER-WATTS REACTION-FIELD SCHEME SS

which shows that the integral vanishes for any fimit@ the

As shown in Fig. 3, the. polarization corresponding to tr?elimit Rgs—. Thus, the BW/NPBC polarization converges
RF scheme under NPBC is very close to the correspondln% the Born polarization in the limit of large cut-off radii,

Born polarization, the deviation being largest at dISt‘fjmcesrrespective of the value af. This result is in particular valid

close to the cut off_ radius. l—_Iere, we derive a number O]Jfor the SP’ («=0) and RF @=1) schemes.
results related to this comparison, in the more general con- L o
. . . As a second result, it is shown that the polarization de-
text of the Barker—Watt@8W) interaction functiorfEq. (2)], . T
: fined by Eqg.(Al) converges to the Born polarization in the

namely that(i) the BW/NPBC and CB/NPB@Born) polar- L : - .
o : S : . limit of short distances wheiR,s=Rgs, provided thata
izations become identical in the limiR|g,Rgg— >, irrespec- : ; L

) . =2(es—1)/(2e5+1), i.e., when Eq.(3) is used withe
tive of the value ofe; (i) whenRis=Rss, the BW/NPBC  _ : itioH :

olarization converges towards the Born polarization at short. <. (20justed boundary conditiotis For r<min[Rs,Rss
b 9 b —R,], the Heaviside function in E4A2) can be omitted and

distances from the ion, provided that=2(e;—1)/(2e . N
+1); (iii) the BW/NPBC polarization, just as the Born po- fggkls\?grabggﬁié?] E?(Al) replaced byRss—r. Thus, one

larization, is proportional ta? at large distances from the

ion, provided thatv= (es+2)/(es—1). The latter results ob- e—1(q ([ _, ar
viously remain approximately valid for a solvent of high p(r)= E(r _R_3>
permittivity (e>1) whena is set to ongRF) or close to ° S
one. Rsstr . o
The derivations are based on continuum-electrostatics +JRssr K(r,r")p(r’)dr } (AS)

results presented in a previous artitié®and applied to the _
specific case of truncated electrostatic interactions corredsing the result
sponding to the Barker—Watts poten{iglg. (2)]. In this case

. L . SR Rsstr a+2 r
the radial polarization around a solvated spherical ion is a f K(r,r')(r")=2dr'= —— —5, (AB)
solution of the integral equation Rssr 3 Rgs
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0 — ‘ ; played as a function af 2 for the RF schemed=1), using

\ four different values of the cut-off radiu’:. The Born po-
larization is linear irr ~2 and corresponds to the diagonal of
the graph. Besides a small artifact close to the cut-off dis-
tance(only visible in the graph foRc=1.2 and 1.6 nmand

a slight offset(only visible in the graph foR-=1.2), the

-0.005 |

E ool P 1 ] curves are nearly indistinguishable from each other and from
< — --=- Re=2.0nm . the Born polarization. In the main graph, the differences be-
4 g8 Foszénm ] tweenp(r) and pgor(r) are displayed as a function of 2
T ol Sozf for the same values d®¢. In the short distance limifright
= o1 | 1 side of the graph convergence towards the Born polariza-
V4 tion is evident although slow. However, the differences are of
L S T rather small magnitude. For example, the relative difference
R ¢ om ] 1 at the surface of the ion[pgom(R))—P(R)1/Peor(R1),
0 1 > 3 ) 5 6 evaluates to 0.91, 0.29, 0.12, or 0.06% Ry=1.2, 1.6, 2.0
r m) or 2.4 nm. In the long distance limiteft side of the graph

. _2 . _
FIG. 7. Radial polarizatiop(r) around a solvated spherical ipgs.(22)] the approximate eVOIUtlon ofp(r) pBorn(r) can also be
compared to the Born polarizatidiEq. (26)]. The system consists of a ©OPserved. The maximal error in the polarization occurs ex-

single ion of chargey, =1 e and radiusk, =0.4 nm in a solvent of permit- ~ actly at the cut-off distance. Increasing the cut-off distance
tivity ;=78 under NPB(spherical domain of radius=10.0 nm). Elec-  rapidly reduces the magnitude of this error, the difference

trostatic interactions correspond to the RF scheme, with cut-off Rdii pBom(RC)_ p(Rc) evaluating to—0.021. —0.009. — 0.004

=Rgs=Rc=1.2, 1.6, 2.0, or 2.4 nm. The polarization is computed using the 5 B
1D-Direct method(Refs. 27 and 2B8for the specific interaction scheme —0.003e nm for RC_1'2' 1.6, 2.0, or 2.4 nm. These

(RF/NPBO. In the insetp(r) is displayed as a function of 2, while the ~ results indicate that for large-enough cut-off distances, the
Born polarizationpg,m(r) (not displayedlis a straight line corresponding to  RF/NPBC scheme provides an essentially correct representa-
the diagonal of the graph. In the main graph, the differete)  tion of the polarization around a spherical ion, in both the
~Paon(r) s displayed as a function of = short- and long-distance ranges.

one shows easily that the function satisfying E45) when
Ris=Rss and a=2(es—1)/(2e,+1) is the Born polariza-
tion [Eq. (26)]. Therefore, with this specific value of, the
BW/NPBC polarization will converge to the Born polariza— Here it is shown that when an effective cut-off-based
tion at short distances, irrespective of the cut-off values. Folnteraction function is used to handle electrostatic interac-
a solvent of high permittivity ¢>1), this result will remain  tjons in an explicit-solvent simulation, a charge self-energy
approximately valid wheme=1 (RF). term should be included into the total electrostatic energy of
As a third I'ESU":, it is shown that the polarization dEfiHEdthe System to ensure a fast convergence of ionic solvation
by Eq. (A1) possesses an ? dependence in the limit of free energies towards the Born result in the limit of large
large distancegjust as the Born polarizationprovided that  cut-off distances. Generalizing this observation to the case of
a=(est2)/(es—1). Forr=max{Rs,RsstR/], EQ. (A2)  more complex molecular systems, a new definitidy.
implies g(r)=0 and the lower bound in EqAL) can be (B4)] is proposed for the electrostatic interaction energy in

APPENDIX B: SELF-ENERGY TERM
FOR CUT-OFF-BASED INTERACTION FUNCTIONS

replaced byr —Rss. Thus, one looks for a solution of simulations employing the Barker—Watts reaction-field
€s—1 [r+Rss scheme.
p(r)= f K(r,r")p(r’)dr’. (A7) Consider an effective cut-off-based electrostatic interac-
s Jr-Rss tion function where the potential generatedraby a unit
Using the result charge at the origin is given by
r+R.
f () -2dr = 22 (A8) (F) = ——H(R=1)[F 14 J(r)], (B1)
f~Res 3 41e,

one shows easily that the function satisfying E4§7) when ~ WhereR is the cut-off radius, chosen smaller than half the
a=(es+2)/(es—1) iscr™?, wherec is a constant. There- smallest dimension of the computational box. It is further
fore, with this specific value of, the BW/NPBC polariza- assumed thati) the interaction function vanishes atR,
tion will possess a ~2 dependence in the limit of large dis- i.e., #(R)=0, (i) ¥ is a sum of terms of the for® ™' ~*r'
tances. For solvent of high permittivitieg£>1), this result  with =0, and(iii) the polarization around a spherical ion
will remain approximately valid wheaw=1 (RF) or whena  converges to the Born polarizatifkqg. (26)] in the limit of
is given by Eq.(3) with € = ¢ (adjusted boundary condi- an infinite cut-off distance. For example, as shown in Appen-
tions). dix A, the Barker—Watts interaction functidizg. (2)] satis-
The above observations are illustrated in Fig. 7 for thefies the three conditions irrespective of the valueaofin
case of an ion of radiuR,= 0.4 nm immersed in a solvent of fact, there is some hint that the form of E@®1) and the
permittivity e;=78. In the inset, the polarizatiqu(r) is dis-  second condition automatically imply the third dife.
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Under these assumptions and for large-enough cut-off
distances, the polarization within the cut-off sphere of an ion UBWZE L 2 i a9 Yaw(rij)
should be quite close to the Born polarizatisee Fig. 8) T j>i,jeexcl()
for the RF schemk Using the Born polarization as an ap- 1
proximation in this case, one may estimate the corresponding + Ame,
ionic solvation free energy. Combining EGLO) with V(r)

=—q,V¢(r) and Eq.(26), one obtains the approximate ex- 1.
pression 3 Yew(0)

) Qqu'TPBW(r_ij)

2 q?—esl(Z qi)z

whererj; is the minimum-image vector corresponding to,

] : (B4)

a7 es—1 (R r excl(i) denotes the exclusion list of atom(the distance
AGSO"ﬁﬁ €s Rldr47TF'V'/’(r) between any two excluded atoms is assumed to be smaller
thanR), and

:q_fss—l[ (R)— #(R))] ar?  a+?2

2 e TR Veu(1)=2R8 " 3R (89

2
—AGn.. — i &1~ R B2 with « defined by Eq(3). Note that current simulation pro-
- Born lﬁ( I)u ( ) 2 . .
8me, € grams(e.g.,GROMOS? and GROMACS”) typically restrict the

implementation of the Barker—Watts reaction-field method to
the first term in Eq(B4). The second term is explicitly in-

where we used/(R)=0 and inserted Eq28). In the RF . .
case, estimates based on this equation can be Comparedc.tchde(—:‘d here because so-called excluded neightizsally

. . B first and second covalent neighbpssiould only be excluded
the data in Table II. For example, fat=78, q;=1 € R 0 ihe symmation of the Coulombia ) contribution,
=0.2 nm andR,s=Rss=1.2 nm, Eq.(B2) [using Eg.(2) L~ L
with a=1] gives an estimate of 258.0 kmof (includ- but nqt of the reaction-fieldg) contrlbu_tlon. Th_e form of
ing 27.8 kImol* for the a-dependent contributionto be the third term has been chosen for conS|stenc3_/ in the context
compared with the numerical value 6f259.2 kdmot ! (in- of sm.aII moleculegcompared to the cut-off radius and_umt—
cluding 26.2 kImol® for the a-dependent contributiorin ~ C€ll Siz8. For a small moleculéor ion) gathered by period-
Table Il. If ¥ is a sum of terms of the forrR~'~*r' with | icity around its centen,; can be replaced by; in Eq. (B4)

~ ) ~ ) o and the Heaviside function involved ifig,, can be omitted.
=0, y(R,) can be approximated hy(0) in the limit of large

- ) \ In this case, the reaction-fiel@ilon-Coulombi¢ contribution
cut—qff radu and.small ions. In this case, HB2) shows tha_t _ contribution toU g, can be written
the ionic solvation free energy computed from an explicit- X
solvent simulation employing a cut-off-based interaction ; 1 @ , & 1o
function will converge significantly faster towards the Born UBW_87TEO 532. ; Gidrij €s Yew(0) Z G
result upon increasing the cut-off distance if a self-energy (B6)

term of the form
erm ot the 1o For a neutral molecule, one has

@ a1 O
AGeer=g-— —— W0), (B3) Bmeo R
o whereu is the molecular dipole moment, which matches the
Onsager expression for a dipole in a spherical ca¥ipyo-
is included in the electrostatic energy of the system. Note&jided that adjusted boundary conditidns = & in Eq. (3)]
that AGgs converges towards zero in the linRt—. How-  are applied. For a monoatomic ion, one mb&',e“:AGse”,
ever, because this term is generally large and converges onjy, the self-energy term suggested by B8). Note that the
asR™1, its inclusion makes a significant difference even for|ast term in Eq.(B4) only affects the energy of the system,
relatively large cut-off radii. but does not induce atomic forces. However, it may be es-
Generalizing this observation to more complex molecu-sential to include it in free-energy calculations involving al-
lar systems suggests that a charge self-energy term should fgations of the atomic partial charges.
included in explicit-solvent molecular dynamics simulations In the specific case of a single ion, the inclusion of such
employing any effective cut-off-based electrostatic interaca self-energy term should substantially reduce the error on
tion function. Intuitively, this term may be interpreted as thejonic solvation free energies computed from explicit-solvent
reversible work required to individually charge the atomssimulations with finite cut-off distances. This can be seen

when they are at infinite separation. This work excludes thgrom the corresponding corrected valuaG o= AG,,

(infinite) Coulombic self-energy, but retains the contribution + AGyreported in Table II. In the RF case, taking the same
arising from the non-Coulombic term associated wjthin example as abovee(=78, ;=1 e, Rj=0.2 nm andRg
Eg. (B1). =Rgs=1.2 nm),AGE%™ evaluates—342.9 kJmol %, to be

solv

In the specific case of the Barker—Watts reaction-fieldcompared with an estimateGSo[, of —344.9 kamoft. The

method[Eq. (2)], a reasonable expression for the total elec-corresponding estimate for the ST case§63.4 kJ mof'?, is
trostatic energyJgy could be significantly less accurate. This is probably due to the poorer

(B7)
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