Correlation between chemical structure and functional properties of organosilicon plasma polymers and Si02-like films Lenka Zajíčková1, Vilma Buršíková1, David Trunec1, Václav Pekař1, Vratislav Peřina2, Romana Mikšová2, Daniel Franta1 1 Department of Physical Electronics Masaryk University, Brno, Czech Republic 2 Institute of Physics, AS CR, Praha, Czech Republic lenkaz@physics.muni.cz 1 -00.0 Motivation Experimental Variety of materials Temperature Induced Changes Conclusion • Motivation • Experimental • Variety of materials • Temperature Induced Changes • Conclusion 1 -00.0 Hexamethyldisiloxane (HMDSO) - versatile starting material for PECVD: HMDSO o o source of Si-O-Si bonds (especially for HMDSO/O2) PECVD in low pressure rf capacitively coupled discharges (CCP) - variety of different materials can be prepared when using the mixture of HMDSO/O2 in varying deposition conditions: ► percentage of HMDSO in HMDSO/O2 pressure p rf power P *■ dc self-bias Ub (in relation with P and p) source of Si-C bonds © / \ © How these materials react to annealing? PECVD using HMDSO at atmospheric pressure: competition with low pressure process in achievement of silica-hard coatings Will help an increased deposition temperature? Motivation Experimental Variety of materials PECVD in low pressure rf CCP from HMDSO/02 Experimental etwee Variety of materials Temperature Induced Chai variation of HMDSO % in the mixture • variation of QQ2 at the fixed Qhmdso = 4 seem decrease of HMDSO % (expecially for 5-8 %) => decrease of ion energy flux 350 300 250 200 150 100 50 increase of pressure > 5 10 15 20 25 30 pressure [Pa] ■ 10 Pa (100%) 2 0 Pa (44%) 4 4 Pa (17%) • 26.6 Pa (8%) 100 200 300 400 500 P(W) 1 -00.0 Zajíčková etai. Plasma Sources Sei. Technol. 16 (2007) S123 Zajíčková etal. Surf. Coat. Technol. 142-144 (2001) 449, Zajíčková etat. Plasma Sources Sei. Technol. 16 (2007) S123 Variety of materials Temperature Induced Changes 5% HMDSO, effect of pressure P Qhmdso Q02 P Uh Si(%) Q(%) C(%) H(%) (Pa) (seem) (seem) (W) (V) 25 43 10 22 40 4 80 100 -20 23 56 1 20 2.5 0.7 14 100 -120 1000 1500 2000 2500 3000 wavenumber (cm1) nduce Annealing induced changes in Si02-like films deposited in low pressure (2.5 Pa) CCP from 5% HMDSO/02 Improvement of mechanical properties of SiC>2-like films deposited in atmospheric pressure dielectric barrier discharge (DBD) by slight increase of deposition temperature Improvement of mechanical properties of SiOxCyHz film deposited in CCP from 8% HMDSO/02 at 450 W by annealing Annealing experiments for the films deposited in CCP from HMDSO-rich mixtures (17, 44 and 100% of HMDSO) Temperature Induced Changes 5 % HMDSO, 2.5 Pa / Si02-like film in CCP q_ (3 12 10 140 •ro 120 cl CD X 100 Hi 80 5% HMDSO/02 P = 100W, U : 2.5Pa, -120V ■ as depos —'-500°C 0.2 0.4 0.6 0.8 1.0 1.2 1.4 indentation depth (|jm) CL C3 T3 10 -d— = 800nm- indentation induced delamination 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 relative indentation depth Originally: compressively stressed film with good fracture toughness Annealing: slight stress relaxation due to annealing decrease of hardness induced by stress relaxation compensated by creation of new Si-O-Si bonds instead of Si-OH ■0 0.0 Motivation Experimental Variety of materials Temperature Induced Changes 5 % HMDSO, 2.5 Pa / Si02-like film in CCP Townsend-like (homogeneous) discharge at 6 kHz max. power 10W/cm3 discharge gap of 0.5 mm upper electrode covered by Simax (1.5 mm thick) bottom covered by glass substrate or glass plate (1mm thick) with Si substrate substrate temperature 23-150 °C HMDSO / synthetic air / nitrogen 6 seem of N2 6slm of synthetic air 6 or 16sccm of air through liquid HMDSO 6seem => 70ppm of HMDSO, 200 ppm of 02 in N2 16seem =^ 173 ppm of HMDSO, 532ppm of 02 in N2 Variety of materials q_ o cd c T3 glass 6/6/ 25 50 75 100 125 150 temperature (°C) ron Si subs. 60 6sccm of air Si -'1 cd O) 50 -------0 ra • c "c 40 --------h cd O 30 cd Q. 20 o E 10 ...... o n 25 50 75 100 125 150 temperature (°C) o a 2.0 1.8 o -S 1.6 >. 1.4 "tri c 1.2 CD "O 1.0 0.8 Temperature Induced Changes density molar density on Si subs. - IL 25 50 75 100 125 150 temperature (°C) 0.20 E ü 0.15 ö E, 0.10 >. m c cd 0.05 X3 ns 0.00 mol 1500 2000 2500 3000 3500 wavenumber (cm" ) Trunec etal. J. Phys. D 43 (2010) 225403 4 □ ► 4 3 ► 4 Motivation Experimental Variety of materials CCP 450 W, 8 and 17% HMDSO Temperature Induced Chai 8% HMDSO: p = 26.5Pa, Ub 17% HMDSO: p = 4.5Pa, Ut 12 : Critical depth for indentation induced crack initiation in /^m: -100V -250V co q_ q_ CD 6 - 1- 8% HMDSO -17% HMDSO 80 70 60 50- 100 200 300 T(°C) 400 500 %/ T(°C) - 300 350 400 500 8 17 0.34 > 1 0.42 > 1 0.44 > 1 0.45 > 1 > 1 0.46 q. C3 0.2 0.4 0.6 indentation depth (|jm) 1 -00.0 Motivation Experimental Variety of materials CCP 450 W, 8 and 17% HMDSO as deposited: Temperature Induced Chai % 8% 17% Si 22 20 o 47 37 c 5 11 H 25 32 -8%, 5.5 GPa 17%, 9.0 GPa as deposited 0.2 0.1 0.0 2200 2400 2600 2800 3000 3200 4 500 1000 1500 wavenumber (cm"1) % HMDSO T(°C) O/Si H/Si C/Si 8 - 2.12 1.12 0.24 8 300 1.94 0.81 0.29 8 500 1.93 0.55 0.21 17 - 1.85 1.60 0.56 17 300 1.79 1.37 0.57 17 500 1.99 1.01 0.57 O 0.12 "%0.10 P(g/cm ) 0 300 500 0 300 500 temperature (°C) 0.2 0.1 E 0.0 O 4 3 a 2 •1 1 0 2300 2800 3000 3200 3400 3600 1.2 1.0 0.8 E o 0.6 o 0.4 s 0.2 0.0 500 1000 1500 wavenumber (cm"1) 8%, 450W 1620-1610 1710cm"1 2260cm"1 1650 2500 3000 3500 wavenumber [cm"1] ■0 0.0 Motivation Experimental Variety of materials Temperature Induced Changes CCP 450 W, 44 and 100% HMDSO » 8% HMDSO 44% HMDSO Chmdso (%) 8 17 44 100 -■-17% HMDSO 100% HMDSO p(Pa) 26.5 4.5 2 1 16,- Uh (V) -100 -250 -300 -335 q_ O TO CL CD 6-140 : 120 100 LU 80 60- 0 100 200 300 400 500 T(°C) 10 q_ c "O 100% HMDSO, 1Pa 450W, -335V ^ 2 0.0 - as deposited 350°C 400°C 500°C 0.1 0.2 0.3 relative indentation depth 100 and 44% films are compressively stressed but the hardness does not decreases with annealing temperature fracture toughness is not as good as for 8 and 17% films and does not improve with annealing 1 -00.0 Motivation Experimental Variety of materials Temperature Induced Changes CCP 450 W, 44 and 100% HMDSO ^hmdso T(°C) Si (%) O (%) C (%) H (%) O/Si C/Si H/Si 44% - 15 18 28 39 1.2 1.9 2.6 44% 500 14 20 31 35 1.4 2.2 2.5 100% - 17 9 32 42 0.5 1.9 2.5 100% 500 20 7 39 34 0.4 2.0 1.7 1.5 1.0 0.5 E 0.0 -44%, 10.8 GPa 100 %, 12.5 GPa o 2000 2500 3000 3500 4000 as deposited 500 1000 1500 wavenumber (cm" ) 1.5 1.0 0.5 2130cm 2235cm"1 -44%, 14.3 GPa 100%, 14.2 GPa o 2000 2500 3000 3500 4000 500 1000 1500 wavenumber (cm" ) Qimdso T{°C) q (g/cm3) qm (mol/cm3) 44% - 1.8 0.17 44% 500 1.8 0.16 100% - 1.8 0.17 100% 500 1.8 0.15 Motivation Experimental CCP100 and 300 W, 44% HMDSO: 100% HMDSO: 100W 100W Variety of materials 300W 300W co q_ C3 10r 8 6 4 2 80 ro 60 ■ q_ e> 40- LU~ 20-0- 0 100 200 300 400 500 T(°C) Films deposited at 300 W were not stable => peeled off when not annealed Temperature Induced Chai Self-bias Ub for 44 and 100% HMDSO/02 (2 and 1 Pa) at different rf powers: P (W) / chmdao (%) 44 100 100 -120 -145 300 -230 -270 450 -300 -335 100% HMDSO film is soft polymeric material which hardness can be slightly increased by annealing and significantly improved by increased rf power. 100 W, -145 V 200 W, -215 V 450 W, -335 V 1000 2000 3000 4000 wavenumber [cm"1] ■0 0.0 Motivation Experimental Variety of materials Temperature Induced Changes CCP 100W, 44 and 100% HMDSO ^hmdso T(°C) Si (%) O (%) C (%) H (%) O/Si C/Si H/Si 44% - 15 20 17 48 1.3 1.1 3.2 44% 500 15 25 20 40 1.7 1.3 2.7 100% - 12 18 21 49 1.5 1.8 4.1 100% 500 12 19 22 47 1.6 1.8 3.9 1.5-1.0-0.5- 0.0^ 2000 -44%, 3.5 GPa -100%, 1.8 GPa A 2500 3000 3500 4000 as deposited 500 1000 1500 wavenumber (cm1) 2176cm |2232cm-1 1.5 1.0 0.5 0.0 2000 2500 3000 3500 4000 44%, 4.5 GPa 100%, 3.3 GPa 500 1000 1500 wavenumber (cm"1) Qimdso T{°C) Q (g/cm3) giA (mol/cm3) 44% - 1.4 0.14 44% 500 1.4 0.12 100% - 1.2 0.13 100% 500 1.3 0.14 Variety of materials Temperature Induced Changes Understanding of the changes in film mechanical properties (because of different deposition parameters or annealing) requires complete study of the film composition, chemical bonds and film density. Thermal desorption spectroscopy is advantageous. Molar density increased with increased deposition temperature of APTD films and decreased with annealing temperature of CCP films. Significant hydrocarbon desorption observed only for increased deposition temperature of APTD-SiOxCyHz films. For CCP films, carbon desorption detected only for annealing of SiCVIike film (5% HMDSO, 2.5 Pa) - rather decrease of C02 than CHX. Desorption of -OH and -H more important. Annealing of compressively stressed CCP films led to their stabilization due to stress relaxation. Annealing of hard compressively stressed films (either SiOx:H or SiOxCyHz) did not decrease but increase the hardness - stress relaxation is compensated by cross-linking of material, i.e. replacing the end-groups (Si-OH, Si-H, C=0) by new strong bonds. 1 -00.0