HOMEWORK 2 - 2017

Exercise 1. Given the short exact sequence of Abelian groups

$$0 \longrightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 0$$

the following conditions are equivalent:

- (1) There exists $p: C \to B$ such that $j \circ p = id_C$.
- (2) There exists $q: B \to A$ such that $q \circ i = id_A$.
- (3) There are p, q as above such that $i \circ q + p \circ j = id_B$

We have shown that $(2) \Rightarrow (1)$ and (3). Prove that $(1) \Rightarrow (2)$ and (3)

Exercise 2. For the short exact sequence od chain complexes

$$0 \longrightarrow A_* \stackrel{f}{\longrightarrow} B_* \stackrel{g}{\longrightarrow} C_* \longrightarrow 0$$

there is a long exact sequence of homology groups

$$\dots \longrightarrow H_{n+1}(C_*) \xrightarrow{\partial_*} H_n(A_*) \xrightarrow{f_*} H_n(B_*) \xrightarrow{g_*} H_n(C_*) \xrightarrow{\partial_*} H_{n-1}(A_*) \longrightarrow \dots$$

(1) We have defined connecting homomorphism ∂_* by the prescription

$$\partial_*([c]) = [a]$$
, where $\partial c = 0$, $f(a) = \partial b$, $g(b) = c$.

Prove that the definition is independent of the choice of c in the homology class in $H_n(C_*)$.

- (2) Prove the exactness in $H_n(C_*)$.
- (3) Prove the exactness in $H_n(A_*)$.