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Exercise 1. Prove the following equalities (assuming some conditions):

H̄∗(X ∨ Y ) = H̄∗(X)⊕ H̄∗(Y )

H̄∗(
n∨
i=1

Xi) =
n⊕
i=1

H̄∗(Xi)

H̄∗(
∞∨
i=1

Xi) =
∞⊕
i=1

H̄∗(Xi)

Solution. Denote z the distinguished point of X ∨ Y . For the pair (X ∨ Y,X) we have the
following long exact sequence

· · · → H̄i+1(X ∨ Y,X)
0−→ H̄i(X)→ H̄i(X ∨ Y )→ H̄i(X ∨ Y,X)

0−→ H̄i−1(X)→ · · · .

Thus we have short exact sequence, which splits, because we have continuous (cts) map
id∨constz : X∨Y → X (which maps Y to z). Thus we have H̄∗(X∨Y ) ∼= H̄∗(X)⊕H̄∗(X∨
Y,X). Now it remains to prove H̄∗(X ∨Y,X) ∼= H̄i(Y ). If X ∨Y is a CW-complex and X
its subcomplex, it is known that H̄i(X ∨ Y,X) ∼= H̄i(X ∨ Y/X) = H̄i(Y ). More generally,
let U be some (su�ciently small) neighborhood of z in X. From excision theorem we have:

H̄i(X ∨ Y,X) ∼= H̄i

(
X ∨ Y r (X r U), X r (X r U)

)
= H̄i(U ∨ Y, U).

Because U should be1 contractible, H̄i(U ∨ Y, U) ∼= H̄i(Y, z) = H̄i(Y ).
The second equality we get from the �rst by induction.
Let us prove the third equality. Denote Yn = X1 ∨X2 ∨ · · · ∨Xn and Y =

∨∞
n=1 Yn and

denote z the distinguished point of Y and Yn for every n. We have the following diagram
(where each arrow is an inclusion):

C∗(Y1, z)

''

// C∗(Y2, z)

��

// · · ·
yy

C∗(Y, z)

Since ∆k is compact, every continuous (cts) map ∆k → Y has image in some Yn, thus it is
easy to prove C∗(Y, z) = colimC∗(Yn, z), thus

H̄∗(Y ) = colim H̄∗(Yn) = colim
n⊕
i=1

Xi =
∞⊕
i=1

Xi.

1It is true at least for X locally contractible. It is not true generally.
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Let X be a topological space with �nitely generated homological groups and let Hi(X) =
0 for each su�ciently large i. Every �nitely generated abelian group can be written as
Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸

k−times

⊕Tor , where Tor denote torsion part of the group. The number k is

called the rank of the group.
Euler characteristic χ of X is de�ned by:

χ(X) =
∞∑
i=0

(−1)i rankHi(X)

Example. We know Hi(S
n) =

{
Z, i = 0, n

0, otherwise.
Thus χ(Sn) = 1− (−1)n.

Exercise 2. Let (C∗, ∂) be a chain complex with homology H∗(C∗). Prove that χ(X) =
χ(C∗), where

χ(C∗) =
∞∑
i=0

(−1)i rankCi.

Solution. We have two short exact sequences:

0→ Zi ↪→ Ci
∂−→ Bi−1 → 0

0→ Bi ↪→ Zi → Zi/Bi = Hi → 0,

where Ci, cycles Zi and boundaries Bi are free abelian groups, thus rankCi = rankZi +
rankBi−1 and rankHi = rankZi − rankBi. Thus we have

χ(C∗) =
∞∑
i=0

(−1)i rankZi +
∞∑
i=0

(−1)i rankBi−1

=
∞∑
i=0

(−1)i rankZi −
∞∑
i=0

(−1)i rankBi = χ(X).

Let X be a topological space with �nitely generated homological groups and let Hi(X) = 0
for every su�ciently large i. Let f : X → X be a continuous map. Map f induces ho-
momorphism on the chain complex f∗ : C∗(X) → C∗(X) and on the homologiy groups
H∗f : H∗(X) → H∗(X), where H∗f(TorH∗(X)) ⊆ TorH∗(X). Thus it induces homomor-
phism

H∗f : H∗(X)/TorH∗(X)→ H∗(X)/TorH∗(X).

Since H∗(X)/TorH∗(X) ∼= Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
rankH∗(X)

, map H∗f can be written as a matrix, thus we

can compute its trace. So we can de�ne the Lefschetz number of a map f :

L(f) =
∞∑
i=0

(−1)i trHif.
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Similarly to the case of the Euler characteristic, it can be proved that2

∞∑
i=0

(−1)i trHif =
∞∑
i=0

(−1)i tr fi.

Theorem. If L(f) 6= 0, then f has a �xed point.

Exercise 3. Use the theorem above to show, that every cts map f on Dn and RP n where
n is even has a �xed point.

Solution. We know that that Hi(D
n) =

{
Z, i = 0

0, otherwise.
Because H0f : H0(D

n) ∼= Z →

Z ∼= H0(D
n) can be only the identity, we have L(f) = 1, thus f has a �xed point.

Since Hi(RP n) =


Z, i = 0,

Z/2, i < n, i odd;

0, otherwise,

and Z/2 is torsion, we have L(f) = 1 as in the

previous case.

Exercise 4. Let M be a smooth compact manifold. Prove, that there is a nonzero vector
�eld on M if and only if χ(M) = 0.

Solution. We will prove only implication ⇒. Let v be a nonzero vector �eld on M . De�ne
a map X : [0, 1] × M → M which satis�es Ẋ(t, x) = v(X(t, x)) for every x ∈ M and
X(0, x) = x. There exists t0 such that X(t0, x) 6= x. Denote f(x) = X(t0, x), thus f has
no �xed point, thus L(f) = 0. Because f is homotopic to id and trHiid = rankHi(M), we
get from homotopy invariance 0 = L(f) = L(id) = χ(M).

Exercise 5. Use Z/2 coe�cients to show, that every cts map f : Sn → Sn satisfying
f(−x) = −f(x) has an odd degree.

Solution. The map f induces a map g : RP n → RP n, since f({x,−x}) ⊆
{
f(x),−f(x)

}
.

We have the short exact sequence3

σ � // σ1 + σ2
� // 2σ = 0

0 // C∗(RP n,Z/2) // C∗(S
n,Z/2) // C∗(RP n,Z/2) // 0,

where σ : ∆i → RP n is an arbitrary element of C∗(RP n), σ1, σ2 are its preimages of a
projection:

Sn

��
∆i

σ1,σ2
66

σ
// RP n

2fi : Ci(X)→ Ci(X)
32σ = 0 because of the Z/2 coe�cient.
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From the short exact sequence we get the long exact sequence

Hi(RP n;Z/2) //

g∗

��

Hi(S
n;Z/2) //

f∗

��

Hi(RP n;Z/2) //

g∗

��

Hi−1(RP n;Z/2)

g∗

��

// 0

Hi(RP n;Z/2) // Hi(S
n;Z/2) // Hi(RP n;Z/2) // Hi−1(RP n;Z/2) // 0

Because H0(RP n;Z/2) = Z/2 and g0 on H0(RP n;Z/2) is an isomorphism, we can show
by induction, that Hi(RP n,Z/2) = Z/2 and gi is an isomorphism for every i ≤ n− 1. An
induction step is shown on the following diagram (three isomorphisms imply the fourth):

0 // Z/2
∼= //

∼=
��

Z/2

∼=
��

0 // Z/2 ∼=
// Z/2

For i = n we have the following situation (the vertical isomorphisms were proved by
induction):

Z/2
∼= //

∼=
��

Z/2 0 //

?

��

Z/2
∼= //

∼=
��

Z/2 //

∼=
��

0

Z/2 ∼=
// Z/2 0 // Z/2 ∼=

// Z/2 // 0

Thus f∗ (the arrow marked by ?) has to be an isomorphism for Hn, thus it maps [1]2 to
[1]2, hence f has degree 1 mod 2.


