Cellular Signaling and Cancer Plasticity Group - CPG

Dr. Karel Souček

ksoucek@ibp.cz

Department of Cytokinetics Institute of Biophysics AS CR Kralovopolska 135 612 65 Brno , Czech Republic Tel: + 420 541 517 166

St. Anne's University Hospital Brno International Clinical Research Center Pekařská 53 656 91 Brno, Czech Republic Tel: + 420 543 181 111

Plasticity of cancer cells

- Cancer is heterogeneous and not single cell disease.
- Complex and dynamic, NOT static "ecosystem".
- Diversity inside tumors is clinical problem limiting the efficacy of targeted therapies and compromising treatment outcomes.

Hallmarks of cancer

- 90% of cancer related deaths are due to metastasis
- What kind of cells drives metastasis?

Metastasis-to-metastasis seeding occurs either by a linear or by a branching pattern of spread.

G Gundem et al. Nature, E1-E5 (2015) doi:10.1038/nature14347

Hallmarks of metastasis-initiating cells

Characterized by evolutionary advantageous traits that may <u>originate in primary tumor</u> and continue to evolve during <u>dissemination & colonization</u>:

- cellular plasticity
- metabolic reprogramming
- ability to enter/exit dormancy
- immune evasion
- co-option of other tumor and stromal cells

Epithelial-to-mesenchymal transition (EMT)

- Reversible acquisition of migratory and invasive properties by epithelial cells
- Role in embryonic development, fibrosis, cancer
- Creates cells with stem-like cells characteristics
- Both mesenchymal and epithelial phenotypes are required for efficient meta

Questions

- What is a role of EMT in prostate and breast cancer progression?
 - Trop-2 associates with epithelial phenotype of breast and prostate cancer cells
 - EMT & metastatic signature of selected BCa subpopulations
- What is a role of cancer plasticity and heterogeneity in therapy resistance?
 - Synthetic lethality as a concept for treatment drug resistant cancer

Trop-2 associates with an epithelial phenotype in breast and prostate cancer cells

Trop-2 marks epithelial subpopulation of BCa and PCa cell lines

Hypothesis: EMT is accompanied by changes in CSC-like signature

Trop-2

- cell surface glycoprotein
- marks stem cells and progenitors
- role in stemness and multipotency maintenance mostly unknown, e.g. in prostate activates basal cell program
- in some tissues, expression is epigenetically silenced in differentiated adult cells
- described as oncogene and metastasis inductor

EpCAM vs. Trop-2

- both are commonly (over)expressed in adenoCa
- both are processed via RIP
- 67 % similarity
- 46 % promoter seq identity => quite unrelated
- EpCAM is known to be downregulated during EMT; but what about Trop-2?
- EpCAM KO has lethal phenotype

Dynamics of Trop-2 expression in vivo & in vitro

Hypothesis: Trop-2 is dynamically regulated and reflects epithelial state of cells

Regulation of Trop-2 expression by epigenetic and EMT machinery

Hypothesis: ZEB1 & DNA methylation regulate Trop-2

Intratumoral heterogeneity of membrane Trop-2 expression

Summary

- Trop-2 associates with epithelial phenotype of breast and prostate cancer cells
- commonly accepted view of Trop-2 as oncogene is too simplistic

Future plans

- To uncover molecular mechanisms by which Trop-2 contributes to cancer progression
 - ZEB1 ChiP
 - methylation status of human Trop-2 promoter
 - single cell qPCR in CTCs

EMT & metastatic signature of selected BCa subpopulations

Intratumoral heterogeneity and plasticity of cancer cells

EMT is commonly accepted source of plasticity, characterized by e.g. Cadherin-switch and often accompanied by activation of stem-like transcriptional programs

Motivation

TNBC is:

- Estrogen receptor (ER)-negative
- Progesteron (PR)-negative
- HER2 negative
- 15-20% BCa
- Often in younger women, BRCA1 gene mutation
- Tends to be more aggressive, recur early and spread to other parts of body, poor prognosis
- treatment: surgery, radiation, chemotherapy (platinum-based, taxanes) = <u>no targeted therapy available</u>

Proteins associated with distinct cancer cell phenotypes

Surface antigens associated with distinct cancer cell phenotypes

Hypothesis: EMT-ed cells have specific surface pattern

Surface marker	Gene	CAFTD03	HMLE-EMT	MCF10A-V12
		x BPH-1	x HMLE	x MCF10A
		[fold change]		
CD9	CD9	-1,661	-5,651	-1,427
CD24	CD24	-6,272	-5,881	-1,537
CD29	ITGB1	2,402	1,330	1,563
CD44	CD44	2,594	26,202	16,926
CD49c	ITGA3	1,722	1,671	2,154
CD49f	ITGA6	-1,507	-2,087	-1,426
CD97	CD97	1,454	2,060	1,659
CD111	PVRL1	-2,398	-2,015	-1,427
CD112	PVRL2	1,455	1,363	2,445
Integrin β5	ITGB5	2,837	3,358	3,110

Predicted 10-molecule surface signature that associates with plasticity of epithelial cells.

Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer

Ján Remšík^{1,2,3}, Radek Fedr^{1,2}, Jiří Navrátil⁴, Lucia Binó¹, Eva Slabáková¹, Pavel Fabian⁵, Marek Svoboda⁴ and Karel Souček^{*,1,2}

¹Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic; ²Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, Brno 656 91, Czech Republic; ³Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic; ⁴Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 656 53, Czech Republic and ⁵Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 656 53, Czech Republic

Heterogeneity examples

Experimental strategy

EpCAM

normal mammary gland

breast cancer

ID: 2773, 23 years

CD97

normal mammary gland

breast cancer

ID: 3544, 45 years

CD49c

breast cancer

ID: 3544. 45 years

ID: 2392. 27 years

source: www.proteinatlas.org, www.fda.gov

Mass cytometry

 measurement of over 40 simultaneous cellular parameters at single-cell resolution

Cell 165, May 5, 2016

Alternative ... spectral FCM

Summary

 epithelial and stromal compartment of breast cancer tissue is composed of extremely heterogeneous mixture of cells

Future plans

- To identify cell surface signature which reflects cancer cell plasticity and mirrors enrichment in metastasisinitiating genes in patiens.
 - sample collection (actually various subpopulations from 3 patients sorted), processing and analysis
 - in vitro and in vivo tests for relevant markers (analysis of selected signaling pathways, migration, invasion)

Outlook

- Small-molecule drugs and synthetic lethality
- Plasticity of cancer cells and new targets for cancer therapy
- Modulation of tissue microenvironment, cell metabolism and drug efficiency

Team

- Lucia Binó, Ximena Muresan, Miroslav Huličiak
- Stanislav Drápela, Vojtěch Dvořák, Šárka Šimečková
- Radek Fedr
- Department of Cytokinetics, Institute of Biophysics AS

Cooperation

- Petr Beneš, Lucia Knopfová, Stjepan Uldrijan, Aleš Hampl, Petr Vaňhara, Josef Jaroš,
 Milan Ešner, Kamil Paruch, Lumír Krejčí, Jiří Damborský Masaryk University
- Jan Bouchal, Gvantsa Kharaisvili UJP Olomouc
- Jiří Kohoutek **Veterinary Research Institute, Brno**
- Zoran Culig laboratory Medical University Innsbruck
- Gabri Van der Pluijm Leiden University Medical Centre
- Wytske van Weerden Erasmus University, NL
- Michael Andäng, Karolinska Institutet
- Giuseppe Valachi, University of Ferrara

