
1. Philosophical foundations of empirical science and statistics 

You are all students of science. But have you ever thought of what actually is the aim of science? 

Probably, we can all agree that the aim of science is to increase human knowledge. But how this 

is done? We may think that adding new pieces of knowledge to what is already known is 

actually the process of science. These new pieces come in the form of universal statements 

(laws; theories) describing natural processes. Some scientific disciplines, including biology, use 

data or experience to increase current knowledge and are thus called empirical science. 

Intuitively, we may assume that the new pieces of knowledge are first collected as the newly 

gathered experience or data (singular observations, statements) from which the theories and 

hypotheses (universal statements) are built. Statistics should then be the language of empirical 

science to summarize the data and make the inference of universal statements from the 

singular ones. This approach to empirical science would be called induction. Despite intuitive, it 

is not the approach we use in modern science to increase knowledge. 

We may also agree that only true universal statements or theories represent a real addition to 

knowledge and may be used to infer correct causal explanations. So we should aim at truth, 

which should be an essential aspect of our scientific work. But how does science and scientists 

recognize the truth of their theories? This is not an easy task. Truth can be defined as a 

correspondence of statements with the facts. But the question is how to measure such 

correspondence. There are two apparent ways: 1. We can believe authorities who may issue a 

judgement on this. The authorities may be of various kind: priests, experienced scientists, 

distinguished professors or books written by them (note that this is well compatible with the 

accumulative process of science described above) or 2. We can believe that truth is manifest – 

that truth is revealed by reason and everybody (who is not ignorant) can see it. The first way 

was largely applied in the Middle Age with the church, priests and the Bible as the authorities 

and ultimate source of truth. This led to a long-term stagnation of science and a few burnt at 

the stake. The second approach stems from the Renaissance thinking revolving against the 

dogmatic doctrines of the church. It was a foundation of many great discoveries made since the 

Renaissance time. Unfortunately, there is also devil hidden in this approach to truth. It lies in 

the fact that if truth is manifest, then those who cannot see it are either ignorant, or worse 

pursue some evil intentions. Declaring itself as the only science-based approach to the society 

and politics, the Marxist-Leninist doctrine largely relies on the belief that its truth is obvious, 

which also provided justification for the ubiquitous cruel handling of its opponents whenever 

possible.1,2  

                                                      
1 Note here that if the conflict between the Renaissance thinkers such as Galileo Galilei or Giordano Bruno and the church is 
viewed as a fight between the two views on truth both of which may lead to evil ends, you may reconsider the outright negative 
view on the representatives of the inquisition. Nevertheless, burning your opponents at the stake is not an acceptable means of 
discussion in any case.  
2 A strange mix of both approaches to truth is still largely applied in secondary education in some countries (e.g. Czechia). 
Textbooks and the teachers’ knowledge may be used here as the ultimate authority for truth. At the same time, students are 
punished for making mistakes (by low grades) because truth is manifest. If they cannot see it, they are considered ignorant and 
as such deserve the punishment. 



 

It seems that we have a problem with truth and need to find the way out of it. The solution of 

the problem was summarized the philosopher of science Karl R. Popper (1902-1994). Popper 

states that although truth exists and we should pursue it, we can never be sure that our 

statements are true. This is because our senses are erroneous and we are prone to make 

mistakes. This view is not that novel as K.R. Popper himself refers to ancient Greek philosophers 

some of whom have identified this paradox of truth. One illustrative account of this is the story 

of prisoners in cave contained in Plato’s Republic. This is the story about prisoners who are kept 

in a cave from the very beginning of their life 

and have their heads fixed to look at a wall. 

Fire is located far behind them and persons 

and objects pass between the fire and the 

prisoners’ back casting shadows on the wall, 

which the prisoners can see. Then, as Plato 

says (by the speech of Socrates): “To them, I 

said, the truth would be literally nothing but 

the shadows of the images.”. In this writing, 

Plato also declares ourselves to be like these 

prisoners. This may seem strange as we tend 

to believe that we see is real but consider 

e.g. the recent observation of gravitational 

waves. We observe them by super-

complicated and ultra-sensitive devices and 

can only see shadows of them (nobody can 

see them directly).  

Although we can only see shadows of reality, 
these shadows still contain some information. 
We can actually use this information to make 
estimates about the reality and more 
importantly to demonstrate our universal 
statements false. The ability to demonstrate 
some theories and hypotheses false is the 
principal strength of empirical science. This 
leads to rejection of theories demonstrated 
not to be true while those, for which falsifying 
evidence is not available (yet) are retained. If 
a theory is rejected on the basis of falsifying 
evidence, a new one can be suggested to 
replace the false theory, but note, that this 
new theory is never produced by an 
“objective” process based on the data. 

Box 1. Misleading empirical experience 

1. Ancient Greek philosopher Anaximandros 

(c. 610 – c. 546 BC) was the first who 

identified the Earth as an individual celestial 

body and presented the first cosmology. This 

was a great achievement of human reason. 

However, he supposed the Earth to be of 

barrel shape because he only could see flat 

world around him – as we actually do.  

 

Life of Anaximandros on barrel Earth 

2. Jean-Baptiste Lamarck (1744-1829) 

formulated the first comprehensive 

evolutionary theory based on his naturalist 

experience with adaptations of organisms to 

their environment. He asserted that 

organisms adapt to their environment by 

adjustments of their bodies, which changes 

are inherited by the offspring. This is very 

intuitive but demonstrated to be false by a 

long series of experimental testing.  



Instead, it is produced by subjective human reasoning 
(which aims to formulate the theory not to be in conflict 
with objective facts though).  
 In summary, experience can tell us that a 
theory is wrong but no experience can prove truth of a 
theory (note here, that we actually do not use the word 
“proof” in terminology of empirical science). Consider 
e.g. the universal statement “All plants are green”. It is 
not important how many green plants you observe to 
prove it true. Instead, observation of e.g. single non-
green parasitic Orobanche (Fig. 1.1) is enough to 
demonstrate that it is false. Our approach of doing 
science is thus not based on induction. Instead it is 
hypothetical-deductive as we formulate hypotheses and 
from them deduce how world should look like if the 
hypotheses were true. If such predictions can be 
quantified, their (dis)agreement with the reality can be 
measured by statistics. The use of statistics is however 
not limited to hypothesis testing. We also use statistics 
for data exploration and for parameter estimates. 
 Finally, you may wonder how Biostatistics 
differs from Statistics in general. Well, there no 
fundamental theoretical difference, Biostatistics refers to application of statistical tools in 
biological disciplines. Biostatistics generally acknowledges, that biologists mostly fear maths so 
the mathematical roots of statistics are not discussed in details and also e.g. complicated 
formulae are avoided wherever possible.  
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2. Data exploration and data types 

If you have some data, say a variable describing observations of 100 objects (e.g. tail length of 
100 rats), you may wish to explore these values to be able to say something about these data.  
That is, you may wish to describe the data using descriptive statistics. 
The data are here: 
  [1] 4.57 5.69 4.49 6.09 5.46 6.28 4.90 5.80 4.39 4.32 4.85 4.05 6.36 3.10 5.30 3.74 5.45 4.08 

 [19] 4.97 3.31 4.71 5.49 6.37 5.32 5.31 5.20 2.29 3.91 4.09 5.59 6.85 3.56 6.13 3.73 6.41 4.01 

 [37] 4.77 5.84 6.37 6.49 5.27 5.26 5.92 5.27 4.17 7.00 4.73 5.26 5.17 3.76 7.03 6.79 5.94 7.42 

 [55] 5.87 5.61 5.25 4.45 4.41 7.27 5.53 5.69 3.59 5.47 5.69 3.63 2.03 5.65 3.36 3.60 5.39 3.90 

 [73] 5.82 3.17 3.73 4.81 4.70 4.71 5.02 5.61 2.99 3.96 3.28 4.99 5.30 5.23 6.06 6.31 5.60 5.85 

 [91] 5.15 4.62 5.79 5.36 3.89 4.35 5.26 3.76 4.68 5.77 

 

Fig. 1.1. Non-green parasitic plant 

Orobanche lutea. 



First, we need to know the size of the data, i.e. number of observations (n). 
 
Here n = 100. 
 
Second, we are interested is the central tendency, i.e. certain middle value around which, the 
data are located. This is provided by the median. Which is the middle value3 of the ordered data 
dataset from the lowest to the highest value. Here med = 5.24 
 
Third, we need to know the spread of the data. A simple characteristic is range (minimum and 
maximum. Here min = 2.03 and max = 7.42. However, the minima and maxima may be affected 
by outliers and extremes. While, it is useful to know them, we may also prefer some more robust 
characteristics. This comes with quartiles. Quartiles are 25% and 75% quantiles. XX%-quantile 
refers to a value compared to which XX% of other observations are lower. In our case the first 
quartile (25%) = 4.15 and the third quartile (75%) = 5.71. The second (50%) quartile is the median. 
 
These descriptive statistics can be summarized graphically in the form of boxplot. That is very 
useful for comparisons between different datasets (e.g. comparison of mouse tail length with a 
similar dataset on rats): 

 
Fig. 2.1. Boxplot displaying tail length of mice and rats. The bold lines in boxes represent medians, 
boxes represent quartiles (i.e. 25 and 75% quantiles) and the lines extending from the box 
boundaries (whiskers) represent the range or non-outlier range of values, whichever is smaller. 
The non-outlier range is defined as the interval between (25% quantile ) 1.5 × interquartile range) 
and (75% quantile + 1.5 × interquartile range). Any point outside this interval is considered an 
outlier and is depicted separately.4 

                                                      
3 Note here, that if n is even and the two values close to the middle are not equal, median is computed as their 
arithmetic mean. 
4 This is a very detailed description of a boxplot. Usually it can be briefer. Still, I was forced to make it this detailed 
by the editor of one paper I published. 



Another useful type of plot is the histogram. Histogram is very useful for displaying data 
distributions (but less so for comparisons between different datasets). To plot a histogram, values 
of the variable are assigned into intervals (called also bins). Numbers of observation (frequency) 
within each bin is then plotted on in the graph. 
 

 
Fig. 2.2. Histogram of mouse tail length. 
 
Types of data 
The data on mouse tail length we have explored are called data on ratio scale. Several other types 
of data can be defined on the basis of their properties. These are summarized in Table 2.1. in 
ratio-scale and interval data, further distinction can be made between continuous and discrete 
data but that makes little difference for practical computation. 
 
Table 2.1. Summary of data types definition and properties. 

Data type Criteria Possible math. 
operations 

Examples Object class in R 

Ratio scale data constant intervals 
between values, 
meaningful zero 

+,-,×,/ length, mass, 
temperature in 
K 

numeric 

Interval scale data constant intervals 
between values, 
zero not 
meaningful  

+,- temperature in  
°C 

numeric 

Ordinal data (also 
called semi-
quantitative) 

variable intervals 
between values  

comparison of 
values 

exam grades, 
Braun-Blanquet 
cover 

numeric (but 
may require 
conversion) 

Categorical data non-numeric 
values 

none colors, sex, 
species identity 

factor 



Categorical variables cannot be explored by the methods described above. Instead, frequencies 
of individual categories can be summarized in a table, or a barplot can be used to illustrate the 
data graphically. 
Consider e.g. 163 bean plant individual with flowers of three colors: white, red, purple. 

 
 
Fig 2.3. Barplot of frequencies of flower colors in the bean dataset. 
 
 
How to do in R 

Size of data: function length 

Median: function median 

Range: function range 

Minimum: function min 

Maximum: function max  

Quartiles: function quantile with default settings produces 5 values: min, lower 

quartile, median, upper quartile, maximum 
Boxplot: function boxplot supports the formula notation, i.e. response variable ~ 
classifying variable) 
Histogram: function hist 

Barplot: function barplot requires frequencies to be provided e.g. by table or 

tapply 



3. Probability, distribution, parameter estimates and likelihood 

Random variable and probability distribution 

Imagine tossing a coin. Before you make a toss, you don’t know the result and you cannot affect 

the outcome. The set of future outcomes generated by such process is called random variable. 

Randomness does not mean, that you do not know anything about the possible outcomes of 

this process. You know the two possible outcomes that can be produced and also the 

expectation of getting one or the other (assuming that the coin is “fair”). A random variable can 

indeed be described by its properties. This description of the process generating the random 

variable is then indicative of the expectations of individual future observations – probabilities. 

We do not to be limited on a single observation but can consider a series of them. Then, it 

makes sense to ask e.g. what is the probability to get less than 40 eagles in 100 tosses. If we do 

not fix the value to 40 but instead study the probabilities for all possible vales (here from 1 to 

100), we can define probability associated with each value from 1 to 100 as: 

pi = P(X< xi) 

where pi is the probability of observing a value lower than a given value xi. Then we can 

construct the probability distribution function defined as: 

f(X) = ∑ 𝑝𝑖𝑋<𝑥𝑖
 

in human (non-mathematical) language, this translates as: Take probabilities of all values lower 

than X, compute their sum and you get the value of probability distribution function for value X 

(Fig. 3a). Another option to explore the distribution of values is to sample a random variable and 

examine properties of such sample. After you take such sample (or make a measurement), i.e.  

record events generated by a random variable, corresponding values cease to be a random 

variable but become the data. The data values may be plotted a histogram of frequencies 

(Fig.3b; see also chapter 2). The frequency histogram can be converted to a probability density 

histogram (Fig. 3c) by scaling the area of the histogram to 1. The density diagram has a great 

advantage that probabilities of observing a value within given interval can directly be read as 

size of the area of given column. The histograms shown in Fig. 3. indicate sampling probability 

distribution or density based on the data. By contrast the red lines indicate theoretical 

probability distribution or density; i.e. how the values should look like if they followed the 

theoretical binomial distribution, which describes the coin tossing process. As you can see, the 

sampling and theoretical distributions do not match exactly, but there does not seem to be any 

systematic bias. The density of theoretical probabilities can thus be viewed as sort of idealized 

density histogram. There are many types of theoretical distributions, which describe many 

different processes generating random variables. Each of these types can further have many 

shapes, which depends on the parameters of the probability distribution function. E.g. the 

shape of the binomial distribution, which describes our coin tossing problem, is defined by 

parameters p indicating the average probability of observing one outcome and size, which is the 

number of trials (tosses in our case). 



Coin tossing produced discrete values to which probabilities could directly be assigned because 

there is a limited number of possible outcomes. This is not possible with continuous variables, 

as the number of possible values is infinite. However, if you look back at the definition of the 

probability distribution function, this is not a problem because for any value, you can find a non-

empty interval of lower values.  

 

 

 

 

Fig. 3.1. Probability (a), frequency (b) and density (d) distribution of coin tosses (n = 100, 

size = 100, p = 0.5). Grey histograms represent sampling statistics (prob., freq., dens.). 

Red lines in (a) and (c) represent theoretical binomial probability distribution and 

density, respectively. (d) standard 10 crown coin of Austrian-Hungarian Empire used for 

the tossing. Depicted here to illustrate why we call the coin sides the Head and Eagle 

instead of Brno and Lion as on the current 10 CZK coin. 



Normal distribution 

Among many theoretical distribution types, we will focus on normal (Gaussian) distribution. This 

distribution describes a process producing values symmetrically distributed around the center of 

the distribution. Normal distribution can be used to describe (or approximate) distribution of 

variables measured on ratio and interval scale. It has two parameters, which define its shape 

(Fig. 3.1a):  

the central tendency (expected value), called the mean: 

 𝜇 =  
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
 

i.e. sum of all values of the variable divided by the number of objects.  

and the variance, which defines the spread of the probability density: 

𝜎2 =  
∑ (𝑋𝑖  −  𝜇𝑛

𝑖=1 )2

𝑁
 

i.e. mean square of differences of individual values from the mean.  

Variance is given in squared units of the variable itself (e.g. in m2 for length). Therefore, 

standard deviation (σ, SD), which is simply square root of variance, is frequently used. 

Common notation of the normal distribution with mean μ and variance σ2 is: N(μ, σ2). Normal 

distribution has non-zero probability density over the entire scale of real numbers. This implies 

that normal distribution may not always be suitable to approximate distribution of some 

variables, e.g. physical variables such as length or masses because these cannot be lower than 

zero. However, normal density becomes close to zero if one moves several SD units from the 

mean (Fig 3.1.b). This means that normal distribution may be used for the always-positive 

variables if the mean is reasonably far from zero (measured by SD units). At the same time, this 

implies that existence of outlying values is not expected and normal approximation of variables 

containing them may be problematic.  

Any normal distribution can be converted to standard normal distribution by subtracting the 

mean of the original normal distribution and dividing the values by SD. This procedure is called 

standardization.   

Central limit theorem is an important statement relevant for the use of normal distribution. It 

states that in many situations, when independent random variables are added, their sum tends 

to converge to normal distribution even if the original variables were not normal. For instance, 

biomass production in grasslands is affected by many processes (e.g. water use by plants, 

photosynthesis, …) sum of which can often be reasonably approximated by normal distribution.  

 

 



Probability computation 

Knowing the probability distribution of certain variables allows probabilities associated with 

given intervals of the variables to be computed. For instance, a producer of clothes may design 

T-shirt sizes to cover 95% of the population of customers if he knows that body size has certain 

probability distribution, e.g. normal distribution described by mean and variance. Two functions 

are used for the conversion between the values of the variable and probabilities. Probability 

distribution function computes probabilities of observing values lower (lower tail) or higher 

(upper tail) than given threshold. Quantile function is inverse to probability distribution function 

and allows to compute the quantiles – threshold values of the original variable associated with 

given probability value. 

 

Fig 3.2. Normal distribution: shapes of probability density of normal distributions differing in 

their μ and σ2 parameters (a). Illustration of SD units intervals and their importance for 

probability quantiles (note here that these are quantiles of probability corresponding to plot 

area under the density line; not quantiles produced by quantile function) (b). Standard normal 

distribution with μ = 0 and σ2 = 1. 



Parameter estimates, statistical sampling and likelihood 

Probability computation can be a very informative analysis but it requires prior knowledge of 

the theoretical distribution and its parameters. This is usually not the case. In most cases, we 

have just the data, i.e. the statistical sample. This sample can be imagined as a subset of the 

statistical population, i.e. possibly infinite set of all values contained in the random variable.  It 

seems as a logical step to estimate the population parameters from those of the sample. Recall 

now the story of prisoners in the cave in chapter one. In parallel with them, we have the 

information only on a fraction of reality (sample) from which we aim to estimate how reality 

(population) looks like. 

Such process of statistical inference is possible under certain conditions: 

1. The type of the theoretical distribution of population values must be known or at least 

assumed (the latter is the case in reality). This cannot be derived from the data. However, it is 

possible to compare the sampling distribution of the data (illustrated e.g. by a histogram) and 

the theoretical distribution (e.g. Fig. 3.1.c). 

2. The data must be generated by random sampling from the population. If the sampling is not 

random, parameter estimates get biased. 

Population parameters are assumed to be fixed (as opposed to random) in classical statistics 

(sometimes called frequentist statistics). This corresponds to the fact, that there is only one true 

value of a single population parameter – no alternative truths are allowed. We cannot assign 

any probabilities either to population parameters or to completed estimates because 

probabilities can only be assigned to future outcomes of a random variable. However, we can 

assign likelihood to the estimates. In continuous variables, likelihood of a parameter value given 

the observed data is the product of probability densities associated with the observed values 

derived from density distribution function containing given parameter estimate. For practical 

reasons, we use log-likelihoods where the product transforms into sum. Maximum likelihood 

estimation then involves searching for such parameters which have the highest log-likelihood 

values (Fig.3.3).  

Practically, the population parameters are estimated by computing estimators: 

estimator of μ is the arithmetic mean: 

𝑥̅ =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

the uncertainty of the estimation of population mean can be characterized by error associated 

with 𝑥̅. This is called standard error of the mean (SE, 𝑠𝑥̅): 

𝑠𝑥̅ =  
𝑠

√𝑛
 

as you can see the uncertainty about the population mean decreases with square-root of the 

number of observations. The more observations, the more precise inference! 



estimator of population variance is sample variance:  

𝑠2 =  
∑ (𝑥𝑖  −  𝑥̅𝑛

𝑖=1 )2

𝑛 − 1
 

Note the difference in the denominator between formulae of sample and population variances. 

Sample standard deviation s = √𝑠2 

 

Fig 3.3. Maximum likelihood estimation of normal distribution parameters. A sample (n = 50) 

was sampled from a normally distributed population with μ = 10 and σ2 = 4. Maximum 

likelihood estimation was then performed on the sample aiming at reconstruction of the 

population parameters. Mean value was estimated 𝑥̅ = 9.57 and variance s2 = 3.37. 

Corresponding probability density function was plotted onto the sampling density histogram (a). 

Log-likelihoods of a series of possible mean and variance values are plotted together with the 

estimated and population population parameters (b,c). Note that in real-life statistical 

inference, the information on population parameters is not known. 

 

 



I guess, you may now think I am completely crazy. It took no less than 6 pages to explain all the 

complicated principles of probability calculation, likelihood and parameter estimate to end up 

with simple calculation of arithmetic mean and variance! However, you will see that it was 

worth it. In future classes, we will discuss other probability distributions, which are less intuitive 

than the normal. So, it may make sense to have the first look at what is rather intuitive and 

familiar. It may also seem possible to rely on the simple calculation of mean and variance and 

not bothering about the underlying principles. But then, you run into the risk of misuse these 

statistics such as using the arithmetic mean to determine final grades at schools (school grades 

indeed do not follow the normal distribution and arithmetic mean is a very poor estimator of 

the central tendency of their distribution). Note also that the principles of statistical inference 

(e.g. the distinction between sample and population) described here have very universal 

importance and represent the core of statistical theory. So it seems to make sense to be familiar 

with them. 

 

How to do in R 

Normal distribution probability: pnorm 

parameter q in this function refers to quantiles, i.e. the values 

of the original variable. 

parameter lower.tail with possible values T (the default) or F 

indicates whether probability of observing lower or higher value 

than a given threshold is to be computed, respectively.  

 

Normal distribution quantile function: qnorm 

parameter p in this function refers to probability(ies), i.e. the 

values of normal probability distribution function for which the 

corresponding quantiles (values of the original variable) should 

be computed. 

 

Function rnorm can be used to generate a sample (series of values) 

of normal distribution (was employed e.g. for Fig. 3) 

 

Functions for parameter estimates: 

arithmetic mean: mean 

standard error of the mean: there is no dedicated function in the 

default packages. Function se can be found in package sciplot. 

Alternatively, it is possible to create a custom function for this: 

se<-function(x) sd(x)/sqrt(length(x}) 

variance: var 

standard deviation: sd 

 



5. Hypothesis testing and goodness-of-fit test 

Scientific statements 

In chapter 1, I explained that science consists of theories and these comprise hypotheses. 

Scientists formulate these hypotheses as universal statements describing the world but they 

never know whether a hypothesis is true until it is rejected based on the empirical evidence. 

This makes science an infinite process of searching for true, to which we hopefully approach but 

never know whether we reach it or not.  

 Let’s now return to the term universal statement I used in the previous paragraph and in 

chapter 1 as this is crucial to understand how empirical science works and hypothesis testing 

proceeds. Statements describing the world can be classified into two classes: 

1. Universal statements apply generally on all objects concerned. E. g. “All (adult) swans are 

white” is a universal statement. This can be converted to a negative form: “Swans of 

other color than white do not exist.” You can see that the universal statements prohibit 

certain patterns or events (e.g. observing a black swan here); therefore, they have the 

form of “natural laws”. They can also be used to make predictions. If the white swan 

hypothesis is true, the next swan I will see will be white (and this is not dependent on 

how many white swans I saw before). A universal statement cannot be verified, i.e. 

confirmed to be true. We would need to inspect color all swans living on the Earth (and 

in the Universe) to do so (that is not very realistic) and even if we did so, we can never 

be sure that the next baby swan hatching from the egg would not be different from 

white at adulthood. By contrast, it is very easy to reject such universal statement on the 

basis of empirical evidence. Observing only a single swan of other color than white is 

sufficient for that.  

 

2. Singular statements are asserted only on specific objects. E.g. “The swan I see is white.” 

Such statement refers to a particular swan and does not predict anything about other 

swans. A specific class of singular statements are existential statements which can be 

derived from singular ones. The fact that I see a white swan (singular statement) can be 

used to infer that there is at least one swan which is white, i.e. white swans do exist. 

Based on the previous paragraph, you would probably not consider such statement any 

novel since it is in agreement with the universal statement on white swans. However, 

seeing a single black swan (Fig 5.1) completely changes the situation. It means, that at 

least one black swan exists and that the universal statement on white swans is not true. 

In general terms, this existential statement rejected the universal statement.  

To sum up, scientific hypothesis must have a form of universal statements in order to have a 

predictive power, which we need to explain patterns in natural. They cannot be verified but can 

be rejected by empirical existential statements which are in conflict with the prediction the 

hypothesis makes. 



 

Fig. 5.1 A black swan in Perth (Western Australia). 

Hypotheses and their testing 

Empirical science is largely the process of hypothesis testing. This means searching for conflicts 

between predictions of hypotheses and collected/measured data. Once a hypothesis is rejected, 

a new hypothesis can be formulated to replace the old one. Note, here that there is no 

“objective” way how to formulate new hypotheses – they are rather genuine guesses.  

An important implication from this is that for every scientific theory or hypothesis, it should be 

possible to define singular observations which if they exist would reject it. This means, that each 

scientific hypothesis must be falsifiable. Universal statements that are not falsifiable may be 

components of art, religion or pseudoscience but definitely not of science. Various conspiracy 

theories also belong to this class. These statements need not to be only dogmatic, they may also 

be tautological. Example of this is e.g. recently published theory of stability-based sorting in 

evolution (https://www.ncbi.nlm.nih.gov/pubmed/28899756), a “theory” which says that 

evolution operates with stability, i.e. organisms and traits which are more stable, persist for 

longer. The problem is that long persistence is a synonym for stability. So in fact the theory says 

“What is stable is stable”. Not very surprising.  The authors declare the theory to explain 

everything (see the ending of the abstract), and this is indeed true, but the problem is that the 

theory neither produces any useful predictions nor can be tested by empirical data. 

https://www.ncbi.nlm.nih.gov/pubmed/28899756


If we select only hypotheses which are falsifiable, and as such can be considered scientific 

statements, we may discover that there are multiple theories without any conflicts with the 

data. It is a natural question to ask, which one to choose over the others. Here, we should use 

the Occam’s razor (https://en.wikipedia.org/wiki/Occam%27s_razor) principle and use the 

simplest (and also most universal and most easily falsifiable) hypothesis available. This is also 

termed “minimum adequate model” – i.e. choose the model with minimum number of 

parameters which fits adequately with the data.  

Note on specifics of biology and ecology 

Biological and ecological systems display high complexity arising from an interplay among 

complicated biochemical processes, evolutionary history and ecological interactions. As a result, 

quite large proportion of the research is exploratory aiming at discovering effects which were 

not anticipated yet. Therefore, no previous theory could have informed about them, or such 

information on absence of effect would be just redundant. In these cases, we test a universal 

statement, that the effect under investigation is zero. 

Hypothesis testing with statistics 

In statistics, we work with numbers and probabilities. Therefore, we do not record a clear-cut 

evidence to reject a hypothesis as in the example with swans. In other words, even improbable 

events do happen by chance and their observation may not be sufficient evidence to reject a 

hypothesis.  

A general statistical testing procedure involves computation of test statistic. This statistic 

measures the discrepancy between the prediction of the null hypothesis and the data 

considering also strength of the evidence based on the number of observations. The test 

statistic is a random variable following certain theoretical distribution. As a result, probability of 

observing the actual data or data that differ even more from the null hypothesis expectation 

can be quantified. If this probability (called the p-value) is below certain threshold we can justify 

rejection of the null hypothesis.  

The probability of observing certain data under null hypothesis can be very low but never zero. 

As a result, we are left with uncertainty concerning whether we did a right decision when 

rejecting or retaining the null hypothesis. We may take either right decision or make an error 

(Table 5.1). 

 

 

 

 

 

https://en.wikipedia.org/wiki/Occam%27s_razor


Table 5.1. Possible outcomes of hypothesis testing by statistical tests. H0 = null hypothesis 

  Reality 

  H
0
 is true H

0
 is false 

Our 
Decision 

Reject H
0
 Type I 

Error 
Ok 

Not reject H
0
 Ok Type II Error 

 

Two types of error can be made, of which type I error is more harmful as it means rejection of a 

null hypothesis which is true. Such false positive evidence is misleading and may obscure the 

scientific research of given topic. By contrast, type II error (false negative) is typically invisible to 

anybody except to the researcher itself because results not rejecting the null hypothesis are not 

published. Statistical tools can quite precisely control the probability of making type I error, by 

setting an a-priori limit for the p-value. Typically, this limit called level of significance (α) is set to 

α = 0.05 (5%). If the p-value resulting from the testing is higher than that, null hypothesis cannot 

be rejected. Note here, that such non-significant result does not mean that the null hypothesis 

is true. Non-significant results are indicative of absence of evidence, not of evidence of absence 

of an effect.  

Concerning type II error (probability of which is denoted β), statistical inference is less 

informative. It can be quantified in some controlled experiments, but its precise value is not of 

particular interest. Instead, a useful concept is power of the test, which equals 1 – β and its 

relative rather than absolute size. Power of the test increases with sample size and with 

decreasing α, i.e. if the tester accepts an elevated risk of type I error. 

Goodness-of-fit test 

Let’s have a look at an example of a statistical test. One of the most basic statistical tests is 

called goodness-of-fit tests (sometimes inappropriately chi-square test following the name of 

the test statistic). It is particularly suitable for testing frequencies (counts) of categorical data 

though the χ2 distribution is quite universal and approximates e.g. very general likelihood ratio.  

the formula is this: χ2 = ∑
(𝑂−𝐸)2

𝐸
 

where O indicates observed and frequencies and E indicates frequencies expected under the null 

hypothesis. The sum is repeated for each of the categories under investigation.  

The χ2 value is subsequently compared with corresponding χ2 distribution to determine the p-

value. There are many χ2 distributions which differ in the number of degrees of freedom (DF; Fig 



5.2). The DF is a more general concept common to all statistical tests as it quantifies size of the 

data and/or complexity of the model. Here, it is important to know that for ordinary goodness-

of-fit test: 

DF = number of categories – 1.  

 

Fig. 5.2 Probability densities of two χ2 distributions differing in the number of degrees of 

freedom. Dashed line indicates cut-off values for 0.05 probabilities on the upper tail.  

Goodness-of-fit test example 

A typical application of the goodness-of-fit test is in genetics as demonstrated in the following 

example: 

You are a geneticist interested in testing the Mendelian rules. To do so, you cross red and white 

flowering bean plants. Red is dominant and white recessive, so in the F1 generation you only get 

red flowering individuals. You cross these and get 44 red flowering and 4 white flowering 

individuals in the F2 generation. What can you say about the universal validity of the second 

Mendelian rule (which predicts 3:1 ratio between dominant and recessive phenotypes) at the 

level of significance α = 0.05? 

First, you need to calculate the expected frequencies. These are: 

Ered = 48 x 3 / 4 = 36 

Ewhite = 48 x 1 / 4 = 12 



then, computation of test statistic follows: 

χ2 = (44-36)2/36+(4-12)2/4 = 7.11 

DF = 1 

p(χ2= 7.11, DF = 1) = 0.0077 

Conclusion (to be written in the text): Heredity in our bean-crossing system is significantly 

different from the second Mendelian rule (χ2= 7.11, DF = 1, p = 0.0077). As a result, the second 

Mendelian rule is not universally true. 

Here you can see that our experiment produced a singular statement on the number of bean 

plants. This was translated by the statistics into an existential statement that at least one (the 

our) genetic system exists which does not follow the Mendelian rule. This was then used to 

reject the universal statement. 

How to do in R 

Goodness-of-fit test: chisq.test 

Parameter x is used for inputting the observed frequencies 

Parameter p is used for inputting the null hypothesis-derived 

probabilities 

Example with output: 

chisq.test(x=c(44,4), p=c(3/4,1/4)) 

 Chi-squared test for given probabilities 

data:  c(44, 4) 

X-squared = 7.1111, df = 1, p-value = 0.007661 
 

Probabilities of χ2 distribution can be computed by pchisq (do 

not forget to set lower.tail=F to get the p=value). 

pchisq(7.11, df=1, lower.tail = F) 

[1] 0.007665511 

 



6. Contingency tables – association of two (or more) categorical variables 

Contingency tables – introduction 

Contingency tables are tables that summarize frequencies (counts) of two (or more) categorical 

variables. Their analysis allows to test (in)dependence between the two variables. Table 6.1 is a 

contingency table summarizing frequencies of people of different eye and hair colors.  

Table 6.1. Contingency table of two variables: eye and hair color with basic frequency statistics 

(marginal sums and grand total). 

  Hair color 
 

  black brown blonde 
marginal 
sums 

Eye color 
blue 12 45 14 71 

brown 51 256 84 391 

 
marginal 
sums 63 301 98 

grand 
total: 462 

 

Basic analysis by goodness-of-fit test 

Association between the variables (i.e. the null hypothesis that the variables are independent) 

can be tested by a goodness-of-fit test. This is a universal approach suitable for tables of any 

size and dimensions but its explanatory power is limited.  

For goodness-of-fit test, we need expected frequencies which are calculated on the basis of 

probability theory: P(event 1 and event 2) = P (event 1) x P (event 2), if the two events are 

independent. In contingency tables, this can be used to calculate expected frequencies as the 

product of ratios of corresponding marginal totals and the grand total.  

For instance, expected probability of observing a blue-eyed and black-haired person in Table 6.1 

can be calculated as P(blueE and blackH) = 63/462 x 71/462 = 0.02096. Multiplication of the 

probability then gives the expected frequency Freq(e) = 0.02096 x 462 = 9.68.  

The same approach can be used to calculate expected frequencies in all cells but is done 

automatically by software nowadays. Goodness-of-fit test can consequently be computed (in 

the same way as described in chapter 5). Note, however, that number of degrees of freedom is 

determined as DF = (number of rows – 1) x (number of columns – 1) 

In our example: We did not find a significant association between eye and hair color (χ2 = 

0.785, DF = 2, p = 0.6755). 

The goodness-of-fit test does not provide much more information on the result, though in case 

of significant result, it may make sense to report also the difference between observed-



expected frequencies (i.e. the residuals), or their standardized values (residuals divided by 

square root of corresponding expected frequencies) as supplementary information. In 

particular, standardized residuals are useful as they indicate excess or deficiency of which 

combinations cause association between the variables. 

2x2 tables and their analysis 

These tables represent a special and the simplest cases of contingency tables (Table 6.2).  

Table 6.2. Structure of a 2x2 table. 

 Var2  

level 1 level 2  

Var 1 level 1 f11 f12 R1 

level 2 f21 f22 R2 

  C1 C2 n 

 

Their simplicity allows additional statistics to be computed to express how tight the association 

between the two variables is. Most important of these is the phi-coefficient: 

𝜑 =  
𝑓11𝑓22 − 𝑓12𝑓21

√𝑅1𝑅2𝐶1𝐶2
= ±√

𝜒2

𝑛
 

where f, R C symbols correspond to cells in Table 6.2 and χ2 is the χ2 statistics of the table and n 

is the grand total.  

The phi-coefficient can thus be viewed as an average contribution of each observation to the 

association between the variables. This implies its important advantage which lies in 

comparability of the phi coefficients between datasets with unequal numbers of observations.  

The 2x2 tables may seem trivial and not of much use. However, they and especially the phi-

coefficient is frequently used in vegetation ecology to measure association between 

occurrences of two species or as a fidelity measure of a species with a vegetation unit. In that 

case Var1 describes frequency of given species and Var2 frequency of the vegetation unit in the 

dataset.  

Advanced analysis of contingency tables – odds and odds ratios 

Odds and odds ratios are additional important statistics that can be used to analyze contingency 

tables. They are defined for 2x2 tables only but can also be used in larger (in particular n x 2) 

tables, which can be subdivided into a series of 2x2 tables. For table 6.1, we can calculate the 

odds for the level 1 of Var1 as: 

odds1 = p/(1-p) = (f11/R1)/(f12/R1) 



where p is the probability of one outcome of the second variable and 1-p is probability of the 

second outcome of the second variable. We can do the same for the second level of Var1 to get 

odds2. Odds ratio then equals: 

OR = odds1/odds2 

Odds ratio directly indicates how probability of observing level 1 of Var1 changes with respect 

to the levels of Var2. 

OR values range between 0 and infinity, with OR < 1 indicating negative association, OR = 1 

independence and OR > 1 positive association.  

OR is a population parameter and the computation summarized above is actually its maximum-

likelihood estimation procedure. As a result, OR estimate has associated standard error and 

confidence intervals (i.e. intervals within which the population OR lies with 95% probability). A 

confidence interval directly indicates significance – if a confidence interval of OR contains 1, the 

OR is not significantly different from 1 and thus independence between the two variables 

cannot be rejected.  

A worked example 

Malaria is a dangerous disease widespread in tropical areas. It is caused by protozoans of the 

genus Plasmodium and transmitted by mosquitos. To prevent infection, it is possible to take 

prophylaxis, i.e. treatment which blocks the infection after mosquito bite. This is only possible 

for short time journeys to areas with malaria since the prophylaxis drugs are not safe for long-

term use. Here we asked whether the prophylaxis is efficient and whether there is significant 

difference between two types of prophylaxis. The data are summarized in Table 6.3. 

Table 6.3. Table summarizing frequencies of travelers to the tropics infected by malaria (or not) 

and anti-malaria prophylaxis they used. 

Prophylaxis Infected by malaria Frequency 

none (control) 0 40 

none (control) 1 94 

doxycycline 0 130 

doxycycline 1 80 

lariam 0 180 

lariam 1 15 

Note here, that contingency table can also have a form of table with individual factor 

combinations and corresponding frequencies. This is actually a bit better for computation than 

the cross-tabulated form.  



Goodness of fit test demonstrates, that there is a significant association between the two 

variables: 

Chisq = 137.45, df = 2, p-value = 1.42e-30 

Odds ratios summary then folow. Two odds ratios are produced comparing the second and third 

level of to the first one (here control). lower and upper values indicate limits of confidence 

intervals. We can see that both types of prophylaxis are associated with significantly decreased 

infection rate. 

         infected 

prophylax   0        p0  1         p1  oddsratio      lower      upper      p.value 
  control  40 0.1142857 94 0.49735450 1.00000000         NA         NA           NA 
  doxy    130 0.3714286 80 0.42328042 0.26186579 0.16479825 0.41610692 6.790312e-09 
  lariam  180 0.5142857 15 0.07936508 0.03546099 0.01862937 0.06749997 8.847446e-34 

 

To compare just the two prophylaxis types, we can select just the corresponding part of the 

data for analysis (specifying this by square brackets in R). The result shows that taking Lariam is 

associated with significantly lower infection rate than taking doxycycline. 

         infected 
prophylax   0        p0  1        p1 oddsratio      lower     upper      p.value 
   doxy   130 0.4193548 80 0.8421053 1.0000000         NA        NA           NA 
   lariam 180 0.5806452 15 0.1578947 0.1354167 0.07462922 0.2457171 1.531487e-13 

 

In a paper/thesis, the result can by summarized as Table 6.4 

Table 6.4. Summary of a contingency table analysis testing the association between malaria 

prophylaxis and infection. Overall test of independence χ2 =  137.45, df = 2, p < 10-6. 

 Odds ratio lower 95% conf. limit upper 95% conf. limit p 

Lariam vs. none 0.035 0.019 0.067 < 10
-6

 

doxycycline vs. none 0.262 0.165 0.416 < 10
-6

 

Lariam vs. doxycycline 0.135 0.075 0.246 < 10
-6

 

 

Coincidence and causality 

Note here, that significant results of contingency table analysis indicate significant association. 

This can be caused either by coincidence or causality. Causality means that if we manipulate one 

variable, the other also changes, i.e. one variable has a direct effect on the other. By contrast 

coincidence may happen due to another variable affecting the two analyzed. Manipulation of 

one variable has no effect on the other in case of coincidence.  



Considering the malaria example, the travelers using prophylaxis are simultaneously more likely 

to use mosquito repellents, which in reality can strongly decrease infection risk. Therefore, if 

somebody from the no-prophylaxis travelers decided to take prophylaxis, it may have much 

lower (or even no) effect that our analysis suggests. 

People in general like causal explanations (and expect them). As a result, association is 

frequently interpreted as causal relationship, which is however inappropriate. Association can 

only suggest causality at maximum. 

The only possible way to demonstrate causality is to use a manipulative experiment. In our 

case, this would mean to select a group of people, assign them randomly into three groups 

according to prophylaxis, send them to the tropics and see what happens. This type of research 

would not be approved by any ethical committee however.  

How to do in R 

1. Chisq analysis of contingency tables 

Option 1: apply chisq.test on matrix containing frequencies 

Option 2: If the data are formatted in data frame as in Table 

6.3, they can be converted to contingency table by function xtabs 

data.table<-xtabs(freq~var1+var2, data=data.frame) 

chisq.test can then be applied on the contingency table. If its 

result is saved in an object: 

test.res<-chisq.test(data.table) 

running test.res$std.resid can then be used to display 

standardized residuals. 

2. Phi – coefficient 

function phi (package psych) applied on a 2x2 matrix  

3. Odds ratios 

function epitab (package epitools) applied on contingency table 

produced by xtabs. Square brackets can be used to select the 

levels to compare. 

 



7. t-distribution, confidence intervals and t-tests 

t-distribution 

For any fixed value X, a t-value can be computed from a sample of a quantitative random 

variable using this formula: 

𝑡 =  
𝑋 −  𝑥̅

𝑠𝑥̅
 

where, 𝑥̅ is sample mean and 𝑠𝑥̅ is its associated standard error. Remember here, that 𝑥̅ is the 

estimate of population mean and 𝑠𝑥̅ quantifies its accuracy. As a result, the t-value represents 

the estimate of difference between X and the population mean. Because  𝑥̅ is a random 

variable, t-value is also a random variable and its probability distribution is called t-distribution. 

Its shape is closely similar to Z (standard normal distribution). In contrast to Z, t distribution has 

a single parameter – number of degrees of freedom, which equals number of observations in 

given sample minus 1. In fact, t approaches Z asymptotically for high DF (Fig 7.1).  Similarly, to 

normal distribution, t-distribution is symmetric and its two tails must be considered when 

computing probabilities {Fig 7.2). 

 

Fig. 7.1 Probability density plot of t-distributions with different DF and their comparison to 

standard normal distribution (Z). 

 

 

 



Fig 7.2. t-distribution with its two tails and 2.5% and 97.5%-quantiles.  

Confidence intervals for mean value and single sample t-test 

t-distribution can be used to compute confidence intervals (CI), i.e. intervals within which the 

population mean value lies with certain probability (usually 95%). The confidence limits (CL) 

within which the CI lies are determined using these formulae: 

𝐶𝐿𝑙𝑜𝑤 =  𝑥̅ + 𝑡(𝑑𝑓,𝑝=0.025)𝑠𝑥̅ 

𝐶𝐿ℎ𝑖𝑔ℎ =  𝑥̅ + 𝑡(𝑑𝑓,𝑝=0.975)𝑠𝑥̅ 

where t(df, p) equals 2.5% or 97.5% probability quantile of t-distribution with given df. These 

intervals can be used as error bars in barplots or dotcharts. In fact, they represent the best 

option to be used like this (in contrast to standard error or 2 x standard error). 

Confidence intervals can also be used to determine whether population mean is significantly 

different from a given value: a value lying outside the CI is significantly different (at 5%-level of 

significance) while a value lying inside is not. This is closely associated with single sample t-test, 

which tests a null hypothesis that given values X equals the populations mean. Using the 

formula for t-value, and DF, the t-test determines type I error probability associated with 

rejection of such hypothesis. 

 

 



Student t-test 

If means can be compared with an a-priori given value, two means of different samples should 

also be comparable with each other. This is done by two-sample t-test1, which quantifies 

uncertainty about the values of both means considered:  

𝑡 =  
𝑥̅1 − 𝑥̅2

𝑠𝑥̅1−𝑥̅2

 

where 𝑥̅1 and 𝑥̅2 are arithmetic means of the two sample and 𝑠𝑥̅1−𝑥̅2
is standard error of their 

difference. This is then computed using following formula: 

𝑠𝑥̅1−𝑥̅2
=  √

𝑠𝑝
2

𝑛1
+ 

𝑠𝑝
2

𝑛2
   

where 𝑠𝑝
2 is pooled variance of the two samples and n1 and n2 are sample sizes of the two 

samples. Pooling variance like this is only possible if the two variances are equal. Equality of 

population variances, called homogeneity of variance is one of the t-test assumptions. In 

addition, t-test assumes that the samples come from populations that are normally distributed. 

There is also the universal assumption that individual observations are independent. 

t-test is relatively robust to violations of the assumptions about homogeneity of variance and 

normality (i.e. their moderate violation does not produce strongly biased test outcomes). If 

variances are not equal, Welch approximation of t-test (Welch t-test) can be used instead of the 

original Student t-test. A slightly modified formula is used for t-value computation and also the 

degrees of freedom are approximated (as a result, DF is usually not an integer). Note, that 

Welch t-test is used by default in R. In original (two-sample) Student t-test, the DF is determined 

as  

DF = n1 – 1 + n2 – 1  

Paired t-test 

Paired t-test is used to analyzed data composed of paired observations. For instance, difference 

of length between left and right arms of people would be analyzed by a paired t-test. Null 

hypothesis in this case is that the difference within the pair is zero. In fact, paired t-test is fully 

equivalent to single sample t-test comparing the within-pair difference distribution with zero. 

Because in paired t-test, there is just one sample (of paired values) DF = n – 1. 

 

 

 

                                                      
1 Called also Student t-test after its inventor William Sealy Gosset (1976-1937)  who used the pen name Student. 



 

How to do in R 

1. t distribution computations 

functions pt and qt are available. For instance qt(0.025, df) can 

be used to compute the difference between lower confidence limit 

and the mean.  

2. t-test 

Function t.test. For two sample, the best way is to use a 

classifying factor and response variable in two columns. Then, 

t.test(response~factor) can be used. But t.test(sample1, sample2) 

is also okay.  

important parameters:  

var.equal – switches between Welch and Student variants. Defaults 

to FALSE (Welch) 

mu – a priori null value of the difference (relevant for single 

sample test) 

paired – TRUE specifies a paired t-test analysis. 

 

 



8. F-test and distribution, analysis of variance (ANOVA) 

F-test 

Normally distributed data can be described by two parameters – mean and variance. We 

discussed testing the difference in the mean between two samples in previous chapter. 

However, it is also possible to test whether two samples come from population with the same 

variance, i.e. the null hypothesis stating: 

σ2
1 = σ2

2 

as usual for population parameters, we do not know the σ but they can be estimates by s2 

(sample variances). A comparison between sample variances is then done by F-test  

𝐹 =  
𝑠1

2

𝑠2
2 

which is a simple ratio between sample variances. The F statistic follows F distribution, shape of 

which is defined by two degrees of freedom – DF numerator and DF denominator. These are 

found as n1 – 1 and n2 – 1 (i.e. number of observations in corresponding sample – 1). When 

reporting test results in a text, both DFs must be reported (usually as subscripts). For instance, 

variances significantly differed between green and red apples (F20,25 = 2.52, p = 0.015). 

 

Fig. 8.1 Probability density plot of F-distributions with different DFs. 



Analysis of variance (ANOVA) 

F-test is rarely used to test the differences in variance between two samples because 

hypotheses on variance are not that common. However, F-test has its crucial application in 

analysis of variance.  

In chapter 7, we discussed comparison between the means of two samples using t-test. A 

natural question however arises – what if we have more than two samples? We may try 

pairwise comparisons between each pair of samples. That would however lead to multiple non-

independent tests and result in inflated type I error probability1. Therefore, we use analysis of 

variance (ANOVA) to solve such problems. 

ANOVA tests a null hypothesis on means of multiple samples, which states that the population 

means are equal, i.e. 

μ1 = μ2 = μ3 = ...= μk 

The mechanism of ANOVA is based on decomposing the total variability into two components: 

1. systematic component corresponding to differences between groups and 2. error (or 

residual) component corresponding to differences within groups. These differences are 

measured as squares. For each observation in the dataset, its total square (measuring difference 

between its value and the overall mean), effect square (measuring difference between 

corresponding group mean and the overall mean), and error square (measuring difference 

between the value and corresponding group mean) can be calculated (Fig 8.2). 

 

Fig. 8.2 Mechanism of ANOVA: definition of squares exemplified with the red data point. 

                                                      
1 This comes from the fact that if individual tests are performed at α = 0.05, then probability of making type I error 
in 2 tests (i.e. making error in at least one of the test) is p = 0.05+0.05-0.052 = 0.975. 



Subsequently, we can summarize the square statistics over the whole dataset by summing to 

get sums of squares (SS): SStotal, SSeffect, SSerror. We can further calculate mean squares (MS) by 

dividing SS by corresponding DF, with DFtotal = n – 1, DFeffect = k – 1, and  

DFerror = DFtotal - DFeffect, where n is total number of observations and k number of categories. 

Hence we get: 

MSeffect = SSeffect/DFeffect 

MSerror = SSerror/DFerror 

and now, it comes: the mean squares are actually variances. As a result, we can use an F-test to 

test null hypothesis that MSeffect is higher that MSerror which is equivalent to the test that all 

means are equal: 

FDFeffect,DFerror = MSeffect/ MSerror 

the corresponding p-value can be then found based on comparison with F distribution as in an 

ordinary F-test. Note, that rejecting the null hypothesis means, that all means are not equal, i.e. 

at least one of the means is significantly different from at least one other. 

In addition, to the p-value, it is also possible to compute proportion of variability explained by 

the groups: 

r2 = SSeffect/SStotal 

Typical report of ANOVA result in the text then reads: Means were significantly different among 

the groups (r2 = 0.70, F2,12 = 14.63, p = 0.0006). 

ANOVA assumptions 

ANOVA application assumes that i. samples come from normally distributed populations and 

variances are equal among the groups. These assumptions can be checked by analysis of 

residuals as they can be restated as i. normal distribution and ii. constant variance of residuals.  

There are formal tests testing for normality, such as the Shapiro-Wilk test, but their use is 

problematic as they test the null hypothesis that given sample comes from normal distribution. 

The tests are more powerful (likely to reject the null) if there are many observations, but in that 

case, ANOVA is rather robust to moderate violations of the assumption. By contrast, the formal 

tests of normality fail to identify the most problematic cases, when the assumptions are not met 

and also the number of observations is low. 

Instead, I highly recommend visual check of the residuals. In particular, scatterplot of 

standardized residuals and normal quantile-quantile (QQ) plots 

(https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot) are informative about possible problems 

with ANOVA assumptions. 

 

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot


Post-hoc comparisons 

When we get a significant result in ANOVA (and only in such case!), we may be further 

interested to see, which mean is different from which. Statistical theory does not provide much 

help here, however some pragmatic tools were developed in this respect. These are based on 

the principle of pair-wise comparisons (similar to a series of pair-wise two-sample t-tests), which 

however control for inflation of type I error probability by adjusting the p-values upwards. An 

example of such test is Tukey honest significant difference test (Tukey HSD).  

Results of these tests are frequently summarized in plots by letter indices with different letters 

indicating significant differences (Fig. 8.3) 

 

Fig. 8.3 Dotchart displaying means and 95%-confidence intervals for the means of the three 

samples. Means significantly different from each other at α = 0.05 are denoted by different 

letters (based on Tukey HSD test).  

How to do in R 

1. F test, F-distribution 

function var.test; pf, qf for F-distribution probabilities  

2. ANOVA 

Function aov – accepts formula syntax. Note that the predictor 

must be a factor; otherwise linear regression is fitted (which is 

incorrect, but no warning is given). 

summary (aov.object) displays the ANOVA table with SS, MS, F and 

p. 



plot(aov.object) displays the diagnostic plots for checking ANOVA 

assumptions 

3. Post-hoc test 

tukeyHSD(aov.object)-produces just the differences between 

groups. Letters as in Fig. 8.3 must be produced manually. 

 



9. Linear regression, correlation and intro to general linear models 

Regression and correlation 

Both regression and correlation refer to associations between two quantitative variables. One 

variable, the predictor, is considered independent in the case of regression and its values are 

considered not to be random. The other variable, the response, is dependent on the values of 

the predictor with certain level of error variability, i.e. it is a random variable. In case of 

correlation, both variables are considered random. Regression and correlation are thus quite 

different – theoretically. In practice however, they are numerically identical concerning both the 

measure of association and p-values (type I error probabilities) associated with rejecting the null 

hypothesis on independence between the two variables. 

Linear regression 

Linear association between two quantitative variables X and Y, of which Y is a random variable, 

can be described by the equation: 

Y = a + bX + ε 

where a and b are intercept and slope of a linear function, which represents the systematic 

(deterministic) component of the regression model and ε is the error (residual) variation 

representing the stochastic component. ε is assumed to follow normal distribution with mean = 

0. The goal of regression model fitting is to estimate the population slope and intercept from 

sample data of Y and X. a and b are thus estimates of population parameters. There are multiple 

approaches to conduct such estimates. Maximum likelihood estimation is most common, which 

provides numerically identical results as least square estimation in ordinary regression. We shall 

discuss the least square estimation here, as it is fairly intuitive and will help us to understand 

the relationship with ANOVA. The least square estimation aims at minimizing the sum of error 

squares (SSerror), i.e. the squares of the differences between fitted and observed values of the 

response variable (Fig. 9.1). Note that this mechanism is notably similar to that of analysis of 

variance. In parallel with ANOVA, we can also define the total sum of squares (SStotal) and 

regression sum of squares (SSregr). Subsequently, we can calculate mean squares (MS) by 

dividing SS by corresponding DF, with DFtotal = n – 1, DFregr = 1, and  

DFerror = DFtotal – DFeffect = n – 2, where n is total number of observations. Hence we get: 

MSregr = SSregr/DFregr 

MSerror = SSerror/DFerror 

As in ANOVA, the ratio between MS can be used in an F-test of a null hypothesis that there is no 

linear relationship between the two variables: 

FDFregr,DFerror = MSregr/ MSerror 



Rejecting the null hypothesis means, that the two variables are linearly related. Note however, 

that non-significant result may be produced also in cases when the relationship exists but is not 

linear (e.g. when it is quadratic). 

 

Fig. 9.1 Mechanism of least square estimation in regression: definition of squares exemplified 

with the red data point. 

In regression, we are usually interested not only in statistical significance but also in the 

strength of the association, i.e. the proportion of variability in Y explained by X. That is 

measured by the coefficient of determination (R2): 

R2 = SSregr/SStotal 

which can range from 0 (no association) to 1 (deterministic linear relationship). Alternatively, 

so-called adjusted-R2 may be used (and is reported by R), which accounts for the fact that the 

association is computed from samples and not from populations: 

adjusted-R2 = 1 – MSerror/MStotal 

Returning back to the regression coefficients – their estimate nature means that errors of the 

estimate may be computed. Their significance (i.e. significant difference from zero) may thus be 

tested by a single sample t-test. The p-value of such test for the slope (b) is identical to that of 

the F-test in simple regression with single predictor. Note, that the test of the intercept 

(reported by R or other statistical software) is irrelevant for significance of the regression itself. 

Significant intercept only indicates that mean(Y) is significantly different from zero.  

Regression diagnostics 

We have discussed the systematic component of the regression equation. However, the 

stochastic component is also important. This is because its properties can provide crucial 



information on validity of regression assumptions and thus validity of the whole model. The 

stochastic component of the model, called model residuals, can be computed using equation: 

ε = Y – a – bX = Y – fitted(Y) 

Residuals form a vector of values for each of the data points. As such, they can be analyzed by 

descriptive statistics. They may also be standardized by division of their standard deviation. The 

basic assumptions concerning the residuals are: 

1. Residuals should follow the normal distribution  

2. Size of their absolute value should be independent of fitted value. 

3. There should be no obvious trend in residuals associated with fitted values, which would 

indicate non-linearity of the relationship between X and Y. 

These assumptions are best evaluated on a regression-diagnostics plot (Fig 9.2). In addition, it 

may be worth to check that the regression result is not driven by a single extreme observation 

(or few of these), which is provided on the bottom-right plot on Fig 9.2.  

 

Fig 9.2. Regression diagnostics plots. 1. Residuals vs. fitted values indicate potential non-

linearity of the relationship (smoothed trend displayed by red line). 2. Normal Q-Q plot displays 

agreement between normal distribution and distribution of residuals (dashed line). 3. Square 

root of absolute value of residuals indicate potential correlation between the size of residuals 

and fitted values. 4. Residuals vs. leverage (https://en.wikipedia.org/wiki/Leverage_(statistics))   

plot detect points, which have high influence on the regression parameter estimates (these 

points have high Cook distance; https://en.wikipedia.org/wiki/Cook%27s_distance).  

https://en.wikipedia.org/wiki/Leverage_(statistics)
https://en.wikipedia.org/wiki/Cook%27s_distance


Correlation 

Correlation is a symmetric measure of the association between two random variables, of which 

neither can be considered a predictor or a response. Correlation is most commonly measured 

by Pearson correlation coefficient: 
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Its values can range from -1 (absolute negative correlation) to +1 {absolute positive correlation), 

with r = 0 corresponding to no correlation. r2 then refers to the amount of shared variability. 

Numerically, Pearson r2 and regression R2 have identical values for given data and have basically 

the same meaning. Pearson r is also an estimate of population parameter; its significance (i.e. 

significant difference from zero) can thus be tested by a single sample t-test with n – 2 degrees 

of freedom. 

On correlation and causality 

Note, that significant result of a regression of observational data may only be interpreted as 

correlation (or coincidence) despite there is a variable called the predictor and the response. 

Causal explanations imply that a change of predictor value causes a directional change in the 

response. Causality may therefore only be tested in manipulative experiments, where the 

predictor is manipulated. See more details on this in Chapter 6. 

Brief introduction to multiple regression and general linear models 

In regression, multiple predictors may be used in a model: 

Y = a + b1X + b2X +… + bnX + ε 

provided that number of predictors is lower than number of observations – 1. While statistical 

testing of such models is easy and largely follows the same principles as in simple regression, it 

is more difficult to decide which predictors to include in the model and which not (i.e. how to 

find the best model) as some may have significant effects while others not. This is done by a 

model selection procedure, details of which are beyond the scope of the present text.  

It is important, that categorical predictors of ANOVA may be decomposed into a series of k - 1 

quantitative variables (e.g. binary variables containing 0s and 1s), where k is the number of 

categories.  

This means that ANOVA and regression are fundamentally identical. In addition, both 

quantitative and categorical variables may be used as predictors in a single analysis. Statistical 

models containing a single response variable and possibly multiple quantitative and categorical 

predictors and assuming normal distribution of the residuals are called general linear models (or 

simply linear models). 



How to do in R 

1. Regression (or a linear model) 

start with function lm to fit the model and save the lm output 

into an object: 

model.1<-lm(response~predictor)  

or model.2<-lm(response~predictor1+predictor2+…) 

anova(model.1) performs analysis of variance of the model (i.e. 

tests its significance by an F test). Models may also be compared 

by anova(model.1, model.2) 

summary(model.1) displays summary of the model, including the t-

tests of individual coefficients. 

resid(model.1) extracts model residuals 

predict(model.1) returns predicted values 

plot(model.1) plots regression diagnostic plots of the model 

2. Pearson correlation coefficient 

cor(Var1~Var2) computes just the coefficient value 

cor.test(Var1~Var2) computes the coefficient value together with 

significance test  



10. When assumptions are violated - data transformation and non-parametric methods 

Log-normally distributed data 

Log-normal distribution is very common in any kind of real data, i.e. random variables logarithm 

of which follows normal distribution. As a result, log-normal variables may range from zero limit 

(excluding zero itself) to plus infinity – that is pretty realistic e.g. for dimensions, mass, time etc. 

In contrast to normal distribution, log-normal variables are positively skewed (i.e. are not 

distributed symmetrically around the mean) and display a positive correlation between mean 

and variance (Fig. 10.1). A straightforward suggestion for such data is to apply log-

transformation of the values to obtain normally distributed variables (Figs 10.1, 10.2, Table 

10.1). ANOVA applied on non-transformed and transformed data provides quite different 

results (Table 10.1.). 

Fig. 10.1. Example of a log-normal variable: length of phone calls in dependence of job of the 

person calling. Left panel shows the boxplot on the ordinary linear scale, while the right panel 

shows the same values on the log-scaled y-axis.  

Table 10.1. Summaries of ANOVA applied on non-tansformed and transformed data displayed 

on Fig. 10.1. 

Analysis R2 F DF p 

non-transformed 0.26 4.13 3,36 0.013 
log-transformed 0.42 8.72 3,36 0.0002 

 



 

Fig. 10.1. Diagnostic plots of ANOVA models applied on non-transformed (upper row of plots) 

and log-transformed data (lower row of plots). Note  improved normal fit on the QQplot and 

homogeneity of variances after transformation (Residuals vs. Fitted and Scale-Location plots).  

Note, that log-transformation is not a simple utility procedure, it also affects the interpretation 

of the analysis. Log-transformation changes the scale from additive to multiplicative, i.e. we test 

the null hypothesis stating that the ratio between population means is 1 (instead of difference 

being 0). We also consider different means – analysis on log-scale implies testing geometric 

means on the original scale. The same applies for regression coefficients, which become relative 

rather than absolute numbers e.g. the slope indicates how many times the response variable 

will change with a change in predictor. An example with log-transformation in linear regression 

is displayed on Fig. 10.3., 10.4. and Table 10.2. 

Log-transformation is sometimes used also for data, which are not log-normally distributed, but 

are just positively skewed. Such data may contain zeros and thus are not log-transformable. 

Instead log (x + constant) transformation must be used. Alternatively, square-root 

transformation may be considered for such data.  

Note, that the analysis results do not depend on logarithm used – natural and decadic 

logarithms are used most frquently. Just beware to be consistent in using the same logarithm 

throughout the analysis. 



Fig. 10.3. Example of a regression with log-normal variable: how grain yield of maize depends on 

amount of fertilizer applied. Left panel shows the scatterplot on the ordinary linear scale, while 

the right panel shows the same values on the log-scaled y-axis.  

Table 10.2. ANOVA tables of linear models fitted on non-tansformed and transformed data 

displayed on Fig. 10.3. 

Analysis R2 F DF p 

non-transformed 0.10 11.0 1,98 0.0013 
log-transformed 0.14 16.05 1,98 0.0001 
     

 

Fig. 10.4. Diagnostic plots of linear models fitted on non-transformed (upper row of plots) and 

log-transformed data (lower row of plots). Note  improved normal fit on the QQplot and 

improved homogeneity of variances after transformation (Scale-Location plot).  



Non-parametric tests 

Some distributions cannot be approximated by normal distribution and simple transformations 

are not helpful. This applies e.g. on many data on ordinal scale, such as schoolgrades, subjective 

rankings etc. For such cases, non-parametric tests were developed (Table 10.3.). These tests 

replace original values by value order and use these data to test differences in central 

tendencies (which are not exactly means) between the samples based only on the assumption, 

that the samples come from the same distribution.  

Table 10.3. List of parametric tests and treir non-parametric counterparts together with 

appropriare R functions.  

Parametric test Non-parametric test R function 

two-sample t-test Mann-Whitney U test  wilcox.test 
paired t-test Wilcoxon test wilcox.test with 

parameter paired=T 
One way ANOVA Kruskal-Wallis test* kruskal.test 
Pearson correlation Spearman correlation cor.test with parameter 

method=”spearman” 
* Dunn test may be used for post-hoc comparisons (function dunnTest in package FSA) 

Permutation tests 

Permutation tests represent useful alternatives to parametric tests. First, a statistic of difference 

from null hypothesis (between samples) is defined. That may be raw or relative difference or an 

F-ratio if multiple groups are analyzed. This statistic is computed for observed data (observed 

statistic). Subsequently, values of response variable are repeatedly permuted (reshuffled) and 

the same statistic is computed in each permutation. P-value is then determined by the formula: 

𝑝 =  
𝑥 + 1

𝑛𝑝𝑒𝑟𝑚 + 1
 

where x is the number of permutations in which test statistic was higher than observed test 

statistic and nperm is the total number of permutations. 

 

 

 

 

 

 

 



How to do in R 

1. Log-scaling of graph axis: parameter log=’axis to be log-

scaled’, i.e. mostly log=’y’ 

2. Log-transformation: function log for natural logarithm, 

log10 for decadic 

3. Non-parametric tests: see Table 10.3. 

4. Permutation tests are available in library coin: 

a. permutation-based ANOVA: function oneway_test 

b. permutation-based correlation: spearman_test 

Both methods require parameter  

distribution=approximate(B=number of permutations) to 

be set B is usually set to 999 or 9999.  


