
10. When assumptions are violated - data transformation and non-parametric methods 

Log-normally distributed data 

Log-normal distribution is very common in any kind of real data, i.e. random variables logarithm 

of which follows normal distribution. As a result, log-normal variables may range from zero limit 

(excluding zero itself) to plus infinity – that is pretty realistic e.g. for dimensions, mass, time etc. 

In contrast to normal distribution, log-normal variables are positively skewed (i.e. are not 

distributed symmetrically around the mean) and display a positive correlation between mean 

and variance (Fig. 10.1). A straightforward suggestion for such data is to apply log-

transformation of the values to obtain normally distributed variables (Figs 10.1, 10.2, Table 

10.1). ANOVA applied on non-transformed and transformed data provides quite different 

results (Table 10.1.). 

Fig. 10.1. Example of a log-normal variable: length of phone calls in dependence of job of the 

person calling. Left panel shows the boxplot on the ordinary linear scale, while the right panel 

shows the same values on the log-scaled y-axis.  

Table 10.1. Summaries of ANOVA applied on non-tansformed and transformed data displayed 

on Fig. 10.1. 

Analysis R2 F DF p 

non-transformed 0.26 4.13 3,36 0.013 
log-transformed 0.42 8.72 3,36 0.0002 

 



 

Fig. 10.1. Diagnostic plots of ANOVA models applied on non-transformed (upper row of plots) 

and log-transformed data (lower row of plots). Note  improved normal fit on the QQplot and 

homogeneity of variances after transformation (Residuals vs. Fitted and Scale-Location plots).  

Note, that log-transformation is not a simple utility procedure, it also affects the interpretation 

of the analysis. Log-transformation changes the scale from additive to multiplicative, i.e. we test 

the null hypothesis stating that the ratio between population means is 1 (instead of difference 

being 0). We also consider different means – analysis on log-scale implies testing geometric 

means on the original scale. The same applies for regression coefficients, which become relative 

rather than absolute numbers e.g. the slope indicates how many times the response variable 

will change with a change in predictor. An example with log-transformation in linear regression 

is displayed on Fig. 10.3., 10.4. and Table 10.2. 

Log-transformation is sometimes used also for data, which are not log-normally distributed, but 

are just positively skewed. Such data may contain zeros and thus are not log-transformable. 

Instead log (x + constant) transformation must be used. Alternatively, square-root 

transformation may be considered for such data.  

Note, that the analysis results do not depend on logarithm used – natural and decadic 

logarithms are used most frquently. Just beware to be consistent in using the same logarithm 

throughout the analysis. 



Fig. 10.3. Example of a regression with log-normal variable: how grain yield of maize depends on 

amount of fertilizer applied. Left panel shows the scatterplot on the ordinary linear scale, while 

the right panel shows the same values on the log-scaled y-axis.  

Table 10.2. ANOVA tables of linear models fitted on non-tansformed and transformed data 

displayed on Fig. 10.3. 

Analysis R2 F DF p 

non-transformed 0.10 11.0 1,98 0.0013 
log-transformed 0.14 16.05 1,98 0.0001 
     

 

Fig. 10.4. Diagnostic plots of linear models fitted on non-transformed (upper row of plots) and 

log-transformed data (lower row of plots). Note  improved normal fit on the QQplot and 

improved homogeneity of variances after transformation (Scale-Location plot).  



Non-parametric tests 

Some distributions cannot be approximated by normal distribution and simple transformations 

are not helpful. This applies e.g. on many data on ordinal scale, such as schoolgrades, subjective 

rankings etc. For such cases, non-parametric tests were developed (Table 10.3.). These tests 

replace original values by value order and use these data to test differences in central 

tendencies (which are not exactly means) between the samples based only on the assumption, 

that the samples come from the same distribution.  

Table 10.3. List of parametric tests and treir non-parametric counterparts together with 

appropriare R functions.  

Parametric test Non-parametric test R function 

two-sample t-test Mann-Whitney U test  wilcox.test 
paired t-test Wilcoxon test wilcox.test with 

parameter paired=T 
One way ANOVA Kruskal-Wallis test* kruskal.test 
Pearson correlation Spearman correlation cor.test with parameter 

method=”spearman” 
* Dunn test may be used for post-hoc comparisons (function dunnTest in package FSA) 

Permutation tests 

Permutation tests represent useful alternatives to parametric tests. First, a statistic of difference 

from null hypothesis (between samples) is defined. That may be raw or relative difference or an 

F-ratio if multiple groups are analyzed. This statistic is computed for observed data (observed 

statistic). Subsequently, values of response variable are repeatedly permuted (reshuffled) and 

the same statistic is computed in each permutation. P-value is then determined by the formula: 

𝑝 =  
𝑥 + 1

𝑛𝑝𝑒𝑟𝑚 + 1
 

where x is the number of permutations in which test statistic was higher than observed test 

statistic and nperm is the total number of permutations. 

 

 

 

 

 

 

 



How to do in R 

1. Log-scaling of graph axis: parameter log=’axis to be log-

scaled’, i.e. mostly log=’y’ 

2. Log-transformation: function log for natural logarithm, 

log10 for decadic 

3. Non-parametric tests: see Table 10.3. 

4. Permutation tests are available in library coin: 

a. permutation-based ANOVA: function oneway_test 

b. permutation-based correlation: spearman_test 

Both methods require parameter  

distribution=approximate(B=number of permutations) to 

be set B is usually set to 999 or 9999.  


