
5. Hypothesis testing and goodness-of-fit test 

Scientific statements 

In chapter 1, I explained that science consists of theories and these comprise hypotheses. 

Scientists formulate these hypotheses as universal statements describing the world but they 

never know whether a hypothesis is true until it is rejected based on the empirical evidence. 

This makes science an infinite process of searching for true, to which we hopefully approach but 

never know whether we reach it or not.  

 Let’s now return to the term universal statement I used in the previous paragraph and in 

chapter 1 as this is crucial to understand how empirical science works and hypothesis testing 

proceeds. Statements describing the world can be classified into two classes: 

1. Universal statements apply generally on all objects concerned. E. g. “All (adult) swans are 

white” is a universal statement. This can be converted to a negative form: “Swans of 

other color than white do not exist.” You can see that the universal statements prohibit 

certain patterns or events (e.g. observing a black swan here); therefore, they have the 

form of “natural laws”. They can also be used to make predictions. If the white swan 

hypothesis is true, the next swan I will see will be white (and this is not dependent on 

how many white swans I saw before). A universal statement cannot be verified, i.e. 

confirmed to be true. We would need to inspect color all swans living on the Earth (and 

in the Universe) to do so (that is not very realistic) and even if we did so, we can never 

be sure that the next baby swan hatching from the egg would not be different from 

white at adulthood. By contrast, it is very easy to reject such universal statement on the 

basis of empirical evidence. Observing only a single swan of other color than white is 

sufficient for that.  

 

2. Singular statements are asserted only on specific objects. E.g. “The swan I see is white.” 

Such statement refers to a particular swan and does not predict anything about other 

swans. A specific class of singular statements are existential statements which can be 

derived from singular ones. The fact that I see a white swan (singular statement) can be 

used to infer that there is at least one swan which is white, i.e. white swans do exist. 

Based on the previous paragraph, you would probably not consider such statement any 

novel since it is in agreement with the universal statement on white swans. However, 

seeing a single black swan (Fig 5.1) completely changes the situation. It means, that at 

least one black swan exists and that the universal statement on white swans is not true. 

In general terms, this existential statement rejected the universal statement.  

To sum up, scientific hypothesis must have a form of universal statements in order to have a 

predictive power, which we need to explain patterns in natural. They cannot be verified but can 

be rejected by empirical existential statements which are in conflict with the prediction the 

hypothesis makes. 



 

Fig. 5.1 A black swan in Perth (Western Australia). 

Hypotheses and their testing 

Empirical science is largely the process of hypothesis testing. This means searching for conflicts 

between predictions of hypotheses and collected/measured data. Once a hypothesis is rejected, 

a new hypothesis can be formulated to replace the old one. Note, here that there is no 

“objective” way how to formulate new hypotheses – they are rather genuine guesses.  

An important implication from this is that for every scientific theory or hypothesis, it should be 

possible to define singular observations which if they exist would reject it. This means, that each 

scientific hypothesis must be falsifiable. Universal statements that are not falsifiable may be 

components of art, religion or pseudoscience but definitely not of science. Various conspiracy 

theories also belong to this class. These statements need not to be only dogmatic, they may also 

be tautological. Example of this is e.g. recently published theory of stability-based sorting in 

evolution (https://www.ncbi.nlm.nih.gov/pubmed/28899756), a “theory” which says that 

evolution operates with stability, i.e. organisms and traits which are more stable, persist for 

longer. The problem is that long persistence is a synonym for stability. So in fact the theory says 

“What is stable is stable”. Not very surprising.  The authors declare the theory to explain 

everything (see the ending of the abstract), and this is indeed true, but the problem is that the 

theory neither produces any useful predictions nor can be tested by empirical data. 

https://www.ncbi.nlm.nih.gov/pubmed/28899756


If we select only hypotheses which are falsifiable, and as such can be considered scientific 

statements, we may discover that there are multiple theories without any conflicts with the 

data. It is a natural question to ask, which one to choose over the others. Here, we should use 

the Occam’s razor (https://en.wikipedia.org/wiki/Occam%27s_razor) principle and use the 

simplest (and also most universal and most easily falsifiable) hypothesis available. This is also 

termed “minimum adequate model” – i.e. choose the model with minimum number of 

parameters which fits adequately with the data.  

Note on specifics of biology and ecology 

Biological and ecological systems display high complexity arising from an interplay among 

complicated biochemical processes, evolutionary history and ecological interactions. As a result, 

quite large proportion of the research is exploratory aiming at discovering effects which were 

not anticipated yet. Therefore, no previous theory could have informed about them, or such 

information on absence of effect would be just redundant. In these cases, we test a universal 

statement, that the effect under investigation is zero. 

Hypothesis testing with statistics 

In statistics, we work with numbers and probabilities. Therefore, we do not record a clear-cut 

evidence to reject a hypothesis as in the example with swans. In other words, even improbable 

events do happen by chance and their observation may not be sufficient evidence to reject a 

hypothesis.  

A general statistical testing procedure involves computation of test statistic. This statistic 

measures the discrepancy between the prediction of the null hypothesis and the data 

considering also strength of the evidence based on the number of observations. The test 

statistic is a random variable following certain theoretical distribution. As a result, probability of 

observing the actual data or data that differ even more from the null hypothesis expectation 

can be quantified. If this probability (called the p-value) is below certain threshold we can justify 

rejection of the null hypothesis.  

The probability of observing certain data under null hypothesis can be very low but never zero. 

As a result, we are left with uncertainty concerning whether we did a right decision when 

rejecting or retaining the null hypothesis. We may take either right decision or make an error 

(Table 5.1). 

 

 

 

 

 

https://en.wikipedia.org/wiki/Occam%27s_razor


Table 5.1. Possible outcomes of hypothesis testing by statistical tests. H0 = null hypothesis 

  Reality 

  H
0
 is true H

0
 is false 

Our 
Decision 

Reject H
0
 Type I 

Error 
Ok 

Not reject H
0
 Ok Type II Error 

 

Two types of error can be made, of which type I error is more harmful as it means rejection of a 

null hypothesis which is true. Such false positive evidence is misleading and may obscure the 

scientific research of given topic. By contrast, type II error (false negative) is typically invisible to 

anybody except to the researcher itself because results not rejecting the null hypothesis are not 

published. Statistical tools can quite precisely control the probability of making type I error, by 

setting an a-priori limit for the p-value. Typically, this limit called level of significance (α) is set to 

α = 0.05 (5%). If the p-value resulting from the testing is higher than that, null hypothesis cannot 

be rejected. Note here, that such non-significant result does not mean that the null hypothesis 

is true. Non-significant results are indicative of absence of evidence, not of evidence of absence 

of an effect.  

Concerning type II error (probability of which is denoted β), statistical inference is less 

informative. It can be quantified in some controlled experiments, but its precise value is not of 

particular interest. Instead, a useful concept is power of the test, which equals 1 – β and its 

relative rather than absolute size. Power of the test increases with sample size and with 

decreasing α, i.e. if the tester accepts an elevated risk of type I error. 

Goodness-of-fit test 

Let’s have a look at an example of a statistical test. One of the most basic statistical tests is 

called goodness-of-fit tests (sometimes inappropriately chi-square test following the name of 

the test statistic). It is particularly suitable for testing frequencies (counts) of categorical data 

though the χ2 distribution is quite universal and approximates e.g. very general likelihood ratio.  

the formula is this: χ2 = ∑
(𝑂−𝐸)2

𝐸
 

where O indicates observed and frequencies and E indicates frequencies expected under the null 

hypothesis. The sum is repeated for each of the categories under investigation.  

The χ2 value is subsequently compared with corresponding χ2 distribution to determine the p-

value. There are many χ2 distributions which differ in the number of degrees of freedom (DF; Fig 



5.2). The DF is a more general concept common to all statistical tests as it quantifies size of the 

data and/or complexity of the model. Here, it is important to know that for ordinary goodness-

of-fit test: 

DF = number of categories – 1.  

 

Fig. 5.2 Probability densities of two χ2 distributions differing in the number of degrees of 

freedom. Dashed line indicates cut-off values for 0.05 probabilities on the upper tail.  

Goodness-of-fit test example 

A typical application of the goodness-of-fit test is in genetics as demonstrated in the following 

example: 

You are a geneticist interested in testing the Mendelian rules. To do so, you cross red and white 

flowering bean plants. Red is dominant and white recessive, so in the F1 generation you only get 

red flowering individuals. You cross these and get 44 red flowering and 4 white flowering 

individuals in the F2 generation. What can you say about the universal validity of the second 

Mendelian rule (which predicts 3:1 ratio between dominant and recessive phenotypes) at the 

level of significance α = 0.05? 

First, you need to calculate the expected frequencies. These are: 

Ered = 48 x 3 / 4 = 36 

Ewhite = 48 x 1 / 4 = 12 



then, computation of test statistic follows: 

χ2 = (44-36)2/36+(4-12)2/4 = 7.11 

DF = 1 

p(χ2= 7.11, DF = 1) = 0.0077 

Conclusion (to be written in the text): Heredity in our bean-crossing system is significantly 

different from the second Mendelian rule (χ2= 7.11, DF = 1, p = 0.0077). As a result, the second 

Mendelian rule is not universally true. 

Here you can see that our experiment produced a singular statement on the number of bean 

plants. This was translated by the statistics into an existential statement that at least one (the 

our) genetic system exists which does not follow the Mendelian rule. This was then used to 

reject the universal statement. 

How to do in R 

Goodness-of-fit test: chisq.test 

Parameter x is used for inputting the observed frequencies 

Parameter p is used for inputting the null hypothesis-derived 

probabilities 

Example with output: 

chisq.test(x=c(44,4), p=c(3/4,1/4)) 

 Chi-squared test for given probabilities 

data:  c(44, 4) 

X-squared = 7.1111, df = 1, p-value = 0.007661 
 

Probabilities of χ2 distribution can be computed by pchisq (do 

not forget to set lower.tail=F to get the p=value). 

pchisq(7.11, df=1, lower.tail = F) 

[1] 0.007665511 

 


