APPENDIX F BCF VALUES FOR MAMMAL AND BIRD MEASURMENT RECEPTORS from Appendix D of EPA, 1999b FOOD CHAIN MULTIPLIERS from EPA, 1999a APPENDIX D WILDLIFE MEASUREMENT RECEPTOR^CFs Appendix D provides recommended guidance for detemnning values for compound-specific, media to receptor, bioconcentration factors (BCFs) for wildlife measurement receptors. Wildlife measurement receptor BCFs should be based on values reported in the scientific literature, or estimated using physical and chemical properties of the compound. Guidance on use of BCF values in the screening level ecological risk assessment is provided in Chapter 5. Section D-1.0 provides the general guidance recommended to select or estimate compound BCF values for wildlife measurement receptors. Sections D-1.0 through D-1.3 further discuss determination of BCFs for specific media and receptors. References cited in Sections D-l.l through D-1.3 are located following Section D-1.3. For the compounds commonly identified in risk assessments for combustion facilities (identified in Chapter 2) and the mammal and bird example measurement receptors listed in Chapter 4, BCF values have been determined following the guidance in S ections D-1.0 through D-1.3. B CF values for these limited numb er of compounds and pathways are included in this appendix (see Tables D-l through D-3) to facilitate the completion of screening ecological risk assessments. However, it is expected that BCF values for additional compounds and receptors may be required for evaluation on a site specific basis. In such cases, BCF values for these additional compounds could be determined following the same guidance (Sections D-1.0 through D-1.3) used m determination of the BCF values reported in this appendix. For the calculation of BCF values for measurement receptors not represented in Sections D-l.l through Dl-3 (e.g., amphibians and reptiles), an approach consistent to that presented in this appendix could be utilized by applying data applicable to those measurement receptors being evaluated For additional discussion on some of the references and equations cited in Sections D-1.0 through D-1.3, the reader is recommended to review the Human Health Risk Assessment Protocol (HHRAP) (U.S. EPA 1998) (see Appendix A-3), and the source documents cited in the reference section of this appendix. D-1.0 GENERAL GUIDANCE This section describes general procedures for developing compound-specific BCFs from biotransfer factors (Bo.) for assessing exposure of measurement receptors. A biotransfer factor is the ratio of the compound concentration in fresh (wet) weight animal tissue to the daily intake of compound by the animal through ingestion of food items and media (soil, sediment, surface water). Therefore, as discussed in Chapter 5, biotransfer factors and receptor-specific ingestion rates can be used to calculate food item- and mecU a-to-animal BCFs. This approach provides an estimate of biotransfer of compounds from applicable food items and media to measurement receptors ingesting these items. Biotransfer factors could also be used directly in equations to calculate dose to measurement receptors. However, in order to promote consistency in evaluating exposure across all trophic levels within complex food webs, ifCFs calculated from Ba values are recommended in this guidance for evaluating measurement receptors. The use of Ba values to determine BCF values, and the use of BCF values in general, for the estimation of compound concentrations in measurement receptors may introduce F-l uncertainty. Major factors that influence the uptake of a compound by an animal, and therefore uncertainty, include bioavailability, metabolic rate, type of digestive system, and feeding behavior. Uncertainties also should be considered regarding the development of biotransfer values in comparison to how they are being applied for estimating exposure. For example, biotransfer values may be used to estimate contaminant uptake to species from items ingested that differ from the species and intakes used to empirically develop the values. Also, biotransfer data reported in literature may be specific to tissue or organ analysis versus whole body. As a result, BCFs may be under- or over-estimated to an unknown degree. B CFs for Measurement Receptors Ingesting Food Items BCF values for measurement receptors ingesting food items (plants or prey) can be calculated using the compound specific Ba value applicable to the animal (e.g., mammal, bird, etc.) and the measurement receptor-specific ingestion rate as follows: BCFF_A = BaA ■ IRF Equation D-l-1 where BCFFA = Bioconcentration factor for food item (plant or prey)-to-animal (measurement receptor) [(mg COPC/kg FW tissue)/(mg COPC/kg FW food item)] BaA = COPC-specific biotransfer factor applicable for the animal (day/kg FW tissue) IRF = Measurement receptor food item ingestion rate (kg FW/day) As an example of applying the above equation, BCF values for plants-to-wildlife measurement receptors listed in Chapter 4 are provided in Table D-l at the end of this appendix. Measurement-receptor specific ingestion rates used to calculate BCFs are presented in Table 5-1. Ba values applicable to the mammal and bird measurement receptors in Table D-1 are discussed in Sections D-1.1 and D-1.2, respectively. BCFs for Measurement Receptors Ingesting Media BCF values for measurement receptors in trophic levels 2, 3, and 4 ingesting media (i.e., soil, surface water, and sediment) can be calculated using the compound specific Ba value applicable to the animal (e.g., mammal, bird, etc.) and the measurement receptor-specific ingestion rate as follows: BCFM_A = BaA ■ IRM Equation D-l-2 where BCFM.A = Bioconcentration factor for media-to-animal (measurement receptor) [(mg COPC/kg FW tissue)/(mg COPC/kg WW or DW media)] BaA = COPC-specific biotransfer factor applicable for the animal (day/kg FW tissue) F-2 Measurement receptor media ingestion rate (WW or DW kg/day) Equation D-l-2 assumes thatifa,, provides a reasonable estimate of the uptake of a compound from incidental ingestion of abiotic media during foraging. As an example of applying the above equation, BCF values for various wildlife measurement receptors listed in Chapter 4 are provided in Table D-2 (water) and Table D-3 (soil and sediment). Measurement-receptor specific ingestion rates used to calculate BCFs are presented in Table 5-1. Ba values applicable to the mammal and bird measurement receptors for which values were calculated are discussed in Sections D-l. 1 and D-1.2, respectively. BCFs for Dioxins andFurans As discussed in Chapter 2, the BCF values for PCDDs and PCDFs are calculated using bioaccumulation equivalency factors (BEFs). Consistent with U.S. EPA (1995b), BEFs are expressed relative to the BCF for 2,3,7,8-TCDD as follows: BCFj = BCF2X1S.TCDD ■ BEFj Equation D-l-3 where BCF}- = Food item-to-animal or media-to-animal BCF for yth PCDD or PCDF congener for food item-to-animal pathway [(mg COPC/kg FW tissue)/(mg COPC/kg FW plant)]or media-to-animal pathway [(mg COPC/kg FW tissue)/(mg COPC/kg WW media)] BCF2 j 7S.TCDD = Food item-to-animal or media-to-animal BCF for 2,3,7,8-TCDD BEFj = Bioaccumulation equivalency factor forjth PCDD or PCDF congener (unitless) The use of BEFs for dioxin and furan congeners is further discussed in Chapter 2. D-l .1 BIOTRANSFER FACTORS FOR MAMMALS 4 2.67C-02 2,3,7,8-TCDF 1.22C+02 5,48c+01 2.60e-02 2.69C-02 4.93e+0l 1.9U-02 2.550+02 9.61e+01 1.160-02 9.61E+01 3.22c-02 2.690-02 1.16e+02 1,2,3,7,8-PeCDF 3.36C+01 t.51e+01 7.16c-()3 7.11.-03 1.3ÚC+0I 5.260-03 7.01 ol Ol 2.640+01 3.19C-03 2.6I0IOI 8.85e-03 7.41 e-03 3.19e+01 7.340-03 2,3.4,7,8-PeCDF 2.44C+02 l.lOc+02 5.210-02 5.39e-02 9.866+0 1 3.83e4)2 5,1üo+02 1.92e-l 02 2.32e-02 1.92O+02 6.440-02 5.39c4)2 _ ^^e+02 1. Riol 1)1 5.34e-02 1,2,3,4,7.8-HxCDF 1.16e+01 5.21c MM) 2.47C-03 2.56e4)3 4.680+00 1.820-03 2.42e+01 9.13e+0O l.lOc-03 9,13e+00 3.06C-03 2.56c4)3 2.53e-03 1,2,3,6,7,8-HxCDF 2.90c+0l 1.3(lcH)l 6.18e-03 6.40C-O3 1.17e+0l 4.54C-03 6 06e+01 2.28e+01 2.76e-03 2.28e+01 7.64e-03 6.4004)3 2.750)01 (.340413 2.3.4,6,7,8-HxCDF 1.02e+02 4.59e+01 2,18e-02 2.26C-02 4.1301-01 1.600-02 2 14,-102 8.0Je)01 9.72c4)3 8.050+01 2.700-02 2.2(.o-02 9.70=101 9.13c) 01 1.59e+00 5.65c! Dl 2.23c4)2 2.IO0O2 1,2.3,7,8.9-HxCDF 9.63C+01 ■1.32c 01 2.05C-02 2.12C-02 3.880I-OI 1.51C-02 2.010102 7.57c+01 9.14O-03 7.57C+01 2.530-02 4.43e4)4 l.57e-02 2.12c4J2 3.70e4)4 1.3U4J2 1,2,3,4,6,7,8-HpCDF l.OBetOO 7,54c-01 3.58C-04 3.70e-04 6.780-01 2.630-04 3.510+00 1,32eiO0 1.60e-04 1.32e+00 3.67e4)4 1.30e4)2 1,2,3.4,7.8,9-HpCDF 5.9oi!+0l 2.67e+0l I.27C-02 1.31 c-02 3.'Hl 0+01 9.330-03 1 24c 11)2 4.69C+1I1 5.660-03 4.69CHI1 OCDF 2.44e+00 l.lOeiOO 5.21e-04 5.39C-04 9.8fie-01 3.83o 04 5 10c MI» 1.92e+00 2.32O-04 1.92c-) 00 6.44C414 5.390-04 2.32e+00 5.340-04 Polynuclear Aromatic Hydrucarliinis (PAlls) Benzo{a)pyrene 1.19e-02 5.32c4)3 2.03C-02 2.10C-O2 4.78e-03 1.490-02 2.470-02 9.32e4)3 9.03 c4)3 9.320-03 2.50e4)2 2.10C-O2 1.1/< 0.' 2.08C-02 Rcnzi>(a)aiiüiiiitciic 420c4)3 1 88e IJ3 7.19e-03 7.44c-03 1.69e-03 5.28e4)3 8.76e-03 3.30e-03 3.21e-03 3.30e-03 8.89C-03 7.440-03 3.980-03 7.37c4)3 2.466-02 B enzo(b) fluoranthene 1.40=4)2 6.29e4)3 2.40e-02 2.48e-U2 5.66e-03 1.760-02 2.930-02 l.lOe-02 1.07e4)2 1.100412 2.96e-02 2.4864)2 1,33e4)2 1.320-02 4.590-03 Rcnzo(k)flunranlhcnc 1.390-02 6.25c-03 2.39C-02 2.47C-02 8.56e-03 5.62C-03 1.750-02 2.91 c-02 l.lOc-02 1.06c-02 1.10c-02 2.95C-02 2.470-02 8.56C-03 5.49c4)2 2.44c4)2 8.47c 03 5.440-02 Chrysenc 4.84e-03 2.17e-03 8.27e-03 1.95e-03 6.08e-03 1.010-02 3.810-03 2.44e-02 3.690-03 3.81c 03 1.020-02 Dibcnz(a,h)anthraccne 311e-02 1.39o02 5.31e-02 5.49e4)2 1.25C-02 3.90e-02 6.48e-02 2.370-02 2.44e4)2 6.57e-02 2.95c4)2 Indeno(1.2,3-cd)pyrene 7.24e-02 3.2Se-02 l.24e-01 1.28C-01 2.920-02 9.12C-02 1.510-01 5.69e-02 5.530-02 5.69e4)2 1.53e4)l 1.280-0! 6.860-O2 1.27e-01 Polychlorinatcd Biphenyls (PCBs) Aroclor, 1016 2.23C-03 Í .OOc-03 3.S2C-03 3.95e4)3 9.0U-04 2.81O-03 4.660-O3 1.760-03 1.70e-03 ! ,76e413 4.72e-03 3.95e-03 2.12e4)3 3.910-03 Arodor. 1254 1.42e4)2 6.350-03 2.430-02 2.5IC-02 5.71e-03 1.78e-02 2.96e-02 1.11 c-02 I.OHc-02 l.llc4)2 3.00o4J2 2.51 c-02 1.34e4)2 2.49e-02 Nltroaromatlcs 1,3-DÍDÍDobcnzcnc 2.73o07 1.22C-07 4.67C-07 4.83C-07 l.lOc-07 3.43C-07 5.70C-O7 2.150437 2.0RC-O7 2,150-07 5.77C-07 4.83C-07 2.59c4)7 4.78C-07 2,4-Oinitrntnlucnc 8.70c-07 3,90c4)7 1.49C-06 1.54C-06 3.5U-07 1.10c-06 1.820-06 6.840-07 6.650-07 6.840-07 I.85C-06 1.540-06 8.25c4»7 l.53o4)6 TABLE D-l BIOCONCENTRATION FACTORS FOR PLANTS TO WILDLIFE MEASUREMENT RECEPTORS (Page 2 of 3) Measurement Receptor Compound 2.6«Dlnftrotoluenc American Robin 6.796-07 C*av*> Hack (BCFIM)J! 3,05e-07 Deer Mouie (ICrrtnJ 1.16e*6 Least Shrew (BCFn4)M) 1.20e-06 Mallard Duck (BOW 2.74e*7 Marsh Rice Rat (BCFTfJ)1() 8.50e*7 Mann Wren (BCFrr<„) 1.426*6 Monrrttflg Dove (BCF1PJUJ 5.34e*7 Muskrit (BCTMUJ 5.1 Ge* 7 Northern Bobwhitc (BjCPmn) 5.34e*7 Salt-mil rah Harvcit Mouse (BCP,r.HM) 1.43e-06 Sfiort-lailctl Shrew 1.20e*6 Western Meadow Lark (BCFtr-uiJ 6,44e*7 Whtte-fiu'd ii Mouse NA Northern Bohvilillf (BCFT„„) NA Sail-marsh Harvest Mouse (BCFxp.jiM^ NA Short-failed Shrew (BCFTP11H) NA Weitem Meadow Lark (BCFT„,J NA Whltt-fnud'il Mouse ("< 'F,|..UM) NA Totel Cyanide NA NA NA NA NA NA NA NA NA NA NA NA NA NA Load NA NA l.80e-04 l.86e-04 NA l.32e-04 NA NA 8.02C-OS NA 2.22c-04 l.B6e-(M NA I.S4c-(M Mercuric chloride 1.06b-O2 4.76e-03 3.13&03 3.24e-03 4.28 e-03 2.30e-03 2,2le-02 8.34e-03 l.39e-03 K.34e-03 3.87e-03 3.24e-03 1,01 e-02 3.2K--03 Methylraercury 1.59e-03 7.13o04 4.6ÜC-04 4.84e-04 6.41e-04 3.44C-04 3.32C-03 1.25C-03 2.08c-O4 1.25e-03 5,7Be-04 4.84C-04 l.Slu-03 4.79e*4 Nickel NA NA 3,60c-03 3,72c-03 NA 2.64e-03 NA NA 1.60C-03 NA 4.45c-03 3.72C-03 NA 3.(iSc-03 Selenium 5.02e-01 2.250-I) 1 t.36e-03 1.4Ie-03 2,02e-«l 1.00e-Ö3 l.OJe+00 3.93e-01 6.07e-«4 3.95e-01 l.CBc-03 2.22e-03 1.41e-03 4.7Se-01 1.39e-03 Silver NA NA l.80c-O3 l.Koe-03 NA 1,32e^)3 NA NA B.!)2c-U4 NA 1.86e-03 NA 1.849-03 2.46e-02 Thallium NA NA 2.40e-O2 2.48e-02 NA 1.7(je-l>2 NA NA l.07e432 NA 2.96 0*2 2.48e-02 NA Zinc ....... 1.74c-()3 5.39C-05 5.58C-05 L57C-03 3.96e-05 8.]]e-03 3 05C-O3 2.40c-05 3.05e-03 6.676-U5 5.58C-05 3.<>8c-UJ 5.53e-05 Noles: NA - Inilicntcs insufficient data to determine value HB -Herbivorousbird HM- Herbivorous mammal OB - Omnivorous bird OM - Omnivorous mammal TP -Terrestrial plant - Values provided were determined us specified in the text of Appendix D. iCA'values for omnivores were determined based on an equal diet BCF values for dioxin and fi)ran conveners determined using REF values specified in Chapter 2. Table D-2 Bioconcentration Factors for Water to Wildlife Measurement Receptors (Page 1 of 6) Measurement Receptors American American ... —.------— Canvas Deer Least I.ong-falled Mallard Marsh Marsh Mourning Kestrel Robin Back Mouse Shrew Weasel Duck Rice Rat Wren Mink Dove Compound (BCFw/„) (BCF^ (BCFwjw)J(BCFvm»i) (BCFMn) M) (BCFh-or) (BCFw3 1.320+01 7.550-04 5.25C+00 1,2,3,4,6,7,8-HpCDD 2.190+00 2.40e+00 1.13e+00 4.180-04 4.76e-04 3.5U-04 1.02O+00 5.230-04 4.82O+00 2.75e-04 1.91e+00 OCDD 5.16e-0l 5.66e-01 2.65e-01 9.83o4)5 1.12c4)4 R.25C-05 2.400-01 1,230-01 1.14e+00 6.47e4)5 4,50e-01 2,3,7,8-TCDF 3.44e+0l 3.77e+01 1.7/0+1] 1 6.55e-03 7.47e4)3 5.50e-O3 1.60e+0I 8 7U--03 7.57e+01 4.310-03 3.00e+01 1,2,3,7,8-PeCDF 9.46e+00 1.04e+01 4.87c 100 1.80C-03 2.05C-03 1.51o-03 4.40e+00 2.26e 03 2.08e+01 1.190-03 8.25e+00 2.3.4.7,8-PeCDF 6.88e+0l 7.S4C+01 3.54 e+0] 1.31 e4)2 1.4904)2 1.10e432 3.2O0+OI 1.64i-4)2 1.51O02 8 62e-03 600e+01 1,2,3,4,7,8-HxCDF 3.27c+00 3.58C+00 1.68c 100 6.23C-04 7.10C-04 5.230-04 1.52c+00 7.80C-04 7.19e+00 4.10O-04 2.85C+00 1,2,3,6,7,8-BxCDF 8.17e+00 8.95e+00 4.21)0+1)0 1.56e-03 1.770-03 1.31e4)3 3.8O0+OO 1.950-03 I.8O0101 1.02e-03 7.12e+00 2,3,4,6,7,8-HxCDF 2.R8C+01 _3J^6c+01 l.48e+01 5.490-03 6.260-03 4.610-03 1.340)01 6,88o4J3 6.340+01 3.610-03 2.51e+01 1,2,3,7,8,9-HxCDF 2.71C+01 2,970101 1.39C+01 5,16e-()3 5.8«e-03 4.33o4!3 7.57o4)5 1.26e+0l 6.47e-03 5.96e+OI 3.40e-O3 2.360+01 1,2,3,4,6,7,8-HpCDF 4.73e-01 5.18o4)l m.i,■ III 9.016-05 1 03e-04 2.20O-0I l,13o-04 1.04 01-00 5.93C-05 4.I2C41I 1,2,3,4,7,8,9-HnCDF 1.68e+01 l.B4e+01 8.63c4 00 3.20e-03 3.640-03 2.680-03 7.81e+00 4.00o4)3 3.690+01 1.51000 2.10e-03 1.46e+01 OCDF 6.88c4)l 7.54o-()l 3.54e-0I 1.31e-04 1 49e-04 1.10e-04 3.200-01 1 64c-04 8.620-05 6.00e-01 Polvnuclear Aromatic Hydrocarbons (PAHs) Bcnzo(a)pyrcnc 3.34c-03 3.67c4)3 1.721-1)3 5.10C-03 5.81c4J3 4.280-03 I.55c4)3 3.750-03 7.350-03 3.36C-03 2.920413 licnzo(a)nn(hr;iccnc 1.18c-03 1.30e-O3 6.08C-04 I.81B4J3 2.06e4)3 1.520-1)3 5.500-04 1.33e-03 2.60i-4)3 1.1904(3 1.03C-O3 Benzo(b)fluoranthene 3.95e-03 4.340-03 2.03e-03 6.03e4)3 6.88e4)3 5.07C-03 1.84C-03 4.440-03 8.70e4J3 3.970-03 3.460-03 I3l II." I.I. ill |i ii lli'll: II'' 3.92c-03 4.3Ie-03 2.1)20-03 6.00e-03 6.840-03 S.04e-03 1.83o-03 4.410-03 8.64e-03 3.950-03 3.43&03 Chryaene 1.36e-03 1.50o-03 7.01e-04 2.O80-O3 2.37e-03 1.75e-03 6.34e-04 1.530-03 3.00e-03 1.370-03 1.19e-03 Dibcnz(a,h)iinlliriiccne 8.74c-03 9.610-03 4.50e4)3 1.34e4J2 l.S2e-02 1.12e-02 4.07e-O3 9.84e-03 1.93e-02 8.79e-03 7.66O-03 1.78o4)2 Indcnof 1,2,3 -cdlpyrcnc 2.04C-02 2.24e-02 1 05c-02 3.12e-02 3.56O-02 2.62c4)2 9.480-03 2.29C-02 4.49c4)2 2.050-02 Polychlorinatcd Bilihenyls (PCDs) AroclorlOK) 6.280-04 6.91e-04 3.240-04 9.61e-04 UOe-03 8.1)70-1)4 2.930-04 7.07o-04 1.38c4)3 8.780-03 6.32C-04 5.5()o4)-l Aroclor 1254 3.98o03 4.38C-03 2.050-03 6.1104)3 6.960433 S.13C-03 1.86C-03 4.480-03 4.02C-03 3.49C-03 NHroaromatics 1,3-Dinitrobcnzene 7.68e-08 8.45e-08 3.96&08 1.18e-07 l.34e-07 9.87e-08 3.580-08 8.650-08 1.69e-07 7.73e4)8 (..730-08 2,4-Dinitrotoliiene 2.45e4)7 2.69e-07 1.26e-07 3.76e-07 4.28c07 3.150-07 1.14eJ37 2.760-07 5.390-07 2.47C-07 2.14e-07 Table D-2 Bioconcentration Factors for Water to Wildlife Measurement Receptors (Page 2 of6) Measurement lleeepturs Compound Americas Kestrel (BCFWrC1!) 1.910-07 American Robin 2.1Ü0-Ü7 i Canvas Back 'J K4C-1IK Deer Mouse 2.91e-07 Least Shrew 3 32e-07 Long-laited Weasel Mallard Duck (BCF™,,) Marsh Rice Rat (BCFwjim) 2.150-07 Marsh Wren (BCFW7 2.170-07 1,39o-04 7.86C-0S 1.9()c-(l7 3.72e-07 1.70e-07 1.4ÜC-07 Penlachloronitrobcnzcno I.OBc-04 1.19C-04 5.57C-05 1.660-04 l,K9c4>4 5.04c-05 1.220-04 2.38C-04 1.090-04 9.47c-fl5 Flithalale Esten B i s(2-ethyl hoxyl)ph11iakte 3.97e-04 4.37C-04 2.05e-04 6.08e-04 6.93c-04 5.11e-04 1.85C-04 4.47e-l)4 8,75e-04 4.0Oe-O4 3.48e-04 Di(n)cctyl phthalate 5.30c+00 5.82C+00 2.73e+00 8,10e+00 9.23C+00 6.8ÜC+00 2.47CH 00 5.960+00 1.17C+0I 5.33O+00 4.64O+00 Volatile Organic Cunipntinds Acetone 1.490-09 1.630-09 7.65C-10 2.28e-09 2.600-09 1.91e-09 6.920-10 1.670-09 3,28e-09 1.50e-09 l,30e-09 Acrylonilrilc 4,41(^09 4.S4e-09 2.270-09 6.740-09 7,690-09 5.66e-09 2.05e-09 l.27o-()9 9.71e-09 4.44O-09 3.85c-09 Chloroform 2.20c-07 2.42e-07 1.13e-07 3.38C-07 3.85c-07 2.840-07 1.020-07 2.47e-07 4.84e-07 2.220-07 1.936-07 Crotonnldehyde NA NA NA NA NA NA NA NA 1.5ÜC-09 6.13e-09 NA NA NA 1,4-Dioxano l,34c49 1.470-09 6.88c-i0 2.050-09 2.34C-09 1.720-09 6.23C-10 2.95C-09 1,350-09 1.170-09 Formaldehyde 5.45e-09 5.99e-09 3.82e-08 2.80C-O9 1.7'Je-08 E.34C-09 5.310-08 9.51C-09 6.050-08 7.01c-09 4.46C-08 2.540-09 1.200-OK 5.490-09 4.770-09 3.040-08 Vinyl chloride 3.47e-08 1.62C-08 3.91C-0K 7.65 e-0 8 3.49e-0S Other Chlorinated Oreunies llcxacliliimlioiizcnc 7.88e-04 8.67e-04 4.06c-04 1.21c-[)3 1.37e-03 l.OIe-03 3.67C-04 8.870-04 1.74O-03 7.93 c-04 6.90O-O4 Ucxnchlorobutadiene i.34e-04 1.47e-04 6,88e-05 2.04e-04 2.120-04 1.71e-04 6.23&05 l.Sle-04 2.940414 i .340-04 1.170-04 I[cx:id)lorocydn|vnl:iilirin' 2..(w) Northern Bobwhlte (BCFw.,).l Northern Harrier (BCF.-,.,) Red Fox (BCFW:C.,) Red-tailed (BCF,,.,,,) Salt-marsh Harvest Mouje (BC'FW.1UJ Short-tailed! Spotted Shrew ' .Sandpiper StsM Fox (BCFw,0.i) i (BCFW™) , (BCFtt.0M) Western Meadow l.ark (BCFwo,J Whitt-fonlcd Mouse (BC'IV,.,,) Dioxins and I'm uns 2,3,7,8-TCDD 5.33e-03 3.75e+01 2.06C+01 4.69e-03 2.06e+01 8.60e 03 8.18e-03 5.996101 5.076-03 4.51e+01 X.24e-03 1,2,3,7,8-PeCDD 4.90e-03 3.45e+01 l.90e+0l 4.31e-03 1.90e+01 7.91e-03 7.53e-03 5 51e+0l 4.66e-03 4.156+01 7.5X6-03 1,2,3,4,7,8-HxCDD l.65e-03 I.l6e+01 6.39C+00 1.45e-03 6.39e+00 2.67e-03 2.54e-03 1.86e+01 1.57e03 1,400 01 2,55c 03 1,2,3,6,7,8-HxCDD 6.40e 05 4.50e+00 2.47e+00 5.62e-04 2.47c 100 1.036-0.1 9.82e-04 7.18e+00 6.08c 04 5.41C+00 9.X9C-04 1,2,3,7,8,9-HxCDD 7.46c-04 5.25e+00 2.88eiOO 6.56e-04 2.88e+00 1.206-03 1.156-03 8.38e+00 7.10e-04 (,.31000 1.15e-03 1,2,3,4,6,7,8-HpCDD 2.72C-04 I.9U+00 1.05e+00 2.39e-04 l,05e+00 4 39c 01 4.l7e>04 3.056+00 2.596-04 2.306+01) 4.20e-04 neun fi.40o 05 4,50e-01 2.47e-0l 5.62c-05 2.476-01 1.030-04 9.826-05 7.18C-01 ft.OXc-05 5.410-01 9.896-05 2,3,7,8-TCDF 4.26e-03 3.00e+0l l.65e+01 3.75C-03 1.65e+01 0.886-03 6.55e-03 4.796101 4.06C-O3 3.616)01 6.596-03 1,2,3,7,8-PeCDF I.I7S-03 8.25e+00 4.53e+00 1,03c-03 4.53e+00 1.896-03 l.80e-03 l.32e+0l 1.12c-03 8.1le-03 9.916)00 l.Slc-03 2,3,4,7,8-PeCDF 8.530-01 6.00e+01 3.30e+01 7.50e03 3.306+01 1.386-02 1.31 e-02 9.58e+0l 7.21c+0l 1.32C-02 1,2,3,4,7,8-HxCDF 4.056-04 2.85C+O0 7.12c 100 1.57e+00 3.56e-04 1.57c KID 6.54C-04 6.22c-04 4.55e+00 3.85c-04 3.42clOO 6.26e-04 l,2,3,6,7,8-llxCI)F l.01e-03 3.92e+00 8.9lc-04 3.92e+00 1.63e-03 1.55e-03 I.14e+0I 9.63e4)4 8.56C+00 l.57e-03 2,3,4,6,7,8-HxCDF 3.57e-03 2.5IC+01 1.38c 1-01 3.14e-03 1.38C+0I 5.76C-03 5.48e-03 4 010)01 3.406-03 3.026)01 5.526-03 1,2,3,7,8,9-HxCDF 3.36e-03 2.36e+01 I.30C+01 2.95C-03 l.30e+01 5 42c 03 5.15e-03 3.77 c nil 3.19e-03 2.S4C10I 5.196-03 1,2,3,4,6,7,8-HpCDF 5.86e 05 4.l2e-01 2.27C-Ü1 5.16C-05 2.27C-01 9.46e-05 9.00e-05 6 58c-OI 5.586-05 4.966-01 9.06O-05 1,2,3,4,7,8,9-HpCDF 2.08e-03 l.46e+01 8.04e+00 1.83c-03 8.04C+00 0.00c 100 3.196-03 2.33e+01 1.9 So 03 1.76e+0l 1.21c 03 OCDF 8.53e-05 6.00e01 3.30C-OI 7.50e-O5 3.30e-01 1.38c-04 1..'. le-DI 9.58e-01 8.116-05 7.21e-0l 1 12c 04 Polvnuelear aromatic hydrocarbons (PAHs) Benzo(a)pyrene 3.32e-03 2 92c oi 1.60*03 2.92c 03 1.606-03 5.356-03 5.09e>03 4.64e-03 3.16e-03 3.49e-03 5.136-03 Denzo(a)anIhraccnc l.lSe-03 1 03eO3 5(,6e-04 1 IHrilt 5.66e-04 l.90e-03 1.8le-03 (..Oic-03 1 64C-03 I.12e03 1.246-03 l.82c-03 ncnzo(b)lluotantricnc 3.93C-03 3.46e-03 1.89*43 3.45e-03 1.890-03 6.34e-03 5.49e-03 3.73c-03 4.13e-03 (,.07c-03 Bcnzo(k)lluorairthcne 3.916-03 3.43e-03 1.88e-03 3.44e-03 1.886-03 6.30c-O3 h.OOc-0.3 5.46e-03 1,89e 03 1.27.6-02 3.72e-03 4.10e-03 6.046-03 Chrvscne 1.35e-03 I.19C-03 (,.53e04 1.19c-03 6.53c-04 2.19c 03 2,086-03 l.33e-02 3.126-02 l.29e-03 1.42e-03 2.09e-03 Dibcnz(a ,h)anthracene 8.70c 03 7.66e-03 4.19e-03 7.65e-03 4.196-03 l.40e-02 8.276-03 9.146-03 1.34lc-03 1.43e-U3 4.50c-04 l.43e-03 8 25e-04 7,S8c-04 4 16e-03 4.S8C-04 3.l3e03 2.99e-03 Methylmercury 7.66e-05 3.90e-04 2,148-04 NA ft.73c-Q5 5.18e-04 2,l4e-04 1,24c 04 I.ISo-04 6.23 9.57e-04 5.24E-04 7.77e-06 5.24e-04 1.43e-05 l.36e-05 1.52c-03 8.40e-06 1.14e-03 1.37*45 Notes: NA - Indicates insufficient data to determine value NB - Herbivorous bird HM ■ Herbivorous mammal OB - OiTti.ivorotJS bird OM ■ Omnivorous mammal TP - Terrestrial plant Values provided were determined as specified in the text of Appendix D. BCF values for emm votes were determined based on an equal diet. BCF values for dioxm and furau congeners determined using BEF values specified in Chapter 2. TABLE D-3 BIOCONCENTRATION FACTORS FOR SOIL/SEDIMENT TO WILDLIFE MEASUREMENT RECEPTORS (Page 1 of 6) Compound Dioxins und Tu raus Measurement Ree entors American Kestrel American Robin (BCF„.) 1 _ , Canvas Deer Back Mouse (BCF*,,) i (BCFWN) [«Mt Shrew (BCFj.au) l.miU-tallcd Weasel (BCFMM) Mallard Duck (BCF«,,) Marsh Klee tut (BCFj,0M) ...... Marsh Wren (BCF.W Mlnk Mourning Dose 2 1,2,3,7 .fiVMIxCDD 6.69e-02 6.89e-0l 8.77e-02 1.09e-05 1.04e-04 2.270-OJ 1 .S3O-0I 2.386-05 9.44c0l 1.47c 05 3.38e-01 1,2,3,4,6,7,8-HpCDD 2.446-02 2.51e-Ol 3.l9e-02 3.98e-06 3.78e-05 8.26c-06 5.586-02 8.660-06 3.44c 01 5.35e-06 1.236-01 OCDD 5.74e-03 5.90e-02 7.51e-03 9.37e-07 8.S9C-06 1.94e-06 1.316-02 2.046-06 8.096-02 1,26e-06 2.S9C-02 2,3,7,8-TCDF 3.S3e-01 3.946+00 5.01e-01 6.25e-05 5.93e-04 1.306-04 b.756-01 1.36e-04 5.396 100 8.400-05 1.936+00 l,2,3,7,8-PeCDF l.05e-0l 7.65c-OI 1.08e+00 1.386-01 1.726-05 1.63e-04 3.56e05 2.416-01 3.74S-05 I.48O400 2.3le-05 5.31e-01 2,3,4,7,8-PeCDF 7.87e+00 l.OOe+00 1.250-04 1.! 9c-03 2.590-U4 l,75c+00 2.726-04 1.08e+01 1.68e-04 3.S6C+00 1,2,3,4,7,8-HxCDF 3.63e-02 3.74e-01 4.76e-02 5.94e-06 5,61c OS 1,230-05 8.310-02 1.29e-05 5.126-01 7.986-06 1 99c 05 I.83C-01 1,2,3,6,7,8-HxCDF 9,09e-02 9.35e-0l I.19&01 1.48e-05 1.41e-04 3.O8C-05 2.08c-01 3.23e-05 l.28e!00 4.58e-01 2,3,4,6,7,8-HxCDF 3,20e-01 3.30e+00 4.19e-01 5.23e-0S 4.966-04 1 .096-114 7.336-01 l.L4e-04 4.526 100 7.113C-05 1.62e+O0 1,2,3,7,8,9-llxCDF 3.0le-01 3.IÜO+00 3,94e-0l 6.89t; 03 4.9 In-05 4,67e-04 1.026-04 6.89e-0l 1.076-04 1.876-06 4.250+00 6,6le 05 1.52e+00 1,2,3,4,6.7,8-HpCDF 5.26e-03 5,416-02 8.59e-07 8.l5e-06 1.78e-06 6.32e-05 1.20O-02 7.42e-02 1.156-06 2.65e-02 1,2,3,4,7,8,9-HpCDF l.86c-0] 1.92e+00 2.44e-0l 3,056-05 2.896-04 4.276-01 6.626-05 2.63e+00 4.09O-05 9.40C-01 OCDF 7.65C-03 7.87B-02 l .ODe-02 l.25e-06 l I9e05 2.59e-06 l.75e-02 2.72e-06 l.OSe-01 l.68e-06 3.86c 02 Polyiiuelcnr Aromatic Hydrocarbons (PAHs) Ben™{a)pyrcne 3.71e-05 3.818-04 4.85e-05 4.86e-05 4,616-04 1.016-04 8.50e-O5 6.2le-05 5 226-04 6.53c 1)5 1.876-04 Ben™(a)anthracene l.32e-05 1.35O04 1,726-05 1.736-05 1.64e-04 3.586-05 3.0 Ii;-05 2.2Oe-05 l 856-04 2.32e-05 6.616 05 Benzof b) fluoranthene 4.396-05 4.50e-04 5.74e-05 5.75e-05 5.46e-04 1,190-04 1.01 e-04 7.35C-05 6.18C-04 7.736-05 2.22e-04 Bcnzo(l;)iluoranthene 4 366-05 4.48e-04 5.7le-05 5,73e-05 5.43e-04 1.196-04 LOfle-04 7,300-05 6.l4e-04 7.69.-05 2.206-04 Clirysotie 1.52e-05 1.550-04 1.98e-05 t ,99e-05 1 88s-04 4.126-05 3.476-05 2.546-05 2.1.16-04 2.67e-05 7.64e-05 Dibcnz( a,h) a ntli! acL'iie 9.73C-05 9.98e-04 1.27e-(M 1.276-04 1.216-03 2.82u-03 2.646-04 2.23e-04 1.636-04 1.376-03 1,71 c-04 4.9le-04 Indcnn( 1,2/3-ccllpyrene 2.27c-04 2.32e-03 2.9öc-04 2,98o-Ü4 6.186-04 5.196-04 3.796-04 3,196-03 4.00e-04 1.146 03 Pnlychlorlnatcd Biplicnyls (PCBsl Aroclor 1016 6.99e06 7.l7e-05 9.140-06 9.160-06 8.69e05 l.90e-O5 1.21 c-OI 1.6()e-05 l.02e-04 l,17e-05 9.83e-05 1,23e-05 3,53e05 Aroclor 1254 4.43C-05 4.55o04 5.80e-05 5 836-05 5,52e-04 7.426-05 6.246-0-1 7,836-05 2.24c 04 Nit roaro marks 1,3-Dinitrobcnzene 8.55c 1(1 8.77e-09 1.12S-09 1 126-09 I.O66-08 2,32e-09 1.966-09 1.43C-09 1.206-08 l.5le-09 4.3le-09 2,4-Dmitrotoluenc 2.72e-09 2.79C-08 3.56e-09 3.58e-09 3.40e-OS 7.43e-09 6.246-09 4.566-09 3.836-08 4.816-09 1.370-08 2,6-Diniiroioluenc 2.13E-09 2.18C-0S 2.78C-09 2.78e-09 2.636-08 5.76e-09 4.876-09 3.56e-09 2.99e-08 3.73e-09 1.076-08 TABLE D-3 BIOCONCENTRATION FACTORS FOR SOIL/SEDIMENT TO WILDLIFE MEASUREMENT RECEPTORS (Page 2 of 6) Compiiunrf Measifremcn! Receptor! American Kestrel (BCFS;tn) American Robin ..1P.CW 1.92e-08 Canvas Back _ÍBCF,.lt„]|__ Deer Mouse (BCFtutd) 2.46e-09 Least Shrew (BCFS BM) 2.33C-0S Lottj>-tailed Weasel (BCFS011) 5.10e-O9 Mallard Duck (l!(,|,'stjai 4.30e-09 Marsh Itlce Rat (BCFsoiJ 3.14e-09 Marsh Wren 2.64e-08 Mink 3.3le4)9 Muurniiij; Dove (BCFt:fll))_ 9.476-09 Nitrobenzene 2.45e-09 Penrachloran i trolienzcu e l.20e-06 l.23e-C5 1.57e-06 1.58e-06 1.50e-05 .1 7iie Of, 2.76e-06 2.01e-06 I.69C-05 2.13E-06 6.076-06 ľht]]ii];iU' Esters Bis(2-cl hylhexyljphlha late 4.42e-06 4.53e-05 5.786-06 5.X()c-(l(> 5,5i)e-05 1.206-05 l.60e-01 1 .Die-OS l.35e-0l 7.40e-06 9.86e 02 6.22e-05 7.79e-06 2.23e-05 Di(n)octy] plithalate 5.S9C-02 6.046-01 7.7le-02 7.72e-02 7.32C-01 8.290-01 I.04e-0l 2,970-01 Volutile Organic Compound s Acetone 1.65c-1 1 1.70e-10 2.lrje-l 1 2,l7e-ll 2.06c-10 4,51e-ll 3.796-11 2,776-1 1 ,:. 13c-to 2.92e-ll 8.346-11 2.47e-10 Acrylonitrile 4.91e-l 1 S.OSe-10 6.42c-l 1 6.43e-l 1 ť.lOe-10 I,33e-10 1.12e-l0 2.116-U 6.92c-10 8.64C-11 Chloroform 2.45e-09 2.S!e-08 3.2ŮO-09 3.226-09 3.0ÓO-08 6.68e-09 5.60e-09 4.096-09 3.44c-OK 4,33e-09 1.23e-08 Crotonaldehyde NA NA NA NA NA NA NA NA NA NA NA 1,4-Dioxane 1.49E-I L .536-10 l.94e-ll l.9óe-l I 1.86e-10 4.06e-l I 3.416-U 2.49e-l 1 2.09e-10 2.63e-l1 7.506-11 Formaldehyde ťi.Oúe-1 1 6.2le-10 7.92e-l 1 7.95e-U 7.54e-10 1.656-10 1.39e-10 I.01e-i0 6.476-10 K.52e.lO i .ah- i o 3.060-10 Vinyl chloride 3.8fie-IO 3.966-09 5.05e-l0 5.06e-l0 4.80e-09 1.05 e-09 8.85e-10 5 -Me 09 6.80e-10 1.956-09 Other Chlorinated Organic* llejtachlorohen/ene 8.77e-06 S.99e-05 l.I5e-05 l.t5e-05 1 ,096-04 2.38e-05 2.016-05 1,476-05 1.23c 04 1.54e-05 4.426-05 Hexach 1 orobutad iene ].49e-06 1.530-05 1,95c !)(> 1,94e-06 2.92e-06 l.«4e-U5 2.77e-05 4,02e-06 6.060-06 3.408-06 5.09e-06 2.49c 06 2.100-05 2.616-06 7.506-06 Henách 1 orocycl opentadiene 2.22e06 2.28o-05 2,91e-06 3.72C-06 3.130-05 3.92e-06 1.126-05 Pentaehlorobcracne 3.38eOS 3.46e-05 4.42e-06 4.42e-06 4.19c 05 9.16e-06 7.74o 06 5.656-06 4.750-05 5.93e 06 t .706-05 Pentachtorophenol 3.32e-06 3.41e-05 4.34e-06 4.34e-06 4.12e-05 9de-06 7.61e-06 5.56e-0S 4.676-05 5.84c 06 1.68e-05 Pesticides 4,4-DDE 4.98C-05 5.10e-04 6.5!e-05 6,52c-05 6.18C-04 I.35C-04 1.146-04 8.336-05 7.00e-04 8.766-05 2 5le-04 Heptachlor 2.856-06 2.92e-()5 3.73e-06 3.74e-06 3.55e-05 7.76e-06 6.536-06 4.77e>0S 4.0 I 6-05 5 113c 1)0 I 44e-05 Hexachlorophene 9.56c 04 9.81e-03 1 25e-03 1.25e-03 1.196-02 2.60c-03 2.196-03 1.608-03 1.356-02 1.68e-03 4 82C-03 Inorganics Aluminum NA NA NA NA NA NA NA NA NA NA NA Antimony NA N A NA 1.44e-06 l.36e-05 2.98e-06 NA NA NA 1.93=06 NA Arsenic NA NA NA 2.RSC-06 2.73C-05 5.97e-06 NA NA N A 3.87e-06 NA Barium NA NA NA 2.166-07 2.056-06 4.486-07 N A NA N A 2.90e-O7 NA Beryllium NA NA NA 1.446-06 1.366-05 2.986-06 NA 3.376-04 N A NA l.93e-06 NA Cadmium l.47e-04 1.51e-03 1.93e-04 1.7.1c 07 1.646-06 3.586-07 Z.47e04 2.076-0.3 2.32e-07 7.436-04 Chromium (licxavalenf) NA NA NA 7.91c-06 7.506-05 1.64c 05 NA N A NA l.Oóe-05 NA ('oppoi NA NA NA NA NA NA NA NA NA NA NA Total Cyanide NA NA NA N A NA NA NA NA NA NA NA TABLE D-3 BIOCONCENTRATION FACTORS FOR SOIL/SEDIMENT TO WILDLIFE MEASUREMENT RECEPTORS (Page 3 of 6) Measurement Receptors Compound U';ul American Kestrel N A American Kobln NA Canvas Back NA Deer Mouse ,[) 8.95c-07 Mallard Duck (BCFs^a) NA Marsh lllee Itst NA Marsh Wren {BCF^.t NA Mink (lid's [ 5 SOo-07 Mourning Dove (BCF^,,) NA Mercuric chloride 3.32c-05 3.42c 04 4.35c 05 7.52C-06 7.10C-05 I.56C-05 7.60e-05 5.57C-05 4.68O-04 l.0le-05 1 .uHc-0-1 Melhylmcrcury 4.98e-06 5.126-05 6.52e-06 l.l2e-06 1.06c-05 2.33C-06 l.l4e-05 8.34e-06 7.02e-05 1 51e-06 2.5U-05 Nickel NA NA NA 8.63e-06 8.l8e-05 l.79e-05 NA NA NA 1 I6C-05 NA Selenium l.57c-03 1.61C--02 2.050-03 3.27C-U6 3.10e-05 t..77c-(!6 3.60e-03 2.63e-03 2.21e-02 4 39e-06 7.92e-03 Silver NA NA NA 4.32e-06 4.09C-05 S.95e-0(, NA NA NA 5 8O0-O6 NA Thallium NA NA NA 5.75e-05 5.4r>c-04 1.19e-04 NA NA NA 7 73l'-05 NA Zinc 1.22e-05 1,25e-04 1,59c-05 1.290-07 1.23C-06 2,69e-07 2.79e-05 2,04e-05 1.71e-04 I.74C-07 6.130-05 I S3 © Notes: NA - Indicates insufficient data to determine value UK - Herhivorous bird J IM - Herbivorous mammal OB - Omnivorous bird OM - Omnivorous mammal S - Soil/Sediment Values provided were determined as specified in the text of Appendix D. BCF values Tor omnivorcs were determined based on an equal diet. BCF values for dioxin and ftimn congeners determined using I3FF values specified in Chapter 2. table d-3 bioconcen1 ration factors for soil/sediment to wildlife measurement receptors (Page 4 of 6) Measurement Receptor] Compound Muikrat (BCF,,,.,) Northern Rohwtlltc (BCFS,.R) Northern Harrier (BCFS1H) Red Fox (BCF™) Rcdtallcd Hank (BCF.11M) Salt-marsh liarveit Mouse (BCF....J Short-tailed Shrew 6 2.04e 05 4.620-06 3.55C-05 8.51e-05 4.51e-06 2,86e-05 7.03e-O6 1 iS.--V-1-.-1 ilcii ■.■■ -11= i -■ 5.59e-04 8.22e-03 S, 850-03 1.3Ie-03 6,85e-03 l.55e-03 1.19e-02 2.86e-02 1.51 c-03 9.58e-03 2.35e-03 Inorganics Aluminum NA NA NA NA NA NA NA NA NA NA NA Antimony 6.416-07 NA NA 1.51e-06 NA 1.780-06 1,36e-05 NA 1.736-06 NA 2.70e-06 Arsenic l.28e-06 NA NA 3,0lc-0Ď NA }.56e-06 273e-05 NA 3.476-06 NA 5.406-06 Barium 9.620-08 NA NA 2.260 (17 NA 2.67e-07 2.056-06 NA 2.600-07 NA 4.05C-O7 Beryllium 6.41e-07 NA NA 1.51c-06 NA 1.78e-06 l,36e-05 NA 1.73S-06 NA 2.7(10-06 Cadmium 7.690-08 1.270-03 l.05e-03 I.8le-07 i.050-03 2 I3C-07 1.640-06 4.40 e-03 2.080-07 1.4ÍU: 03 1.240-07 Chromium (hex a vři lent) 3.530-06 NA NA 8.29C-0Ě NA 9 78C-06 7.506-05 NA 9.5 le-06 NA 1,49c 05 TABLE D-3 BIOCONCENTRATION FACTORS FOR SOIL/SEDIMENT TO WILDLIFE MEASUREMENT RECEPTORS (Page 6 of 6) Compound Muskrat 50 0.01° 0.5 Rossi and Ncff (1978) evaluated toxicity of three IIMW (three or more aromatic rings) PAlIs to the polychaete, Neanthes arenaceodentata. LC50 of each HMW PAH exceeded 50 /zg/L. This TRV should be used if assessing the risk of total IIMW PAHs. Benzo(a)pyrene Acute LC50 >50 0.01° 0.5 Rossi and Neff (1978), Toxicity value for polychaete (N. arcnaceodentata). B enzo(a)anth race ne Acute LC50 >50 0.01c 0.5 Toxicity value not available. TRV for benzo(a)pyrene used as surrogate. 13 e n zo(b) fl u oranthenc Acute LC5Ü >50 0.01 ° 0.5 Toxicity value not available. TRV for benzo(a)pyrcne used as surrogate. B c 11 zo( k) fluoranthen e Acute LC50 >50 !!.()['" 0.5 Toxicity value not available. TRV for benzo(a)pyrene used as surrogate. Clirysene Acute LC50 >50 0.0 lc 0.5 Rossi and Ncff (1978), Toxicity of several PAHs was cvaluted, LC50 of each individual HMW PAII exceeded 50 ptg/L, Dibc nz(a, h)an 1 hracene Acute LC50 >S0 0.01c 0.5 Rossi and Neff (1978). Toxicity of several PAHs was cvaluted. LC50 of individual IIMW PAHs exceeded 50 /zg/L. Indeno( 1,2,3-cd)pyTcnc Acute LC50 >50 0.01" 0.5 Toxicity value not available. TRV for bcnzo(a)pyrenc used as surrogate. Polychlorinafed blphenyls (PCB) (/ig/L) Aroclor 1016 - 0.03 Not applicable 0.03 U.S. EPA (1987) chronic criterion for ambient water quality. TABLE E-2 MARINE/ESTUARINE SURFACE WATER TOXICITY REFERENCE VALUES (Page 2 of 8) J Compound Toxicity Value Uncertain! y Factor" Toxicity Reference Value* Reference and Notes d Duration and Endpolnf Concentration Aroclor 1254 -- 0.03 Not applicable 0.03 U.S. EPA (1987) chronic criterion for ambient water quality. Nitroaroitialics (wg/l,) 1,3-Dinitrobenzene - -- -- 66.8 Toxicity data not available. TRV for nitrobenzene used as surrogate. 2,4-Dinitrotolucne Chronic criterion 370 Not applicable 370 U.S. EPA (1987) 2,6-Dinitrotoluene -- - -- 370 Toxicity data not available. TRV for 2,4-dinitrotaluene used as surrogate. Nitrobenzene Acute criterion 6,680 0.01 66.8 U.S. EPA (1987) Pe n tach loroni trobcn zc ne Acute LC50 1,000 0.01 10 No toxicity value or surrogate TRV available, therefore, corresponding freshwater toxicity value (common carp, Cyprimts carpio) from Hashimoto and Nishiuchi (1981) adopted. I'll Ilia laic esters U'v.fl.) Bis(2-ethylhexyl)phtlialate Acute LC50 >170 0.01 1.7 Adams et al, (1995). Toxicity value for shsepshcad minnow (Cyprinodon variegatus). Di(n)octyl phthalate NOI'I. 320 Not applicable 320 No toxicity value or surrogate TRV available, therefore, corresponding freshwater toxicity value used (water flea, D. magna) from McCarthy and Whitmore{!985). Volatile organic compounds Oiß/L) Acetone Acute LC50 2,100,000 0.01 21.000 Price et al. (1974), Toxicity value for brine shrimp (Artemia sp.). Acrylonitrile Acute LC50 10,000 0.01 100 Portmann and Wilson (1971). Toxicity value for common shrimp (Crangon crangon). TABLE E-2 MARJNE/ESTUARINE SURFACE WATER TOXICITY REFERENCE VALUES (Page 3 of 8) Com pound Toxicity Valte Uncertain) y Factor* Toxicity Reference Value1 Reference and Notes d Duration and End point' Concentration Chloroform Acute LC 50 18,000 0.01 180 Anderson and Luster (1980). Toxicity value for Rainbow trout (Salmo gairdnari) Crown aldehyde Acute LC50 1,300 0.01 13 Dawson et a). (1977). Toxicity value for inland silverside (Menidia beryllina). 1,4-Dioxane Acute LC50 6,700,000 0.01 67,000 Dawson el al. (1977). Toxicity value for inland silverside (M. beryllina). Formaldehyde Acute LC50 4,960 0.01 49.6 No toxicity value or surrogate TRV available for (bis constituent, therefore, corresponding freshwater toxicity value used (Striped bass, Morone saxalllis) from Reardoii and Harell (1990). No data available for formadchydc. Formalin containing 37 percent formaldehyde used as surrogate. TRV expressed on formaldehyde basis. Vinyl chloride Subcbronic LCI00 388,000 0.01e 3,880 No toxicity value of surrogate TRV available, therefore, corresponding freshwater toxicity value used (Northern pike, Esox lucius) from Brown et al, (1977). Other chlorinated organic* (/jg/L) Hex achlorobc n zenc Acute EC50 =»1,000 0.01 10 Zaroogian (19BI). Toxicity value for American oyster [Crassostrea virginica). t kxachloroluilndicnc Acute LOEL 32 0.01e 0.32 U.S. EPA (1987) He xaeh 1 orocyclüpentadi ene Acute LOEL 7.0 0.01° 0.07 U.S. EPA (1987) Pe nt achlorob c n ŕXiie Subchronic NOEC 18 0.1 1.8 Hansen and Cripe (1991). Toxicity value for aheepshcad minnow (Cyphnodon variegatus). Pentachloropheiio! Chronic criterion 7,9 Not applicable 7.9 U.S. EPA (1987) Pesticides fag/I.) TABLE E-2 MARINE/ESTUARINE SURFACE WATER TOXICITY REFERENCE VALUES (Page 4 of 8) < (impound Toxicity Value Uncertainl y Factor" Toxicity Reference Value' Reference and Notes " Duration and Endpoint* Concentration 4,4'-DDE Acute LOEL 14 0,01° 0.14 U.S. EPA (1987) Heptachtor Chronic criterion 00036 Not applicable 0.0036 U.S. EPA (1987) Hexnchlorophene Acute LC50 3.3 0.01 0.033 Calleja et al. (1994). Toxicity value for brine shrimp {Anemia salina). Inorganic? (mg/L) Aluminum Acute LTSO 0.271 0.01 0.00271 Study examined influence of pi I and temperature on acute (48-hour) toxicity (as lime to mortality) of aluminum to smoltifying Atlantic salmon (Salmo salar). Endpoint concentration based on sum of inorganic and organic aluminum for exposure at pH 6.5 (Poleo and Muniz 1993). Antimony Proposed chronic criterion 0.5 Not applicable 0.5 U.S. EPA (1987) Arsenic (trivalent) Chronic criterion 0.036 Not app] ieablc 0.036 U.S. EPA (1987) Barium Subchronic LC50 >500. O.OT 5.0 U.S. EPA (1978) Beryllium Tier il SCV 0.00066 Not applicable 0.00066 No toxicity value or surrogate TRV available, therefore, corresponding freshwater TRV adopted. Suter and Tsao (1996); value calculated using Great Lakes Water Quality Initiative Tier H methodology. Cadmium Chronic criterion 0.0093 Not applicable 0.0093 U.S. EPA (1987) Chromium (hexavalent) Chronic criterion 0.05 Not applicable 0.05 U.S. EPA (1987) Copper Chronic criterion 0.0031 Not applicable 0.0031 U.S. EPA 1999. When the concentration of dissolved organic carbon is elevated, copper is substantially less toxic and use of a water effects ratio maybe appropriate. TABLE E-2 MARINE/ESTUARINE SURFACE WATER TOXICITY REFERENCE VALUES (Page 5 of 8) Compound Toxicity Value Uncertalnt v i'Tietor1' Toxicity Reference Value* Hefcrence and Notes6 Duration and Knttpoint' Concentration Total Cyanide Chronic criterion 0.001 Not applicable 0.001 U.S. EPA (1987) Lead Chronic criterion 0.0081 Not applicable 0.0081 U.S. EPA (1999) Mercuric chloride Chronic criterion 0,00094 Not applicable 0,00094 U.S. EPA(1999). This value was from data for inorganic mercury (II). Methyl mercury Sirbchronic NOAEL 0.030 0.1 0.003 Sharp and Neff (1982). Toxicity value for munimichog {Fitnduhis heteroclitus). Nickel Chronic criterion 0.0082 Not applicable 0.0082 U.S. EPA (1999) Selenium Chronic criterion 0.071 Not applicable 0.071 U.S. EPA (1987) Silver Clironic criterion/ proposed criterion 0.0023 Not applicable 0.0023 U.S. EPA (1987) Thallium Acute LOEL 2.13 0.01" 0.02 U.S. EPA (1987) Zinc Chronic criterion 0.081 1.0 0.081 U.S. EPA (1999) TABLE E-2 MARINE/ESTUARINE SURFACE WATER TOXICITY REFERENCE VALUES (Page 6 of 8) Notes: a The duration of exposure is defined as chronic if it represents about 10 percent or more of the test animals lifetime expectancy. Acute exposures represent single exposures or multiple exposures occurring within a short time. For evaluating exposure duration, the following genera! guidelines were used. For invertebrates and other lower trophic level aquatic biota: (1) chronic duration lasted for 7 or more days, (2) subchronic duration lasted from 3 to 6 days, and (3) acute duration lasted 2 days or less. For fish: (1) chronic duration lasted for more than 90 days, (2) subchronic duration lasted from 14 to 90 days, and (3) acute duration lasted less than 2 weeks. b Uncertainty factors are used to extrapolate a toxicity value to a chronic NOAEL TRV. See Chapter 5 (Section 5.4) of the SLERAP for a discussion of the use of uncertainty factors. c TRV was calculated by multiplying the toxicity value with the uncertainty factor. d The references refer to the source of the toxicity value. Complete reference citations are provided at the cud of this appendix. e Best scientific judgment used to identify uncertainty factor. See Chapter 5 (Section 5.4,1.2) for a discussion of the use of best scientific judgement. Factors evaluated include test duration, ecological relevance of endpoint, experimental design, and availability of toxicity data. EC50 = Effective concentration for 50 percent of the test organisms. FCV = Final Chronic Values HMV = High molecular weight LC50 = l-ethal concentration for 50 percent of the test organisms, LCI 00 = Lethal concentration for 100 percent of the test organisms. LOEC = Lowest Observed Effect Concentration LOEL = Lowest Observed Effect Level LT50 = Lethal threshold concentration for 50 percent of the test organisms. NOAEL = No Observed Adverse Effect Level NOEL = No Observed Effect Level SCV = Secondary Chronic Value TRV - Toxicity Reference Value TABLE E-2 MARINE/ESTUARINE SURFACE WATER TOXICITY REFERENCE VALUES (Page 7 of 8) REFERENCES Adams, W.J., O.K. Biddingcr, K.A. Robillard, and J. W. Gorsuch. 1995, "A Summary of the Acute Toxicity of 14 Phthaiatc Esters to Representative Aquatic Organisms." Environmental Toxicology and Chemistry. Volume 14. Pages 1569-1574. Brown, E.R., T. Sinclair, L. Keith, P, Bcamcr, J.J. JIazdra, V. Nair, and O, Calfaghan, 1977. "Chemical Pollutants in Relation to Diseases in Fish," Annals NewYork Academy of Sciences. Volume 298. Pages 535-546. Calleja, M.C, G. Persoonc, and P, Geladi. 1994. "Comparative Acute Toxicity of the First 50 Multicentre Evaluation of m Vitro Cytotoxicity Chemicals to Aquatic Non-Vertebrates," archives of Environmental Contamination and Toxicology. Volume 26. Pages 69-78. Dawson, G.W., A.L. Jennings, D. Drccdowski, and E, Rider. 1977, "The Acute Toxicity of 47 Industrial Chemicals to Fresh and Saltwater Fishes." Journal of Hazardous Materials, Volume 1. Pages 303-318. Hansen, D.J., and G.M. Cripe. 1991. "Interlaboratory Comparison of the Early Life-Stage Toxicity Test Using Shecpshead Minnows (Cyprinodon variegates)". Aquatic Toxicology and Risk Assessment. Vol. 14, ASTM STP 1124, Philadelphia, PA. Pages 354-375, As cited in AQUtRE 1997 Hashimoto, Y., and Y. Nishiuchi. 1981. "Establishment of Bioassay Methods for the Evaluation of Acute Toxicity of Pesticides to Aquatic Organisms." Journal of Pesticide Science. Volume 6, Pages 257-264. (Japanese, with English abstract). McCarthy, J.F., and D.K. Whitmore. 1985, "Chronic Toxicity of Di-n-butyl and Di-n-ocryl Phtlialatc to Dapknta magna and the Fathead Minnow." Environmental Toxicology and Chemistry. Volume 4. Pages 167-179. Mehrle, P.M., D.R. Buckler, E.E. Little, L.M. Smith, J.D. Petty, P. 11. Peterman, D.L. Stalling, G.M. DeGraeve, J.J, Coyle, and W.J. Adams, 1988, "Toxicity and Bioconcentration of 2,3,7,8-Tctrachlorodibcnzodioxin and 2,3,7,8-Tetracbloiodibcnj:ofuran in Rainbow Trout," Environmental Toxicology and Chemistry. Volume 7. Pages 47-62, Poleo, A.B.S., and I,P. Muniz. 1993. "The Effect of Aluminum in Soft Water at Low pll and Different Temperatures on Mortality, Ventilation Frequency, and Water Balance in Smokifying Atlantic Salmon (Salmo sa iar)." Environmental Biology of Fishes. Volume 36. Pages 193-203, Port I mint], J.I.!., and K.W. Wilson. I 971. i'he Toxicity of140 Substances to the Brown Shrimp and Other Murine Animals. Shellfish Information I .eaflcl No. 22 (Second Edition). Ministry of Agric, Fish. Food, Fish. Lab. Burnham-on-Crouch, Essex, and Fish Exp. Station Conway, North Wales: 12 P. As cited in AQUIRE 1997. Price, K.S., G,T, Waggy, and R.A. Conway. 1974, "Brine Shrimp Bioassay and Seawater BOD of Petrochemicals." Journal of Water Pollution Control Federation. Volume 46. Pages 63-77. Reardori, I.S., and R.M. Harreil. 1990. "Acute Toxicity of Formalin and Copper Sulfate to Striped Bass Fingerlings Held in Varying Salinities." Aquaculture, Volume 87. Pages 255-270, TABLE E-2 MARINE/ESTUARINE SURFACE WATER TOXICITY REFERENCE VALUES (Page 8 of 8) Rossi, S.S., and J.M. Ncff. 1978. "Toxicity of Polynuclear Aromatic Hydrocarbons to the Polychaete Neanthcs arenaceadcntala." Marine Pollution Bulletin. Volume 9 Pages 220-223. Sharp, J.R and J.M. Nef'f 19X2. " I'hc Toxicity of Mercuric Chloride and Methyl Mercuric Chloride to Funduhm httrmclitus- ümhryiw in Relation to Exposure Conditions." Ijn'i ronmental Biology of Fishes. Volume 7. Pages 277-284. Suter 11, G. W., and C.L. Tsao. 1996, Toxicologlcal Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota, ES/ER/TM-96/R2, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. June, U.S. EPA. 1988. Ambient Water Quality Criteria for Alwninum-1988. EPA 440/5-86-008. Office of Water Regulations and Standards. Washington, D.C. August. U.S. EPA. 1987, Quality Critehafor Water—Update tl7. EPA 440/5-86-001. Office of Water Regulations and Standards. Washington, D,C. May. U.S. EPA. 1996. "Ecotox Thresholds." ECO Update. EPA 540/F-95/038. Office of Emergency and Remedial Response. January. U.S. EPA. 1999. National Recommended Water Quality Criteria-Correction. EPA 822-Z-99-001. Office of Water. April. Zaroogian, GM. 1981. fnterlaboratory Comparison—Acute Toxicity Tests Using the 48 Hour Oyster Embryo-Larval Assay. U.S. EPA, Narragansett, Rhode Island. 17 pages. As cited in U.S. EPA 1997, TABLE E-3 FRESHWATER SEDIMENT TOXICITY REFERENCE VALUES (Page 1 of 7) Compound freshwater THV " K„ Value" Bed Sediment TRV (dry weight) Reference and Notes' ľolychlnr!naleddlbcnzo-p-dloiins Oig/kg) 2,3,7,8-TCDD 0.0000038 2,691,535 0 41 TRV was calculated using equilibrium partitioning (EqP) approach (EPA 1993), assuming a fractional organic content of 0.04, Polynuclear aromatic hydrocarbons (PAH) (,iglkg) Total high molecular weight (HMW) PAH Not applicable Not applicable 170 TRV is ERL value computed by Ingersoll ct al. (1996) based on 28-day amphipod {HyalclSa azteca) toxicity tests. This TRV may be used if risk of total IIMW PAIIs is assessed. Benzo(a)pyrcne Not applicable Not applicable 84 TRV is an ERL value calculated by Ingersoll ct al. (1996) based on 28-day H. azteca toxicity tests. Benzo(a)anthraceiic Not applicable Not applicable 19 TRV is an ERL value calculated by Ingersoll et al. (1996) based on 28-day H. azteca toxicity tests. B en zo(b) fl u oraii thene Not applicable Not applicable 37 TRV is an ERL value calculated by Ingersoll et al. (1996) based on 28-day H. azteca toxicity tesis. Bcnzo(k)flijorantliciic Not applicable Not applicable 37 TRV is an ERL value calculated by Ingersoll et al. (1996) based on 28-day H, azteca toxicity tests. Chrysene Not applicable Not applicable 30 TRV is an ERL value calculated by Ingersoll et al. (1996) based on 28-day H. azteca toxicity tests. Di b e nz(a, li) an th ra cene Not applicable Not applicable 10 TRV is an ERL value calculated by Ingersoll ct al. (1996) based on 28-day H. azteca toxicity tests Indenof 1,2,3 - cd)pyrcne Not applicable Not applicable 30 TRV is an ERL value calculated by bigcrsoll et al, (1996) based on 28-day H. azteca toxicity tests. TABLE E-3 FRESFIWATER SEDIMENT TOXICITY REFERENCE VALUES (Page 2 of 7) Com ti on tul Freshwater TftV * K„ Valueb Bed Sediment TRV (dry weight) Reference and Notes ' Polychlorlnated bJphenyls (PCR) fyjg/kg) Aroclor 1016 Not applicable Not applicable 50 TRV is an ERL value for Total PCB calculated by Ingersoll et al. (1996) based mi 28-day//. a2teca toxicity tests. Aroclor 1254 Not applicable Not applicable 50 TRV is an ERL value for Total PCB calculated by Ingersoll et al. (1996) based on 28-day H. azteca toxicity tests. Nilroaromnllcs («g/kg) 1,3-Dinitrobenzene 26 20.6 21.4 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. d 2,4 -D i n í troíol ne n e 23 51 46.9 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. A 2,6-Dinitrotoluene 60 41.5 100.6 TRV was calculated using EqP approach (liPA 1993), assuming a fractional organic content of 0.04. d Nitrobenzene 270 119 1285.2 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0,04. & P e mach 1 orori i trob en zone 10 5,890 2356 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. d P ht hal ate esters (/jg/kg) B i s (2-erliy 1 hexyl )phthal ate 3 111,000 1.33x lO"* TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04, d Di(n)octy[ phthalatc 320 9.03 x 10 8 1.I6X 10 10 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0,04.d TABLE E-3 FRESHWATER SEDIMENT TOXICITY REFERENCE VALUES (Page 3 of 7) 1 Compound Freshwater TRV« KK Value" Bed Sediment TRV (dry weight) Reference and Notes ' Volatile or panic compounds (wgy'kg) Acetone 1,500 0.951 57.1 TRV was calculated using EqP approach (UFA 1993), assuming a fractional organic content of 0.04. d Acrylonitrile 260 2.22 23.1 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. d Chloroform 28 53.0 59.4 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. J Crotonaldcliyde 35 Not available Not calculated No TRV was calculated becatise no Koc or K,„ values were identified for this constituent. 1,4-Dioxaue 62,100 0.876 2176.0 TRV was calculated using Eqr1 approach (EPA 1993), assuming a fractional organic content of 0.04. d Formaldehyde 49.6 2.62 5.2 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04, d Vinyl chloride 3,880 11.1 1722.7 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. * Other chlorinated organics (MR/kg) I Ie x a eh 1 orobenzene Not applicable Not applicable 20 TRV is an LEI, value (Persaud et al. 1993). I lexach lorobut a d ie ne 0.93 6,940 258.2 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. J Hexach 1 orocyclopentadi enc 0.52 9,510 197.8 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. J TABLE E-3 FRESHWATER SEDIMENT TOXICITY REFERENCE VALUES (Page 4 of7) Compound Freshwater TRV 1 KK Value" Bet! Sediment TRV {dry weight) Reference and Notes' Pentach 1 orob enzene 0.47 32,148 604.4 TRV was calculated using EqF approach (EPA 1993), assuming a fractional organic content of 0.04. A Pentach 1 orophenol Not applicable Not applicable 7,000 TRV is an AET value for H. azteca (Washington State Department of Ecology 1994), Pesticides (ng/ke) 4,4'-DDE Not applicable Not applicable 5 TRV is an LEL value (Persaud ct al. 1993). p,p'-DDE used as a surrogate. Hepta chlor Not applicable Not applicable 0.3 TRV is an NEL value (Persaud et al. 1993). The NEL was selected because no LEL was available. Hexachlorophene 0.88 1,800,000 63,360 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. a Inorganics (mg/kg) Aluminum Not applicable Not applicable 14,000 TRV is an ERL value calculated by Ingersoll et al. (1996) based on 28-day H. azteca toxicity tests. Antimony Not applicable Not applicable 64,0 TRV is an AET for H. azteca (Washington State Department of Ecology 1994). Arsenic Not applicable Not applicable 6.0 TRV is an LEL value (Persaud et al. 1993). Barium Not applicable Not applicable 20 TRV is a U.S. EPA Region 5 guideline value for classification of sediments for determining the suitability of dredged sediments for open water disposal, as cited in Hull and Suter II (1994). Beryllium Not applicable Not applicable Not available Regulatory or toxicity value not available. Cadmium Not applicable Not applicable 0.6 TRV is an LEL value (Persaud et al. 1993). TABLE E-3 FRESHWATER SEDIMENT TOXICITY REFERENCE VALUES {Page 5 of 7) Compound Freshwater TRV ■ K„ Vatueb Bed Sediment TRV (dry weight) Itefercnce and Notes ' Chromium (total) Not applicable Not applicable 26 TRV is an LEL value (Persaud et a!. 1993). Copper Not applicable Not applicable 16 TRV is an LEL value (Persaud et a!. 1993). Total Cyanide Not applicable Not applicable 0.1 TRV is a U.S. EPA Region 5 guideline value for classification of sediments for determining the suitability of dredged sediments for open water disposal, as cited in Hull and Suter 11 (1994). Lead Not applicable Not applicable 31 TRV is an LEL value (Persaud et al. 1993). Mercuric chloride Not applicable Not applicable 0.2 No toxicity data available for divalent inorganic mercury. Total mercury used as surrogate for divalent inorganic mercury. TRV is an LEL value (Persaud etal. 1993). Methyl mercury Not applicable Not applicable 0.2 No toxicity data available for methyl mercury. Total mercury used as surrogate for methyl mercury. TRV is an LKL value (Persaud et at. 1993). Nickel Not applicable Not applicable 16 TRV is an LEL value (Persaud et al. 1993). Selenium Not applicable Not applicable 0.1 TRV is an AET for H, azteca (Washington Slate Department of Ecology 1994). Silver Not applicable Not applicable 4.5 TRV is an AET for //. azteca (Washington State Department of Ecology 1994). Thallium Not applicable Not applicable Not available Regulatory value or toxicity value not available, Zinc Not applicable Not applicable 110 TRVisanERLvaluecalculatedbyIngersolletal.(l996)basedon28-day H. azteca toxicity tests. TABLE E-3 FRESHWATER SEDIMENT TOXICITY REFERENCE VALUES (Page 6 of 7) Notes: a Toxicity reference values are in units of micrograms per kilogram (ifg/kg) and milligrams per kilograms (mg/kg) for organic and inorganic constituents, respectively, b Values arc in units of liters per kilogram (L/kg). = Organic carbon normalized sorption coefficient. References anil equations used to calculate values are provided in Appendix A. c The references refer to the study from which the TRV was identified. Complete reference citations are provided below, d Freshwater sediment TRV calculated with the following equation: O Freshwater sediment TRV = Freshwater TRV (Table E-l) * Kw ° whei' K\,c "■ organic carbon partition coefficient, and f„ bl= fraction of organic carbon in bed sediment, assumed to be 4 percent = 0.04. K^c values discussed in Appendix A, AET = Apparent Effects Threshold ERL = Effects Range-Low EqP = Equilibrium Partitioning IIMV = High molecular wciglit LEL = Lowest Effect Level NEL = No Effect Level TRV = Toxicity Reference Value TABLE E-3 FRESHWATER SEDIMENT TOXICITY REFERENCE VALUES (Page 7 of 7) REFERENCES Default TRVs for sediments in freshwater habitats were identified from the three sets of freshwater toxicity values presented below. While some compound-specific freshwater sediment toxicity information is available in the scientific literature, available toxicity values were not used because of the compexity in understanding the role of naturally-occurring sediment features (such as grain size, ammonia, sulfide, soil type, and organic carbon content) in toxicity to benthic invertebrates. Among these sets of value, the lowest available toxicity value for a particular compound was adopted as the TRV. In many cases, a default TRV was calculated from the corresponding freshwater TRV using EPA's equilibrium partitioning approach, assuming a 4 percent organic carbon content Hull, R.N, and G. W. Suter H, 1994, Toxicologies! Bench/narks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota: 1994 Revision. ES/ER/TM-95/R], Environmental Sciences Division, Oak Ridge National Laboratory. Oak Ridge, Tennessee. June. Ingcrsoll, C.G., P.S. Haverland, E.L. Bnmson, T.J Canfield, F.J. Dwyer, C.E. Henke, N.E. Kemble, D.R. Mount, and R.G, Fox. 1996. "Calculation and Evaluation of Sediment Effect Concentrations for the Amphipod Hyallela azteca and the Midge Chironomous riparius." International Association of Great Lakes Research, Volume 22. Pages 602-623. Pcrsnud, D., R. Jaaguagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment. Queen's Printer of Ontario. March. U.S. EPA. 1993. Technical Basis for Deriving Sediment Quality Criteria for Nnnwnic Organic Contaminants for the Protection of Benthic Organisms by Using Equilibrium Partitioning. Office of Water, EPA-822-R-93-0I1. September. Washington State Department of Ecology. 1991. Sediment Management Standards, Washington Administrative Code 173-204. Washington State Department of Ecology. 1994. Creation and Analysis of Freshwater Sediment Quality Values in Washington State. Publication No. 97-32-a. July. TABLE E-4 MARINE/ESTUARINE SEDIMENT TOXICITY REFERENCE VALUES (Page 1 of 8) Co in p u u n d Mai Ine/Esťiiai ine Surface Water trv K„ Yaiueb Bed Sediment TRV (dry weight) Reference and Notes' P love hfor i n atedd ib enzrj- p- d í oxin s If j g/kg) 2,3,7,8-TCDD 0.0000038 2,691,535 0.41 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. A Polynuclear aromatic hydrocarbons iľ A11) big/kti Total high molecular weight (IIMW) PAH Not applicable Not applicable 870 Recommended NOEL for Florida Department of Environmental Regulation (DER) (MacDonaid 1993). This TRV may be used in risk of total HMW PAHs is assessed. Bcnzo(a)pyrene Not applicable Not applicable 230 Recommended NOEL for Florida DER (MacDonaid !993). Bcivzo(a)anthracene Not applicable Not applicable 160 Recommended NOEL for Florida DER (MacDonaid 1993). Be n zo( b) fluora nt hene 0.5 836,000 418,000 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. Benzo(k)fl uoranthene Not applicable Not appl icable 240 TRV is a LEL value from Persaud et al. (1993). Chrysene Not applicable Not appl icable 220 Recommended NOEL for Florida DER (MacDonaid 1993). Di be nz(a, h)anthracene Not applicable Not applicable 31 Recommended NOIiL for Florida DER (MacDonaid 1993). lndeno( 1,2,3-cd)pyrene Not applicable Not applicable 1,360 TRV was computed from OC-based marine sediment quality criterion from Washington State Department of Ecology (1991) and fractional organic carbon content of 0,04, as follows: TRV - 34 mg/kg * 0.04 * 1000 ^g/mg. TABLE E-4 MARINE/ESTLARINE SEDIMENT TOXICITY REFERENCE VALUES (Page 2 of 8) Compound Marlnc/Estuarlne Surface Water TRV" K„ Value1 Bed Sediment TRV (dry weight) Hefercnce and Notes' Polychloi Inateil hipliniyls (pci1) (pg/kg) Aroclor 1016 Not applicable Not applicable 22.7 TRV is an ERL value for Total PCB from Long et al, (1995). Aroclor 1254 Not applicable Not applicable 22.7 TRV is an ERL value for Total PCB from Long et al. (1995). Nitroaromatics Qiglkg) 1,3-Dinitrobcnzcne 66.8 20.6 55.0 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. J 2,4-DinitrotoIuene 370 51 754.8 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. d 2,6-Dinitrotoluene 370 41.9 620.1 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. J Nitrobenzene 66.8 119 318.0 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. P c n tachl oron i trob e n zene 10 5,890 2356 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. a TABLE E-4 MARINE/ESTUARINE SEDIMENT TOXICITY REFERENCE VALUES (Page 3 of 8) Compound Marhie/Kstuat im' Surface Water TRV* K„ Value" Bed Sediment TRV (dry weight) Reference und Notes ' Plil h n late esteri (^jg/kg) B is (2 -ethy 1 hexy 1) ph tha 1 ate Not applicable Not applicable 470 TRV was calculated using OC-based marine sediment quality criterion from Washington State Department of Ecology (1991) and fractional organic carbon content of 0.04, as follows; TRV = 47 mg/kg * 0.04 * 1000 Kg/mg. Di(ti)oclyl phthalate Not applicable Not applicable ............ 580 TRV was calculated using OC-based marine sediment quality criterion from Washington State Department of Ecology (1991) and fractional organic carbon content of 0.04, as follows; TRV - 58 mg/kg * 0.04 ♦ 1000 jig/mg. Volatile organic compounds (jig/kg) Acetone 21,000 0.951 798.8 TRV was calculated using KqP approach (EPA 1993), assuming a fractional organic content of 0.04. i Actylonittile 100 2.22 8.88 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04.11 Chloroform ISO 53.0 3B1.6 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. ^ Crotonaldchyde 13 Not available Not computed No TRV was calculated becattse no K„ or K„w value was identified. 1,4-Dioxane 67,000 0.876 2348 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04, d Formaldehyde 49.6 2.62 5.2 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.Ü4. 11 TABLE E-4 MARINE/ESTUARINE SEDIMENT TOXICITY REFERENCE VALUES (Page 4 of 8) Compound Marine/Kstuarlne Surface Water TRV K« Valueb Bed Sediment TRV (dry weight) Reference and Notes * Vinyl chloride 3,880 11.1 1722.7 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. d Other chlorinated org antes (//g/kg) He xachlorob e nxe ne Not applicable Not applicable 15.2 TRV was calculated using OC-based marine sediment quality criterion from Washington State Department of Ecology (1991) and a fractional OC content of 0.04, as follows: TRV = 0.38 mg/kß * 0.04 * 1000 /ig/mg. Hexachlorobutadieoc Not applicable Not applicable 156 TRV was calculated using OC-hased marine sediment quality criterion from Washington State Department of Ecology (1991) and a fractional OC content of'0.04, as follows: TRV = 3,9 ing/kg * 0.04 * 1000 /ig/mg. Hexach 1 orocyc lopentad i enc 0.07 9,510 26.6 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. * Pentachlorobenzene 1.8 32,148 2315 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. d Pentachlorophenol Not applicable Not applicable 360 TRV is marine sediment quality criterion from Washington State Department of Ecology (1991). Pesticides (^g/kg) 4,4-DDE Not applicable Not applicable 1.7 Recommended NOEL for p,p'-DDE for Florida DER (MacDonald 1993). Heptaehlor 0.0036 9,530 1.37 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04. d Hexach lorophene 0.033 1,800,000 2376 TRV was calculated using EqP approach (EPA 1993), assuming a fractional organic content of 0.04, d TABLE E-4 MARINE/ESTUARINE SEDIMENT TOXICITY REFERENCE VALUES (Page 5 of 8) Compound Marine/Estuarlne Surface Water TRV* K„ Value" Bed Sediment TRV (dry weight) Reference and Notes 1 Inorganics (mg/kg) Aluminum Not applicable Not applicable Not available Screening or toxicity value not available. Antimony Not applicable Not applicable 2 TRV is an ERL value (Long and Morgan 1991). Arsenic Not applicable Not applicable 6 TRV is an LEL value for Province of Ontario (Persaud et al. 1993). Barium Not applicable Not applicable 20 TRV is a U.S. EPA Region 5 guideline value for classification of sediments for determining the suitability of dredged material for open water disposal, as cited in Hull and Suter 11(1994). Beryllium Not applicable Not applicable Not available Screening or toxicity value not available. Cadmium Not applicable Not applicable 1.0 Recommended NOEL for Florida DER (MacDonald 1993). Chromium (hexavalent) Not applicable Not applicable 8.1 TRV is an ERL value for total chromium (Long et al. 1995). Copper Not applicable Not applicable 28 Recommended NOEL for Florida DER (MacDonald 1993). Total Cyanide Not applicable Not applicable 0. 1 TRV is a U.S. EPA Region V guideline value for classification of sediments for determining the suitability of dredged material for open water disposal, as cited in Hull and Sulci II (1994). TABLE E-4 MARINE/ESTUARINE SEDIMENT TOXICITY REFERENCE VALUES (Page 6 of 8) Compound Marlne/Estiiarine Surface Water TRV" K„ Value1, Bed Sediment TRV (dry weight) Reference and Notes f Lead Not applicable Not applicable 21.0 Recommended NOEL for Florida DER (MacDonald 1993). Mercuric chloride Not applicable Not applicable 0.1 No toxicity data available for divalent inorganic mercury. Total mercury is used as surrogate. Recommended NOEL for Florida DER (MacDonald 1993). Methyl mercury Not applicable Not applicable 0.1 No toxicity data available for methyl mercury. Total mercury is used as surrogate. Recommended NOEL for Florida DER (MacDonald 1993). Nickel Not applicable Not applicable 20.9 TRV is an ERL value (Long et al. 1995). Selenium Not applicable Not applicable Not Available Screening or toxicity value not available. Silver Not applicable Not applicable 0.5 Recommended NOEL for Florida DER (MacDonald 1993). Thallium Not appliable Not applicable Not available Screening or toxicity value not available. Zinc Not applicable Not applicable 68 Recommended NOEL for Florida DER (MacDonald 1993). TAHLE E-4 MARINE/ESTUARINE SEDIMENT TOXICITY REFERENCE VALUES (Page 7 of 8) Notes: a Sediment TRVs are in units of micrograms per kilogram (^g/kg) and milligrams per kilograms (trig/kg) for organic and inorganic constituents, respectively, b Values are in units of liters per kilogram (L/kg). K,,. = Organic carbon normalized sorption coefficient. References and equations used to calculate values are provided in Appendix A. c The references refer to the study or studies from which the endpoint and concentrations were identified. Complete reference citations are provided below, (1 Sediment TRV calculated with the following equation: Sediment TRV = Marine/estuarine surface water TRV (Table E-2) * Koc * f0 where, i^j Koc = organic carbon partition coefficient, and 00 f«:,t>!= fraction of organic carbon in bed sediment, assumed to be 1 percent = 0.01. values are discussed in Appendix A. EqP = Equilibrium Partitioning ERL = Effects Range-Low I1MW = High molecular weight LEL = Lowest Effect Level NOEL = No Observed Effect Level TRV - Toxicity Reference Value TABLE E-4 MARINE/ESTUARINE SEDIMENT TOXICITY REFERENCE VALUES (Page 8 of 8) REFERENCES Default TRVs for sediments in marine and estuarine habitats were identified from several sets of toxicity values (standards, benchmarks, and guidelines) presented below. While some compound-specific marine/estuarine sediment toxicity information is available in the scientific literature, available toxicity values were not used because of the compexity in understanding the role of naturally-occurring sediment features (such as grain size, ammonia, sulfide, soil type, and organic carbon content) in toxicity to benfhic invertebrates. Among these sets of value, the lowest available toxicity value for a particular compound was adopted as the TRV. In many cases, a default TRV was calculated from the corresponding freshwater TRV using EPA's equilibrium partitioning approach, assuming a 4 percent organic carbon content. 1-Iul 1, R.N. and G. W. Suter H, 1994. lexicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota: 1994 Revision. ES/ER/TM-95/R1. Environmental Sciences Division, Oak Ridge National Laboratory. Oak Ridge, Tennessee. June. Long, E.R., and L.G. Morgan. 1991. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Slatm and Trends Program. National Oceanic and Atmospheric Administration (NOAA) Technical Memorandum No. 5, OMA52, NOAA National Ocean Service. August. Long, K.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. "Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. " Environmental Management. Volume 19. Pages8L97. MacDonald, D.D. 1993. Development of an Approach to the Assessment of Sediment Quality in Florida Coastal Waters. Florida Department of Environmental Regulation. Tallahassee, Florida. January. Persaud, D., R. Jaaguagi, and A, Ilayton. i993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Etiviromneiil. Queen's Printer of Ontario. March. U. S. EPA. 1993. Technical Basis for Deriving Sediment Quality Criteria for Nonionic Organic Contaminants for the Protection ofBenthic Organisms by Using Equilibrium Partitioning. Office of Water. EPA-822-R-93-011. September. Washington State Department of Ecology. 1991. Sediment Management Standards. Washington Administrative Code 173-204 TABLE E-5 TERRESTRIAL PLANT TOXICITY REFERENCE VALUES (Page lot 15) Compound Basis for TRV TRV1 Reference and Notesd Duration and Endpolnt* Test Organism Concentration Uncertainty Factor b Polychlorinateddibenzo-p-dioxins (//(j/kR) 2,3,7,8-TCDD ~ - - ~ — Toxicity value not identified. Polynuclear aromatic hydrocarbons (PAH) (vglkg) Total high molecular weight (HMW) PAH Chronic NOAEL Wheat 1,200 Not applicable 1,200 Benzo(a)pyrene toxicity used as representative toxicity of all HMW PAHs, This TRV may be used to characterize risk of total HMW PAHs to terrestrial plants. Benzo(a)pyrene Chronic NOAEL Wheat 1,200 Not applicable 1,200 Sims and Overcash (1983) Benzo(a)anthracene Not available - ~ - 1,200 Toxicity value not available. Bcnzo(a)pyrene used as surrogate. Ben zo(b) fluoran th en e Chronic NOAEL Wheat 1,200 Not applicable 1,200 Sims and Overcash (1983). Benzo(k)fluoranthene Not available -- ~ - 1,200 Toxicity value not available. I3enzo(a)pyrene used as surrogate. Chrysene Not available - ~ - 1,200 Toxicity value not available. Benzo(a)pyrcnc used as surrogate. Dibenz(a,h)anthracene Not available - -- -- 1,200 Toxicity value not available. Benzo(a)pyrene used as surrogate. TABLE E-5 TERRESTRIAL PLANT TOXICITY REFERENCE VALUES (Page 2 of 15) Compound Basis for TRV TRVC Reference and Notesd Duration and Endpoint' Test Organism Concentration Uncertainty Factor b Incieno(l,2,3-cd)pyrene Not available - -- -- 1,200 Toxicity value not available. Benzo(a)pyrene used as surrogate. Polychiorlnnted biphcnyls (PCB) (ftg/k&) Aroclor 1016 - - - -- 10,000 No toxicity value available. Aroclor 1254 TRV adopted as surrogate. Aroclor 1254 Chronic NOAEL Soybean shoot weight 10,000 Not applicable 10,000 Value for toxicity of Aroclor 1254 (Weber andMrozek 1979). Nitroaromalies (/zg/kß) 1,3-Dinitrobenzene - -- -- -- -- Toxicity value not available. 2,4-Dinitrotoluene -- -- - - - Toxicity value not available. 2,6-Dinitrotoluene -- - -- -- Toxicity value net available. Nitrobenzene - -- -- -- -- Toxicity value not available. Pent ach 1 oron i t robenzen e -- - - - -- Toxicity value not available, Phthalatc esters Og/kg) B i s(2 -eth yl h exy l)phfh al at e -- -- -- -- - Toxicity value not available. Di(n)octyl phthalate - -- - -- - Toxicity value not available. Volatile organic compounds C'^g/kg) TABLE E-5 TERRESTRIAL PLANT TOXICITY REFERENCE VALUES (Page 3 of 15) Compound Basis for TRV TRVC Reference and Notesd Duration and Endpoint * Test Organism Concentration Uncertainty Factor b Acetone -- -- - ~ — Toxicity value not available. Acrylonitrile -- -- - -- -- Toxicity value not available. Chloroform -- -- - -- Toxicity value not available. Crotonaldehyde -- -- - -- - Toxicity value not available. 1,4-Dioxane - - -- - Toxicity value not available. Formaldehyde -- - - - Toxicity value not available. Vinyl chloride - -- - - - Toxicity value not available. Other chlorinated organics (ii^kg) Hcxachlorobenzenc - - - -- - Toxicity value not available. Hexachlorobutadiene - -- -- -- - Toxicity value not available. E lexach 1 orocycl opcntadiene Acute EC50 Lettuce growth 10,000 0.01 100 Hulzebos et al. (1993) Pentachlorobcnzenc - -- - -- -- Toxicity value not available. Pentachlorophenol Chronic LOAEL Rice 17,300 0.1 1,730 Nagasawa et al. (1981) Pesticides (>g/kg) 4,4'-DDE -- -- -- ■- - Toxicity value not available. TABLE E-S TERRESTRIAL PLANT TOXICITY REFERENCE VALUES (Page 4 of 15) Compound Basis for TRV TRVr Reference and Notesd Duration and Endpoint * Test Organism Concentration Uncertainty Factor b ........ Heptachlor Chronic NOAEL Carrot 1,000 Not applicable 1,000 Ahrensand Kring(1968) Hexachlorophene - - -- - - Toxicity value not available. Inorganics (mg/kg) Aluminum Subchronic NOAEL White clover seedling cstablishmen t 50 0.1e 5 Mackayet al. (1990) Antimony Not specified Not specified 5 0.1c 0.5 Kabata-Pendias and Pendias (1992) Arsenic Chronic LOAEL Corn yield (weight) 10 0.1 1 Woolson et al. (1971) Barium Chronic LOAEL Barley shoot growth 500 0.01' 5 Chaudry et al. (1977) Beryllium Not specified Not specified 10 0.01c 0.1 Kabata-Pendias and Pendias (1992) Cadmium Chronic LOAEL Spruce seedling growth 2 0.1c 0.2 Burton etal. (1984) Chromium (hcxavalent) Subchronic EC50 Lettuce growth 1.8 0.01 0.018 Adema and Hazen (1989) Copper Chronic LOAEL Barley 10 0.1 1.0 To i von em and Hofs tra (1979) TABLE E-5 TERRESTRIAL PLANT TOXICITY REFERENCE VALUES (Page 5 of 15) Compound Basis for TRY TRVC Reference and Notes" Duration and Endpoiiit" Test Organism Concentration Uncertainty Factor h Cyanide, total - -- -- - -- Toxicity value not available. Lead Chronic LOAEL Senna 46 0.1 4.6 Krishnayya and Bedi (1986) Mercuric chloride Acute NOEC Barley 34.9 0.01" 0.349 Panda et al. (1992) Methyl mercury ~ -- -- -- -- Toxicity value not available. Nickel Chronic NOAEL Bush bean shoot growth 25 Not applicable 25 Wallace etal. (1977) Selenium Subchronic NOAEL Alfalfa shoot weight 0.5 0.1 0.05 Wan etal. (1988) Silver Not specified Not specified 2 0.01° 0.02 Kabata-Pendias and Pendias (1992) Thallium Not specified Not specified 1 0.0 le 0.01 Kabata-Pendias and Pendias (1992) Zinc Chronic LOAEL Spring barley 9 0,1 0.9 Davis, Beckett, and Wollan (1978) TABLE E-5 TERRESTRIAL PLANT TOXICITY REFERENCE VALUES (Page 6 of 15) Notes: a To evaluate exposure duration, the following general guidelines were used: Chronic duration represents exposures occurring about 10 or more days, including exposure during a critical life stage, such as germination and shoot development. Subchronic duration generally lasts 2 days through several days, however a sensitive life stage is not exposed. Acute duration generally includes exposures occurring 0 to 2 days. b Uncertainty factors are used to extrapolate a toxicity value to a chronic NOAEL TRV. See Chapter 5 (Section 5.4) of the SLERAP for a discussion on the use of uncertainty factors. c TRV was calculated by multiplying the toxicity value with the uncertainty factor.

g/kg) Aroclor 1016 Acute median LC50 Harth worm (Eisenia foetida) 251,000 0.01 2,510 Rhett et al, (1989). Aroclor 1254 Acute median LC50 Earthworm (Eisenia foetidä) 251,000 0.01 2,510 Rliett et al. (1989). Nitroaromatics inn/kg) 1,3 -Dinitrobenzene -- - - - 2,260 Toxicity value not available. Nitrobenzene used as surrogate. 2,4-Dinitrotoluene -- - - ~ Toxicity value not available. 2,6-Dinitrotoluene -- - - - Toxicity value not available. Nitrobenzene Subchronic (14-day) LC50 Earthworm (species uncertain) 226,000 o.or 2,260 Ncuhauser etal. (1986). Pcntach 1 oron it robcnzene - - - - Toxicity value not available. Phthalate esters (/ig/kg) Bis(2-ethylhcxyl)phthalate - - - - - Toxicity value not available. Di(n)octyl phthalate - - - - - Toxicity value not available. Volatile organic compounds (jig/kg) Acetone ~ - - ~ - Toxicity value not available. Acrylonitrile ~ - - - - Toxicity value not available. TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 3 of 12) Cum {toil utt TRV TRV Reference and Notes d Duration and Kndpolnt" Test Species Concentration Uncertain! y Factor b Chloroform - - - - Toxicity value not available. Croton aldehyde - - - - - Toxicity value not available. 1,4-Dioxane - - - - - Toxicity value not available. Formaldehyde -- - ~ - - Toxicity value not available. Vinyl chloride - - ~ ~ ~ Toxicity value not available. Other chlorinated organic* (wg/kR) Hexacliioi obcnzenc -■ - - - - Toxicity value not available. H c x achlorobutad tene -- ~ - ~ - Toxicity value not available. Hex achlorocyclopen 1 ad ic ne -- ~ - ~ - Toxicity value not available. Pctttachlorobcnzene LCSO of unspecified duration Earthworm (species uncertain) 115,000 0.0 le 1,150 van Gestel ct a!. (1991) Pentaclilorophenol Chronic (21-day) NOAEL for hatching success Earthworm (Efsenla andret) 10,000 Not applicable 10,000 van Gestel et al. (1988) Pesticides Oj ft/kg) 4,4'-DDE - - -- - - Toxicity value not available. Ileptachlor ~ - - - - Toxicity value not available. Hexacblorophene - ~ ~ ~ ~ Toxicity value nol available. Inorganics (mg/kg) TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 4 of 12) Compound TRV TRVC Reference and Notes d Duration and Endpofnt" Test Species Concentration [Jneertaint y Factor b Aluminum -- - - ~ ~ Toxicity value not available, Antimony -- - - - Toxicity value not available. Arsenic Chronic (56-day); reduced cocoon production reported at single concentration tested Earthworm (Eisenia fetida) 25 0.0 lc 0.25 Fischer and Koszorus (1992) liar mm - - ~ ~ -- Toxicity value not available, Beryllium - - ~ - Toxicity value not available. Cadmium Chronic (4-mouth) NOAEL for cocoon production Earthworm (Dendrobaena rubidd) 10 Not applicable 10 Ucngtsson and et al. (1986) Chromium (hexavalent) Chronic (60-day); survival reduced 25 percent at lowest tested concentration Earthworm (Oclochaetus paitoni) 2 0.1° 0.2 Abbasi and Som (1983) Copper Chronic (56-day) NOAEL for cocoon production Earthworm (Eisenia fetida) 32.0 Not applicable 32.0 Spurgeon et al. (1994) Cyanide, total ~ - - - - Toxicity value not available. Lead Chronic (4-month) NOAEL for cocoon production Earthworm {Dendrobaena rubida) !00 Not applicable 100 Bengtsson et al. 1986 TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 5 of 12) Compound TRY TI1VC Reference and Notes d Duration and Endpoint* Test Species Concentration Uncertain! y Factor k Mercuric chloride Not available - - ~ 2.5 Toxicity value not available. TRV for methyl mercury used as a surrogate. Methyl mercury Chronic (12-week) NOAEL for segment regeneration and survival Earthworm (Eisenia foetida) 2.5 Not applicable 2.5 Beyer ct al. (1985). Wet weight NOAEL of 1 mg/kg converted to corresponding dry weight NOAEL based on 60 percent moisture content. Uncertainty factor of 0.1 used because segment regeneration may not be a sensitive endpoint. Nickel Chronic (20-week) NOAEL for cocoon production Earthworm {Eisen ia foetida) 100 Not applicable 100 Maleckiet a). (1982) Selenium Chronic; reduced cocoon production at single tested concentration Earthworm {Eisenia foetida) 77 0.1° 7.7 Fischer and Koszoms (1992) Silver -- - - - - Toxicity value not available. Thallium -- - - - - Toxicity value not available. Zinc Chronic (S6-day) NOW for cocoon production Earthworm (Eisenia fetida) 199 Not applicable 199 Spurgeon et ai. (1994) TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page6ofl2) n i O Notes: a - duration, the following general guidelines were used: Chronic duration represents exposures occurring about 10 or more days, including exposure during a critical life stage encompassing a sensitive endpoint. Subclironic duration generally lasts 2 days through several days, however a sensitive life stage is not exposed. Acute duration generally includes exposures from 0 to 2 days. b Uncertainty factors are used to extrapolate a toxicity value to a chronic NOAELTRV. See Chapter 5 (Section 5.4) of the SLERAP for a discussion on the use of uncertainty factors, c TRV was calculated by multiplying the toxicity value with the uncertainty factor. d The references refer to the source of the toxicity value. Complete reference citations arc provided below. e Best scientific judgment used to identify uncertainty factor. See Chapter 5 (Section 5.4.1.2) for a discussion on the use of best scientific judgement. Factors evaluated include test duration, ecological relevance of measured effect, experimental design, and availability of toxicity data. BMW « High molecular weight LC50 = Concentration lethal to 50 percent of the test organisms. NOAEL = No Observed Adverse Effects Level NOEC - No Observed Effects Level UF = Uncertainty Factor TRV ■ Toxicity Reference Value TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 7 of 12) REFERENCES Efroymson, Will, and Suter II (1997) provides a comprehensive review of ecologically-relevant soil invertebrate toxicity information, This source was reviewed to identify studies to develop TRVs for invertebrates. Effects of compounds on microbial communities were not considered. Based on the information presented, one or more references were obtained and reviewed to identify compound-specific toxicity values. For some compounds, the available information identified a single study meeting the requirements for a TRV, as discussed in Section 5.4. In most cases, each reference was obtained and reviewed to identify a single toxicity value to develop a TRV for each compound. In a few cases where a primary study could not be obtained, a toxicity value is based on a secondary source. As noted below, additional compendia were reviewed to identify toxicity studies to review. For compounds not discussed in Efroymson, Will, and Suter II (1997), the scientific literature was searched, and relevant studies were obtained and reviewed. The references reviewed are lisled below. The study selected for the TRV is highlighted in bold. q Poly chlorinated dibenzo(p)dioxins I OS i— Rcinecke, A.J., and R.G. Nash. 1984. "Toxicity of 2,3,7,8-TCDD and Short-Term Bioaccumulation by Earthworms (Oligochaeta)." Soil Biology Biochenmuy. Volume 16. Pages 45-49. As cited in U.S. Fish and Wildlife Service. 1986. Dioxin Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. Biological Report 85 (1.8). May. Benzo(a)pyrene van Straallen, N.M., and R.A. Verwcij. 1991. "Effects of Benzo(a)pyrene on Food Assimilation and Growth Efficiency in Porcellio scaher (Isopoda)." Bulletin of Environmental Contamination and Toxicology. Volume 46. Pages 134-140. van Brummelen, T.C., and S.C. Stuijfzand. 1993. "Effects of benzo(a)pyrene on survival, growth and energy reserves in terrestrial isopods Oniscus asellus and Porcellio scaher."Science of the Total Environment. Supplement. Pages 921-930. van Straalen, N.M., and R.A. Verweij. 1991. "Effects of benzo(a)pyrene on food assimilation and growth efficiency in Porcellio scaher (Isopoda)." Bulletin of Environmental Contamination and Toxicology. Volume 46. Pages 134-140. Polychlorinated biphenyls Rhett, G., and others. 1989. "Rate and Effects of PCB Accumulation on Eisenia foetida." U.S. Army Corps of Engineers. Waterways Experiment Station. Vicksburg, Mississippi. September 21. Nitrobenzene TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 8 of 12) Neuhniiscr, E.F., P.R. Durkin, M.R. Malecki, and M. Anatra. 1986. "Comparative Toxicity of Ten Organic Chemicals to Pour Earthworm Species." Comparitive Biochemistry and Physiology. Volume 83C. Pages 197-200. Pen tach lorobenzene van Gestel, C.A.M., W.-C. Ma, and C.E. Smit. 1991. "Development of QSARs in Terrestrial Ecotnxicnlogy: Earthworm Toxicity and Sol! Sorption of Chlorophenols, Chlorobenzenes, and Dichloroaniline," The Science of the Total Environment. Volume 109/110. Pages 589-604. PentacMorophenol van Gestel, C.A.M. and W.-C. Ma. 1988. "Toxicity and Bioaccumulation of Chlorophenols in Earthworms, in Relation to Bioavailability in Soil." Ecotoxicology and Environmental Safety. Volume 15. Pages 289-297. Fitzgerald, D. G., K. A. Warner, R. P. Lanno, and D. G. Dixon. 1996. "Assessing the Effects of Modifying Factors on Pentachlorophenol Toxicity to Earthworms: Applications of Body Residues." Environmental Toxicology and Chemistry. Volume 15. Pages 2299-2304. Hcimbach, F. 1992. "Effects of Pesticides on Earthworm Populations: Comparison of Results from Laboratory and Field Tests." In Ecotoxicology of Earthworms. P.W. Greig-Smith et al. (eds). Intercept Ltd., U.K. Pages 100-106. Kammenga, J.E., C.A.M. van Gestel, and J. Bakker. 1994. "Patterns of Sensitivity to Cadmium and Pentachlorophenol (among nematode species from different taxonomic and ecological groups)." Archives of Environmental Contamination Toxicology. Volume 27. Pages 88-94. van Gestel, C.A.M., W.A. van Dis, E.M. Dirvcn-van Brccmcn, P.M. Sparenburg, and R. Baerselman. 1991. "Influence of Cadmium, Copper, and Pentachlorophenol on Growth and Sexual Development of Eisenia andrei (Oligochaeta; Annelida)," Biology and Fertilityof Soils. Volume 12. Pages 117-121. Arsenic Fischer, E., and L. Koszorus. 1992. "Sublethal Effects, Accumulation Capacities, and Elimination Rates of As, Hg, and Se in the Manure Worm Eisenia fetida (Oligochaeta, Lumbricidae)." Pedobiologia. Volume 36. Pages 172-178. Fischer, F„, and L. Koszorus. 1992. "Sublethal Effects, Accumulation Capacities and Elimination Rates of As, llg and Se in the Manure Worm, Eisenia fetida (Oligochaeta, Lumbricidae)." Pedobiologia. Volume 36. Pages 172-178. Cadmium TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 9 of 12) Bengtsson, G., T. Gunnarsson, and S. Rundgren. 1986. "Effects of Metal Pollution on the Earthworm Dendrobaena rttbida (Sav.) in Acidified Soils." Water, Air, and Soil Pollution. Volume 28. Pages 361-383. Crommcntuijr, T., J. Brils, and N.M. van Strauler. 1993. "Influence of Cadmium on Life-History Characteristics otFolsomia Candida (Willem) in an Artificial Soil Substrate." Kcotoxicalogy Environmental Safely. Volume 26. Pages 216-227. Russell, L.K., J.I. De Haven, and R.P. Botts. 1981. "Toxic effects of Cadmium on the Garden Snail (Helix aspersa)." Bulletin of Environmental Contamination and Toxicology. Volume 26, Pages 634-640. Spurgcon, D.J., S.P. Hopkin, and D.T. Jones. 1994. "Effects of Cadmium, Copper, Lead, and Zinc on Growth, Reproduction, and Survival of the Earthworm Eisenia fetida (Savigny): Assessing the Environmental Impact of Point-source Metal Contamination in Terrestrial Ecosystems." Environmental Pollution. Volume 84. Pages 123-130. van (iestel, C.A.M., W.A. van Dis, E.M. Dirven-van Breemen, P.M. Sparcnburg, and R. Baersclman. 1991. "Influence of Cadmium, Copper, and Pentachlorophenol on Growth and Sexual development of Eisenia andrei (Oligochaeta; Annelida)." Biology and Fertility of Soils. Volume 12. Pages 117-121. van Gestel, C.A.M., E.M. Dirven-van Breemen, and R. Baerselman. 1993. "Accumulation and Elimination of Cadmium, Chromium and Zinc and Effects on Growth and Reproduction in Eisenia andrei (Oligochaeta; Annelida)." Science of the Total Environment. Supplement. Pages 585-597. Chromium (Hexavalent) Abbasi, S.A. and R, Soni, 1983. "Stress-Induced Enhancement of Reproduction in Earthworm, Octochaetus pattoni, Exposed to Chromium (VI) and Mercury (II)—Implications in Environmental Management." International Journal of Environmental Studies. Volume 22. Pages 43-47. Molnar, L,, E. Fischer, and M. Kallay. 1989, "laboratory Studies on the Effect, Uptake and Distribution of Chromium in Eisenia foetida (Annelida, Oligochaeta)." Zool. Am. Volume 223(1/2). Pages 57-66. Soni, R., and S.A. Abbasi. 1981. "Mortality and Reproduction inEcarthworms Pheretima posthuma Exposed to Chromium (VI)." International Journal of Environmental Studies. Volume 17. Pages 147-149. Copper Spurgeon, D.J., S.P. Hopkin, and D.T. Jones. 1994. "Effects of Cadmium, Copper, Lead, and Zinc on Growth, Reproduction, and Survival of the Earthworm Eisenia fetida (Savigny): Assessing the Environmental Impact of Point Source Metal Contamination in Terrestrial Ecosystems." Environmenal Pollution. Volume 84. Pages 123-130. TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 10 of 12) Korthals, G. W., A. D. Alexiev, T. M. Lexmond, J. E. Kammenga, and T. Bongers. 1996. "Long-term Effects of Copper and pll on the Nematode Community in an Agroecosystein." Environmental Toxicology and Chemistry. Volume 15. Pages 979-985 Ma, W.-C. 1984. "Sublethal Toxic Effects of Copper on Growth, Reproduction and Litter Breakdown Activity in the Earthworm Lumbricus tubellus, with Observations on the Influence of Temperature and Soil pH." Environmental Pollution, Series A. Volume 33. Pages 207-219. Ma, W.-C. 1988. "Toxicity of Copper to I.iunbi icid Earthworms in Sandy Agricultural Soils Amended with Cu-enriched Organic Waste Materials." Ecology Bulletin. Volume 39, Pages 53-56. Marigomez, J.A., E. Angulo, and V. Saez, 1986. "Feeding and Growth Responses to Copper, Zinc, Mercury, and Lead in the Terrestrial Gastropod Arioit (iter (Linne)." Journal of Molluscan Studies. Volume 52. Pages 68-78. Streit, B. 1984. "Effects of High Copper Concentrations on Soil Invertebrates (Earthworms and Orihatid Mites): Experimental Results and a Model." Oecologia. Volume 64. Pages 381-388. Streit, B, and A. Jaggy. 1983. "Effect of Soil Type on Copper Toxicity and Copper Uptake in Octoiaaium cyaneum (Lumbricidae)." In: New Trends in Soil Biology, Ph. Lebrun et al. (eds). Pages 569-575. Ottignies-Louvain-Ia-Neuve, van Gestel, C.A.M., W.A. van Dis, E.M. Dirven-van Breemen, P.M. Sparcnhurg, and R. Bacrselman. 1991. "Influence of Cadmium, Copper, and Pentachlorophenol on Growth and Sexual Development of Eisenia andrei (Oligochaeta; Annelida)." Biology and Fertility of Soils. Volume 12. Pages 117-121. van Rltee, J, A. 1975. "Copper Contamination Effects on Earthworms by Disposal of Pig Waste in Pastures." Progress in Soil Zoology. Volume 1975. Pages 451-457. Lead Bengtsson, C, 1. Gunnarsson, and S. Rundgren. 1986. "Effects of Metal Pollution on the Earthworm Dendrobaena rubida (Sav.) In Acidified Soils." Water, Air, and Soil Pollution. Volume 28. Pages 361-383. Beyer, W.N., and A. Anderson. 1985. "Toxicity to Woodlice of Zinc and Lead Oxides Added to Soil Litter." Ambio. Volume 14(3). Pages 173-174. Marigomez, J. A., E. Angulo, and V. Saez. 1986. "Feeding and Growth Responses to Copper, Zinc, Mercury, and Lead in the Terrestrial Gastropod At ion ater (Linne)." Journal of Molluscan Studies. Volume 52. Pages 68-78. Spurgeon, D.J., S.P. Hopkin, and D.T. Jones. 1994. "Effects of Cadmium, Copper, Lead, and Zinc on Growth, Reproduction, and Survival of the Earthworm Eisenia fetida (Savigny): Assessing the Environmental Impact of Point-source Metal Contamination in Terrestrial Ecosystems." Environmental Pollution. Volume 84, Pages 123-130. Mercuric chloride TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 11 of 12) Abbasi, S.A., and R. Soni. 1983. "Stress-induced Enhancement of Reproduction in Earthworm Octochaetus pattern! Exposed to Chromium (VI) and Mercury (II) - Implications in Environmental Management." International Journal of Environmental Studies. Volume 22. Pages 43-47. Fischer, E., and L. Koszorus. 1992. "Sublethal Effects, Accumulation Capacities and Elimination Rates of As, Hg and Se in the Manure Worm, Eisenia fetida (Oligochaeta, Lumbriddae)." Pedoblologia. Volume 36. Pages 172-178, Marigomez, J.A., E. Angulo, and V. Saez. 1986. "Feeding and Growth Responses to Copper, Zinc, Mercury, and Lead in the Terrestrial Gastropod Arion ater (Linne)." Journal of Molluscan Studies. Volume 52. Pages 68-78. Methyl mercury Beyer, W.N., E. Cromartle, and G.B. Moment. 198S. "Accumulation of Methyl Mercury In the Earthworm, Eisenia foetida, and Its Effects on Regeneration." Bulletin of Environmental Contamination and Toxicology. Volume 35. Pages 157-162. Beyer, W.N., E. Cromartie, and G.B. Moment. 1985. "Accumulation of Methylmercury in the Earthworm Eisenia foetida, and its Effect on Regeneration." Bulletin of Environmental Contamination Toxicology. Volume 35. Pages 157-162. Nickel Malccld, M.K., E.F. Neu ha us er, and R.C. Loehr. 1982. "The Effect of Metals on the Growth and Reproduction of Eisenia foetida (Oligochaeta, Lumbricidae)." Pedoblologia. Volume 24. Pages 129-137. Selenium Malccld, M.R., E.F. Neuhauser, and R.C. Loehr. 1982. "The Effect of Metals on the Growth and Reproduction of Eisenia foetida (Oligochaeta, Lumbriddae)." Pedoblologia. Volume 24. Pages 129-137. Fischer, E., and L. Koszorus. 1992, "Sublethal Effects, Accumulation Capacities and Elimination Rates of As, Ilg and Se in the Manure Worm, Eisenia fetida (Oligochaeta, Lumbricidae)." Pedoblologia. Volume 36, Pages 172-178. Zinc Beyer, W.N., and A. Anderson. 1985. "Toxicity to Woodlice of Zinc and Lead Oxides Added to Soil hitter" Ambio. Volume 14. Pages 173-174. TABLE E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES (Page 12 of 12) Beyer, W.N., G. W. Miller, and E.J. Cromartte. 1984. "Contamination of the O, Soil Horizon by Zinc Smelting and its Effect on Woodlouse Survival," Journal of Environmental Quality. Volume 13. Pages 247-251, Marigomez, J.A., E. Angulo, and V. Saez. 1986. "Feeding and Growth Responses to Copper, Zinc, Mercury, and Lead in the Terrestrial Gastropod Arion ater (Linnc)." Journal of Molluscan Studies. Volume 52. Pages 68-78. Spurgeon, D.J., S,P. Hopkin, and D.T. Jones. 1994. "Effects of Cadmium, Copper, Lead, and Zinc on Growth, Reproduction, and Survival of the Earthworm Eiseni a fetida (Savigny); Assessing the Environmental Impact of Point Source Metal Contamination in Terrestrial Ecosystems." Environmental Pollution. Volume 84. Pages 123-t 30. van Gestel, C.A.M., E.M. Dirven-van Breemen, and R. Baerselman. 1993. "Accumulation and Elimination of Cadmium, Chromium and Zinc and Effects on Growth and Reproduction in Eisenia q andrei (Oligochacta; Annelida)." Science of the Total Environment (Supplement./ Pages 585-597. I TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 1 of 15) Basis for Toxicity Reference Value (TRV) TRV Reference and Notes1 Com pound Duration and Endpoint * Test Organism Dose* Uncertainty Factor* Polychlorinateddlbenzo-p-dloxins f>g/k£ BW-day) 2,3,7,8-TCDD Chronic (multi generational) NO A EL for reproduction Rat 0.001 Not applicable 0.001 Murray et al. (1979). TRV based on toxicity of 2,3,7,8-TCDD. Polynuclear aromatic hydrocarbons (PAH) t>g/hg BW-day) Total high molecular weight (HMW) PAH -- -- 10O TRV based on benzn(a)pyrenc toxicity. This TRV should be assessing the risk of Total HM W PAH. Benzo(a)pyrcnc Acute (10 days) LOAEL (reproductive effects) Mouse 10,000 0.01 100 Mackenzie and Angcvine (1981) B en zo(a) anthracene Single dose LOAEL (gastrointestinal effects) Mouse 16,666 0.01 167 Bock and King (1959) B en ko (b )fl uoranthe ne - -- -- - - Toxicity value not available. Benzo( k) fluoranthen e - -- - -- - Toxicity value not available. Chrysene - - - - - Toxicity value not available. D i bcnz(a, h )a n t ti racene Subchronic (15 days) LOAEL (reduced growth rate) Rat 200 o.or 2 Haddowet al. (1937) Indeno( 1,2,3-cd)pyrene - - - - -- Toxicity value not available. TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 2 of 15) Compound Basis for Toxicity Reference Value (TRV) TRV Reference and Notes 6 Duration and Endpoint' Test Organism Dose* Uncertainty Factor1 Polychlor Inated Biphenyls (PCB) Og/kg BW-day) Aroclor 1016 Subchronic (14.5 weeks) LOAEL (mortality) Mink 20.6 0.01 0.206 Aulerich et al. (1985). TRV based on toxicity of 3,4,5-hcxachlorobiphenyl. Aroclor 1254 Subchronic (14.5 weeks) LOAEL (mortality) Mink 20.6 0.01 0.206 Aulerich et al. (1985). TRV based on toxicity of 3,4,5-hexachlorobiphenyl. Nttrr, a remarks (Mg/kg BW-day) 1,3-Dinitrobenzene Chronic (16 weeks) NO A EL Rat 1,05 1 1.0 1,051 Cody et al, (1981) 2,4-Dimtrotoluene Chronic (24 months) NOAEL Dog 700 1.0 700 Ellis etal. (1979) 2,6-Dinitrotolucne Single dose LOAEL (mortality) Dog 4,000 0.01 400 Lee etal. (1976) Nitrobenzene - - •- .. -- Toxicity value not available. Pe ntach 1 oron itrobc n zene Chronic (2 years) NOAEL Mouse 458.333 1.0 458,333 National Toxicology Program (1987) Ph Hi Hlaď esters (fig/kg BW-day) B is(2-ethylh cxyl) phth at ate Chronic (2 years) NOAEL Rat 60,000 1.1) 60,000 Carpenter ct al. (1953) Di(n)ncryl phthalate Chronic (105 days) NOAEL Mouse 7,500,000 1.0 7,500,000 Heindel etal. (1989) Volatile organic compounds t^g/kg BW-day) Acetone Subchronic (90 days) NOAEL Albino Rat, male 100,000 0,1 10,000 U.S. EPA (1986) Acrylonitrile Chronic (2 years) LOAEL (lesions and other organ effects) Rat 4,600 0.1 460 Quast etal. (1980) Chloroform Chronic (80 weeks) NOAEL Mouse 60,000 1.0 60,000 Roe et al.(l979) TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 3 of 15) Compound Basis for Toxicity Reference Value (TRV) TRV Reference and Notes * Duration and Endpoint * Test Organism Dose* Uncertainty Factor1 Crotonaldehyde Acute (4-hour) LD50 Rat 8,000 0.01 80 Rinehart (1967) 1,4-Dioxane Chronic (23 months) LOAEL (lung tumors) Guinea Pig 1,069,767 0.1 106,777 Hoch-Ligeti and Argus (1970) Formaldehyde Acute (single dose ) LOAEL (mortality) Rat 230,000 0.01 2,300 Tsuchiyaet al. (1975) Vinyl chloride Chronic (2 years) NOAEL Rat 1,700 0.1 170 Feron et al. (1981) Other chlorinated organlcs (riß/hg BW-day) He xa chl oroben zene Chronic (>247 days) NOAEL Rat 1,600 1.0 1,600 Grant et al. (1977) Hexachlorobutadiene Chronic (2 years) NOAEL Rat 200 1.0 200 Kociba et al. (1977) Hexachlorocyclopcntadiene Subchronic (13 weeks) NOAEL Rat 38,000 0.1 3,800 Abdo etal. (1984) Pentachlorobenzene Chronic (180 days) NOAEL Rat 7,250 1.0 7,250 Linder et al. (1980) Pcntachlorophenol Subchronic (62 days) NOAEL Rat 3,000 0.1 300 Schwetzet al. (1978) Pesticides (/ig/kg BW-day) 4,4'-DDE Subchronic (5 weeks) NOAEL Rat 10,000 0.1 1,000 Kornburstet al. (1986) Heptachlor Subchronic (60 days) LOAEL (mortality) Rat 250 0.01 2.5 Green (1970) Hexachlorophene Acute LD50 Rat 560,000 0.01 5Ď00 Meister (1994) Inorganics (mg/kg BW-day) Aluminum Chronic (>1 year) LOAEL (growth) Rat 19.3 0.1 1.93 Ondreicka et al. (1966) TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 4 of 15) Compound Basis for Toxicity Reference Value (TRV) TRV Reference and Notes d Duration and Endpoint' Test Organism Dose" Uncertainty Factor* Antimony Chronic (4 years) LOAEL (mortality) Rat 0.66 0,1 0.066 Schroedoret al. (1970) Arsenic Chronic (2 years) NOAEL Dog 1.25 1.0 1.25 Byron etal. (1967) Barium Chronic (16 months) NOAEL Rat 0.51 1.0 0.51 Perry et al. (1983) Beryllium Chronic (>1 year) NOAEL Rat 0,66 1.0 0.66 Schroeder and Mitchncr (1975) Cadmium Chronic (>I50 days) LOAEL (reproduction) Mouse 2.52 0.01 0.0252 Schroeder and Mitchncr (1971} Chromium (hexavalent) Chronic (1 year) NOAEL Rat 3.5 1.0 3.5 MacKenzie et al. (1958) Copper Chronic (357 days) NOAEL Mink 12.0 1.0 12,0 Aulerich et al. (1982) Total Cyanide Chronic (2 years) NOAEL Rat 24 1.0 24 Howard and Hanzal (1955) Lead Chronic (>I50 days) LOAEL (mortality) Mouse 3.75 0.01 0.0375 Schroeder and Mitcimer (1971) Mercuric chloride Chronic (6 months) NOAEL (reproduction) Mink 1.01 1.0 1.01 Aulerich etal. (1974) Methyl mercury Sub-chronic (93 days) NOAEL Rat 0.032 1.0 0.032 Verscbuuren et al. (1976) Nickel Chronic (2 years) NOAEL Rat 50 1.0 50 Ambrose et al. (1976) Selenium Chronic (>I50 days) LOAEL (mortality) Mouse 0.76 0.1 0.076 Schroeder and Mitchner (1971) Silver Chronic (125 days) LOAEL (hypoactivity) Mouse 3.75 0.1 0.375 Rungby and Dan seller (1984) 1 TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Pagc5ofl5) Compound Basis for Toxicity Reference Value (TRV) TRV Reference and Notesd Duration and Endpoint' Test Organism Dose' Uncertainty Factor' Thallium Subclironic (60 days) LOAEL (testicular function) Rat 1.31 0.01h 0.0131 Formigli et al. (1986) Zinc Subclironic (13 weeks) NOAEL Mouse KM 0.1 10.4 Maitactal. (1981) Notes: a The duration of exposure is defined as chronic if it represents about 10 percent or more of the test animal's lifetime expectancy. Acute exposures represent single exposure or multiple exposures occurring within about two weeks or less. Subchronic exposures are defined as multiple exposures occurring for less than 10 percent of the test animal's lifetime expectancy but more that 2 weeks. b Reported values, which were dose in food or diet, were converted to dose based on body weight and intake rate using Opresko, Sample, and Suler 1996. c Uncertainty factors are used to extrapolate a toxicity value to a chronic NOAEL TRV. See Chapter 5 (Section 5,4) for a discussion on the use of uncertainty factors. The TRV was calculated by multiplying the toxicity value by the uncertainty factor, d The references refer to the study or studies from which the endpoint and doses were identified. Complete reference citations arc provided at the end of this table, c Best scientific judgement used to identify uncertainty factor. See Chapter 5 (Section 5.4.1.2) for a discussion of the use of best scientific judgement. Factors evaluated include test duration, ecological relevance of endpoint, experimental design, and availability of toxicity data. HMW = High molecular weight LD50 = Lethal dose to 50 percent of the test organisms. LOAEL - Lowest Observed Adverse Effect Level NOAEL - No Observed Adverse Effect Level TRV = Toxicity Reference Value TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 6 of 15) REFERENCES Sample, Opresko, and Suter II (1996) provides a comprehensive review of ecologically-relevant mammal toxicity information. This source was reviewed to identify studies to develop TRVs for mammals. Based on the information presented, one or more references were obtained and reviewed to identify compound-specific toxicity values. For some compounds, the available information identified a single study meeting the requirements for a TRV, as discussed in Section 5.4. In most cases, each reference was obtained and reviewed to identify a single toxicity value to develop a TRV for each compound, hi a few cases where a primary study could not be obtained, a toxicity value is based on a secondary source. As noted below, additional compendia were reviewed to identify toxicity studies to review. For compounds not discussed in Sample, Opresko, and Suter (I (1996), the scientific literature was searched, and relevant studies were obtained and reviewed. The references reviewed are listed below. The study selected for the TRV is highlighted in bold. Pa lych lorina ted dibenzo (p)dioxins Murray, F.J., F.A. Smith, K.D. Nitschke, C.G. Humiston, R.J. Kociba, and B.A.Schwelr, 1979, "Three-Generation Reproduction Study of Rats Given 2,3,7,8-Tetrachlorodlbenzn-p-rtioxin (TCDD) in the Diet," Toxicology and Applied Pharmacology. Volume SO. Pages 241-252. U.S. EPA. 1993. Interim Report on Data and Methods for Assessment oj'2J,7,8-Tetrachlorodibenzop-dioxui Risks to Aquatic Life and Associated Wildlife. EPA/600/R-93/055. Officeof Research and Development. Washington, D.C. March. This report identified the four studies listed below. Aulericli, R.J., R.K. Ringer, and S. lwamoto. 1973. "Reproductive Failure and Mortality in Mink Fed on Great Lakes Fish." Journal of Reproduction and Fertility. Volume 19. Pages 365-376. Aulerich, R.J., S.J. Bursian, and A.C. Napolitano. 1988. "Biological Effects of Epidermal Growth Factor and 2,3,7,8-Tetrac!i!oradibcnzo-p-dioxin on Developmental Parameters of Neonatal Mink." Archives of Environmental Contamination and Toxicology. Volume 17, Pages 27-31. Aulerich, R.J., S,J. Bursian, W.J, Breslin, B.A, Olson, and R.K. Ringer. 1985. "Toxicological Manifestations of 2,4,5,2',4',5'-, 2,3,6,2',3',fi'-, and 3,4,5,3',4',5'-Hcxachlorobiphenyl and Aroclor 1254 in Mink." Journal of Toxicology and Environmental Health. Volume 15. Pages 63-79. Hochstein, J.R , R.J. Aulerich, and S.J. Bursain. 1988. "Acute Toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin to Mink," Archives of Environmental Contamination and Toxicology. Volume 17. Pages 33-37. Benzo(a)pyrene iVlacKenzic, K.M., and D.M. Angeviue. 1981. "Infcrtility in Mice Exposed in Utero to Benzo(a)pyrene." Biotogy of Reproductioit. Volume 24. Pages 183-191. TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 7 of 15) Benzo(a)anthracene Bock, F.G. and D.W. King. 1959. "A Study of the Sensitivity of the Mouse Forestomach Toward Certain Polycyclic Hydrocarbons." Journal of the National Cancer Institute. Volume 23. Page 833-839. Dibenz(a,h)anthracene Haddow, A., CM. Scott, and J.I). Scott. 1937. "The Influence of Certain Carcinogenic and Other Hydrocarbons on Body Growth in the Rat." Proceeding H. Soc. London. Series B. Volume 122. Pages 477-507. As cited in IARC Monographs, 1983. 0 1 Poly chlorinated biphenyls Aulcrich, R.J., S.J, Bursian, W.J. Breslin, B.A.Olson, and R.K. Ringer. 1985. "Toxicological Manifestations of 2,4,5-, 2',4,,5'-, 2,3,6-, 2',3',6'- and 3,4,5-, 3',4',5'- Hexachlorobi phenyl and Aroclor 1254 in Mink." Journal of Toxicology and Environmental Health. Volume 15. Pages 63-79. Aulcrich, R. J. and R. K. Ringer. 1977. "Current Status of PCB Toxicity, Including Reproduction in Mink." Archives of Environmental Containation and Toxicology. Volume 6. Page 279. ATSDR (Agency for Toxic Substances and Disease Registry). 1989. Toxicological profile for Selected PCBs (Aroclor-1260. -1254, -1248, -1242, -1232. -1221, and-1016). ATSDRArP-88/21. Barsotti, D. A., R. J. Marlarand J. R. Allen. 1976. "Reproductive Dysfunction in Rhesus Monkeys Exposed to Low Llcvels of Polychlorinatcd Biphenyls (Aroclor 1248)." Food and Cosmetics Toxicology. Volume 14. Pages 99-103. Bleavins, M. R., R. J. Aulerich, and R. K. Ringer. 1980. "Polychlorinated Biphenyls (Aroclors 1016 and 1242): Effect on Survival and Reproduction in Mink and Ferrets." Archives of Environmental Contamination and Toxicology Volume 9. Pages 627-635. Collins, W. T., and C. C. Capen. 1980. "Fine structural lesions and hormonal alterations in thyroid glands of perinatal rats exposed in utero and by milk to polychlorinatcd biphenyls." American Journal of Pathology. Volume 99. Pages 125-142. Lindcr, R. E., T. B. Gaines, and R. D. Kimbrough. 1974, "The effect of PCB on rat reproduction." Food and Cosmetics Toxicology. Volume 63. Pages 63- 67. Linzey, A. V. 1987. "Effects of chronic polychlorinated biphenyls exposure on reproductive success of white-footed mice (Peromyscus leucopus)." Archives of Environmental Contamination and Toxicology. Volume 16. Pages 455-460. TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 8 of 15) McCoy, G, M. F. Finlay, A. Rhone, K, James, and G. P. Cobb. 1995. "Chronic Polychlorinated Biphenyls Exposure on Three Generations of Oldfield Mice {Permyscus polionottts): Effects on Reproduction, Growth, and Body Residues. Archives of. Environmental Contamination and Toxicology. Volume 28. Pages 431-435. Mcrsoti, M, II,, and R. L. Kirkpatrick, 1976. "Reproductive Performance of Captive White-Footed Mice Fed a Polychlorinated Biphenyl." Bulletin of Environmental Contamination and Toxicology: Volume 16. Pages 392-398. Ringer, R. K., R. J. Aulcrich, and M, R, Blcavins. 1981. "Biological Effects of PCBs and PBBs on Mink and Ferrets: a Review." In:Hatogenated Hydrocarbons: Health and Ecological Effects. M.A.Q. Khan, ed. Permagon Press, Elmsford, NY. Pages 329-343. Sanders, O.T., and R.L, Kirkpatrick. 1975. "Effects of a Polychlorinated Biphenyl on Sleeping Times, Plasma Corticosteroids, and Testicular Activity of White-Footed Mice," Environmental Physiology and Biochemistry. Volume 5. Pages 308-313, Villcneuve, D.C., D.L. Grant, K. Khera, D.J. Klegg, H. Baer.and W.E.J. Phillips. 1971. "The Fctotoxicity of a Polychlorinated Biphenyl Mixture (Aroclor 1254) in the Rabbit and in the Rat," Environmental Physiology. Volume!. Pages 67-71. Cody, I.E., S. Withemp, L. Hastings, K. Stemmer, and R.T. Christian. 1981. "1,3-Dlnitrobenzene: Toxic Effects in Vivo and in Vitro." Journal ofToxicology and Environmental Health. Volume 7. Pages 829-847. Ellis, H.V.III, J.II. Hagensen, J.R. Hodgson, J.L. Minor, C-B. Hong, ICR. Ellis, J.D, Girvin, D.O. Helton, B.L. Hertidon, and C-C. Lee. 1979. "Mammalian Toxicity of Munitions Compounds. Phase HI: Effects of Lifetime Exposure. Parti: 2,4-Dlnltrotoluene." Final Report No. 7. Midwest Research Institute, Kansas City, Missouri. Contract No. DAIMD 17-74-C-4073, ODC No. ADA077692. Lee, C.C., U.V. EIHs HI, J.J. Kowalski, J.R. Hodgsen, R.D. Short, J.C. Uhandari, T.W. Red dig, and J.L. Minor. 1976. "Mammalian Toxicity of Munitions Compounds. Phase II: Effects of Multiple Doses. Part HI: 2,6-Dinitrotolucne. Progress Report No. 4." Midwest Research Institute. Project No. 3900-B. Contract No. DAMÜ-17-74-C-4073. As cited in ATSDR Toxkological Profile for 2,4- Dinitrotoluene and 2,6-Dinitrotoluene. December 1989. Pentach I oron i t robenze ne 1,3-Din itrobenzen e 2,4-Dinitrotoluene 2,6-Dinitrotolttene TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 9 of 15) National Toxicology Program. 1987. "Toxicology and Carcinogenesis Studies of Pentachloronitrobenzene in B6C3K, Mice." Report No. 325. National Institutes of Health Publication No. 87-2581. Bis(2)ethylhexylphthalate Carpenter, CP., C.S. Weil, H.F. Smyth, Jr. 1953. "Chronic Oral Toxicity of Di(2-cthylhcxyl)plithalate for Rats, Guinea Pigs, and Dogs." Drinker, P. (cd.). Archives of Industrial Hygeine and Occupational Medicine. Volume 8. Pages 219-226. Lamb, J. C, IV, R. E. Chapin, J. Tcague, A. D. Lawton, and J. R. Reel. 1987. Reproductive effects of four phthalic acid esters in the mouscToAr/co/. Appl. Pharmacol. 88: 255-269 Di(n)octyt phthalate Hcindcl, J,J., D.K. Gulati, R.C. Mounce, S.R. Russell, and J.C. Lamb IV. 1989. "Reproductive Toxicity of Three Phthalic Acid Esters in a Continuous Breeding Protocol." Fundamental and Applied Toxicology. Volume 12. Pages 508-18. Acetone U.S. EPA. 1986. "Ninety-Day Gavage Study in Albino Rats Using Acetone." Office of Solid Waste. Washington, DC. As cited in IRIS Database. January 1995. Aaylonitrile Quast J.F. and others. 1980. A Two-Year Toxicity and Oncogenicity Study With Acrylonitrilc Incorporated in the Drinking Water of Rats. Toxicol. Res. Lab., Health Environ. Res., Dow Chemical Co. As cited in EPA (1980) Ambient Water Quality Criteria for Acrylonitrile. Chloroform Roe, F.J.C., A.K. Palmer, A.N. Worden, and N.J. Van Abbe. 1979. "Safety Evaluation of Toothpaste Containing Chloroform. 1. Long-Term Studies in Mice." Journal of Environmental Pathology and Toxicology. Volume 2. Pages 799-819. Crotonaldehyde TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 10 of 15) Ri n eh art, W.E. 1967. "The Effect on Rats of Single Exposures to Crotonaldehyde Vapor." American Industrial Hygiene Association Journal. Volume 28. Pages 561-566. 1,4-Dioxane Hoch-Ligeti, C. and M.K, Argus, 1970. "Effects of Carcinogens on the Lung of Guinea Pigs." In: Proceedings of Biology Division, Oak Ridge National Laboratory, Conference. Morphology of Experimental Respiratory Carcinogenesis. (Eds) P. Netteshcir, M.G. Ilnniia, Jr., and J. VV. licatherasc, Jr. U.S. Atomic Energy Commission. December. Formaldehyde Tsuchiya, K., Y. Hayasfii, M. Onodera, and T. Hasegawa. 1975. "Toxicity of Formaldehyde in Experimental Animals - Concentrations of the Chemical in the Elution from Dishes of Formaldehyde Resin in Some Vegetables." Kelo Journal of Medicine. Volume 24. Page 19-37. Hurni, II. and II. Ohder. 1973. Reproduction study with formaldehyde and hexamethylenetetramine in Beagle dogs. Fd. Cosmet. Toxicol. 11: 459-462. Vinyl chloride Feron, V. J., C.F.M. Hendriksen, A.J. Speek, H.P. Til, and B.J. Spit. 1981. "Lifespan Oral Toxicity Study of Vinyl Chloride in Rats." Fd. Cosmet. Toxicol. Volume 19. Pages 317-333. Quasi, J. F., C. G, Huntiston, C. E. Wade, et al. 1983. A chronic toxicity and oncogenicity study in rats and subchronic toxicity in dogs on ingested vinylidenc chloride.Fund. Appl. Toxicol. 3:55-62. Hexachlorobenzene Grant, D.L., W.E.J. Phillips, G.V. Hatina. 1977. "Effect of Hexachlorobenzene on Reproduction in the Rat." Archives of Environmental Contamination and Toxicology. Volume 5. Pages 207-216. Bleavins, M. R., R. 3. Aulerich, and R. K. Ringer. 1984. Effects of chronic dietary hexachlorobenzene exposure on the reproductive performance and survivability of mink and European ferrets. Arch. Environ. Contain. Toxicol. 13: 357-365. Hexachlorbutadiene TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 11 of 15) Kociba, R.J., Keyes, D.O., Jersey, G.C., Ballard, J.J., Dittenber, D.A., Quast, J.F., Wade, C.E., Humiston, C.G., and Schwerz, U.A. 1977. Results of a Two Year Chronic Toxicity Study With Hexachlorobutadiene in Rats." American Industrial Hygiene Association Journal. Volume 38. Pages 589-602. Hexachlorocyclopentadiene Abdo, K.M,, C.A. Montgomery, W.M. Kluwe, D.R. Farnell, and J.D. Prejean. 1984. "Toxicity of Hexachlorocyclopentadiene: Suhchronic (13-Week) Administration by Gavage to F344 Rats and B6C3F, Mice." Journal of Applied Toxicology- Volume 4. Pages 75-81. Pentachlorobenzene Linder, R., T. Scotri, J. Goldstein, and K. McElroy. 1980. "Acute and Suhclirnnic Toxicity of Pentachlorobenzene." Journal of Environmental Pathology and Toxicology. Volume 4. Pages 183-196. Pentacklorophenol Schweiz, B.A., J.F. Quast, P.A. Keeler, C.G. Humiston, and R.J. Kociba. 1978. "Results of Two-Year Toxicity and Reproduction Studies on Pentachlorophenol in Rats." In: Pentachlorophenoi; Chemistry, Pharmacology, and Environmental Toxicology. Rao, K.R. (ed). Pages 301-31)9. Plenum Press, New York. 4,4-DDE Kornbrust, IV, It. Gillts, B. Collins, T. Goehl, B. Gupta, and B. Schweiz. 1986. "Effects of 1,l-l)lchlin'o-2,2-lils(p-ch)oriii)heiiyl)elliylciu: (DDE) on Lactation in Rats." Journal of Toxicology and Environmental Health. Volume 17. Pages 23-36. Heptachlor Green, V. A. 1970. "Effects of Pesticides on Rat and Chick Embryo." Proceedings of the 3rd Annual Conference on Trace Substances in Environmental Health. University of Missouri Press. Columbia, Missouri. Crum, J. A., S, J. Bursian, R. J. Aulerich, P. Polin, and W. E. Braselton. 1993. The reproductive effects of dietary heptachlor in mink (Mitsiela vison). Arch. Environ. Contam. Toxicol. 24: 156-164. Hexach lorophene TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 12ofl5) Meister, RJ. (ed.) 1994. Farm Chemicals Handbook'94. Meister Publishing Company, Willoughby, Ohio. Volume 80. Page C189. Aluminum Schroeder, H.A., and M, Mitchener. 1975. "Life-Term Studies in Rats: Effects of Aluminum, Barium, Beryllium, and Tungsten." Journal of Nutrition. Volume 105. Pages 421-427. Ondreicka, R., E. Ginter, and J. Korius. 1966. Chronic toxicity of aluminum in rats and mice and its effects on phosphorus metabolism. Brit Indust. Med. 23: 305-313. n Antimony oo Schroeder, H.A., M. Mltcbner, and A.P. Nasor. 1970. "Zirconium, Niobium, Antimony, Vanadium and Lead in Rats: Life Term Studies." Journal of Nutrition. Volume 100. Pages 59-68. Arsenic (trivalent) Byron, W.R., G.W. Blerbowcr, J.B. Urouwer, and W.H. Hansen. 1967. "Pathological Changes in Rats and Dogs from Two-Year feeding of Sodium Arsenite or Sodium Arsenate." Toxicology and Applied Pharmacology. Volume 10. Pages 132-147. Baxley, M. N., R. D. Hood, G. C. Vedel, W. P. Harrison, and G. M. Szczech, 1981, Prenatal toxicity of orally administered sodium arsenite in mice.Btill. Environ C'ontam. Toxicol. 26: 749-756. Blakely, B. R., C. S. Sisodia, and T. K. Mukkur. 1980. The effect of methyl mercury, retrcthyl lead, and sodium arsenite on the humoral immune response in mice. Toxicol. Appl Pharmacol. 52; 245-254. Harrison, J. W., E. W. Packman, and D.D. Abbott. 1958. Acute oral toxicity and chemical and physical properties of arsenic trioxides. Arch. Ind. Health. 17: 118-123. Neiger, R. D. andG. D. Osweiler. 1989. Effect of subacute low level dietary sodium arsenite on Aog^.Fund. Appl. Toxicol. 13:439 451. Robertson, I.D., W. E. Harms, and P. J. Ketterer. 1984. Accidental arsenical toxicity to cattle. Ausi. Vet. J. 61: 366-367. Schroeder, H. A. and J. J. Balassa, 1967. Arsenic, germanium, tin, and vanadium in mice: effects on growth, survival and tissue levels, J. Nulr. 92: 245-252. Schroeder, H. A., M. Kanisawa, D. V. Frost, and M. Mitchener. 1968a. Germanium, tin, and arsenic in rats; effects on growth, survival and tissue levels. J. Nuir. 96: 37-45 -; -J TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 13 of 15) Barium Perry, I I..M .,!]■., S, J. Kopp, M.W. Erlanger, and E.F. Perry. 1983. "Cardiovascular Effects of Chronic Barium Ingestion." Proceedings of lite 17th Annual Conference on Trace Substances in Environmental Health. University of Missouri Press. Columbia, Missouri. Borzelleca, J. P., L. W. Condie, Jr., and J. L. Egle, Jr. 198B. Short-term tonicity (onc-and ten-day gavage) of barium chloride in male and female rats. J. American College of Toxicology. 7: 675-685. Beiyllium Sc liiin der, II.A., and M. Mitchener. 1975. "Life-Term Studies in Rats: Effects of Aluminum, Barium, Beryllium, and Tungsten." Journal of Nutrition. Volume 105. Pages 421-427. Cadmium Schroeder, H.A., and M. Mitclmer. 1971. "Toxic Effects of Trace Elements on Reproduction of Mice and Rats." Archives of Environmental Health. Volume 23. Pages 102-106. Baranski, B., I. Stetkiewisc, K. Sitarek, and W. Szymczak. 1983. "Effects of Oral, Subclironic Cadmium Administration on fertility, Prenatal and Postnatal Progeny Development in Rats." Archives of Toxicology. Volume 54. Pages 297 through 302. Machemer, L., and D. Lorke. 1981. "Embryotoxic Effect of Cadmium on Rats Upon Oral Administration." 'Toxicology and Applied Pharmacology. Volume 58. Pages 438-443. Sutuu, S„ K. Yamamoto, H. Sendota, K. Tomomatsu, Y. Shimizu, and M. Sugiyama. 1980a. "Toxicity, Fertility, Teratogenicity, and Dominant Lethal Tests in Rats Administered Cadmium Subehronically. I. Toxicity studies." Ecotoxicotogy and Environmental Safety. Volume 4. Pages 39-50. Sutou, S., K. Yamamoto, H. Sendota, and M. Sugiyama, 1980b. "Toxicity, Fertility, Teratogenicity, and Dominant 1-etlial Tests in Rats Administered Cadmium Subehronically, [I, Fertility, Teratogenicity, and Dominant Lethal Tests." Ecotoxicoiogy and Environmental Safety. Volume 4. Page 51-56. Webster, W. S. 1978. Cadmium-induced fetal growth retardation in the mouse. Arch. Environ. Health. 33:36-43. Wills, J. H., G. E. Groblewski, and F. Coulston. 1981. Chronic and mulligeneration toxicities of small concentrations of cadmium in the diet rats. Ecotoxicol. Environ. Safety 5: 452-464. Chromium TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES {Page 14 of 15) Mackenzie, R.D., R.U. Byerruin, CF. Decker, C.A. Hoppcrt, and R.F. Langham. 1958. "Chronic Teixictty Studies: II. Hcxavalent and Trivalent Chromium Administered in Drinking Water to Rats." American Medical Association Archives of industrial Health. Volume 18. Pages 232-234. Copper Aulerich, R.J., R.K. Ringer, M.R. Blcavins, and A. Napnlitano. 1982. "Effects of Supplemental Dietary Copper on Growth, Reproductive Performance and Kit Survival of Standard Dark Mink and the Acute Toxicity of Copper to Mink." Journal of Animal Science. Volume 55. Pages 337-343. n Cyanide do o Howard, J.W., and R.F. Hanzal. 195S. "Chronic Toxicity for Rats of Food Treated with Hydrogen Cyanide." Journal of Agricultural anil Food Chemistry. Volume 3. Pages 325-329. Tewe, O. 0. and J. H. Maner. 1981, Long-term and carry-over effect of dietary inorganic cyanide (KCN) in the life cycle performance and melabolism of rats. Toxicol. Appl. Pharmacol. 58; 1-7. Lend Schroeder, H.A., M. Mitchner, and A.P. Nasor. 1970. "Zirconium, Niobium, Antimony, Vanadium and Lead in Rats: Life Term Studies." Journal of Nutrition. Volume 100. Pages 59-68. Schroeder, H.A., and M. Mitchner. 1971. "Toxic Effects of Trace Elements on Reproduction of Mice and Rats." Archives of Environmental Health. Volume 23. Pages 102-106. Mercuric chloride Auk-rich, H.J., R,K. Ringer, and S. Iwamoto. 1974. "Effects of Dietary Mercury on Mink." Archives of Environmental Contamination and Toxicology, Volume 2. Pages 43-51. As cited in Sample, Opresko, and Suter (1996). Sample, B.E., D.M. Opresko, G.W. Suter II. 1996. Toxkohgical Benchmarks for Wildlife: 1996 Revision. Risk Assessment Program Health Sciences Research Division, Oak Ridge, Tennessee. Prepared for U.S. Department of Energy. Methyl mercury Verschuuren, H.G., R. Kroes, E.M, den Tnnkelaur, J.M. Berkvcns, P.W. Hellcman, A.G. Rauws, P.L. Schuller, and G.J. van Esch. 1976. "Toxicity of Methyl Mercury Chloride in Rats. II. Reproduction Study." Toxicology. Volume 6. Pages 97-106. TABLE E-7 MAMMAL TOXICITY REFERENCE VALUES (Page 15 of 15) Blakely, B. R., C. S. Sisodia, and T. K. Mukknr. 1980. The effect of methyl mercury, tetrethyl lead, and sodium arsenite on the humoral immune response in mice. Toxicol. Appt. Pharmacol. 52: 245-254, Nobunga, T., H. Satoh, and T. Suzuki. 197°. Effects of sodium selenite on methyl mercury embryotoxicity and teratogenicity in mice. Toxicol. Appi. Pharmacol. 47:79-88. Nickel Ambrose, A.M., P.S. Larson, J.F, Borzclleca, and G.R. Hennlgar, Jr. 1976. "Long Term Toxicologic Assessment of Nickel in Rats and Dogs." Journal of Food Science and Technology, Volume 13. Pages 181-187. Selenium Schroeder, H.A., and M. Mitclmcr. 1971. "Toxic Effects of Trace Elements on Reproduction of Mice and Rats," Archives of Environmental Health. Volume 23. Pages 102-106. Chiachun, T., C. Hong, and R. Hai fun. 1991. The effects of selenium on gestation, fertility, and offspring in mice. Biol. Trace Elements Res. 30: 227-23!. Rosenfeld, I, and 0. A. Bcath. 1954. Effect of selenium on reproduction in rats. Proc. Soc. Exp. Biol. Med. 87: 295-297. Silver Rungby, J., and G. Danscliei, 1984. "Hypoactivity in Silver Exposed Mice." Acta. Pharmacol, et Toxicol. Volume 55. Pages 398-401. As cited in ATSDR Toxicologic:!! Profile for Silver. December 1990. Thallium Formigli, L., R. Scelsi, P. Poggi, C. Gregotti, A. Di Nucci, E. Sabbinni, L. Gottardi, and L. Mauzo. 1986. "Thallium-Induced Testicular Toxicity in the Rat." Environmental Research. Volume 40. Pages 531-539. Zinc TABLE E-8 BIRD TOXICITY REFERENCE VALUES (Page 1 of 13) Maita, K., M. Hirano, K. Mitsmnori, K. Takahaslii, and Y. Shirasu. 1981. "Subacute Toxicity Studies with Zinc Sulfate in Mice and Rats." Journal of Pesticide Science. Volume 6. Pages 327- 336. Gasaway, W. C. and I. Q. Buss. 1972. Zinc toxicity in the mallard../. Wildl. Manage. 36: 1107-1117. Basis for TRV Compoiwt) Duration and Kndpnint' Test Organism Dose" Uncertainty Factor" TRV Reference and Notes * Polychtnrm:ite(ldJben/o)dioxins Nosefc, J.A., S.R. Craven, J.R. Sullivan, S.S. Hurley, and R.E. Peterson. 1992. "Toxicity and Reproductive Effects of 2,3,7,8-Tetrschlorodibcnzo-p-dioxm in Ring-Necked Pheasant Hens." Journal of Toxicology and Environmental Health. Volume 35. Pages 187-198. U.S. EPA. 1993. Interim Report on Data and Methods for Assessment of2,3,7,8-Tetrachlorodibenzop-dioxin Risks to Aquatic Life and Associated Wildlife. EPA/600/R-93/055, Office of Research and Development. Washington, D.C. March. This report identified the two studies listed below. Greig, J.B., G. Jones, W.H. Butler, and J.M. Barnes, 1973. "Toxic Effects of 2,3,7,8-Tetmchlorodibeiizo-p-dioxins. Food and Cosmetics Toxicology. Volume II. Pages 585-595. Hudson, R., R.Tucker, and M. Haegele, 1984. Handbook of Toxicity of Pesticides to Wildlife. Second Ed. U.S. Fish and Wildlife, Resources Publication No, 153. Washington, D.C. Benzo(a)pyrene BrunstriJm, B., D. Broman, and C, Niif. 1991. "Toxicity and EROD-Inducing Potency of 24 Polycyclic Aromatic Hydrocarbons (PAHs) in Chick Embryos." Archives of Toxicology. Volume 65. Pages 485-489. Benzo (a)anthracen e Bruiistriim, B., D. Broman, and C. NaT. 1991. "Toxicity and EROD-tnducing Patency of 24 Polycyclic Aromatic Hydrocarbons (PAHs) in Chick Embryos." Archives of Toxicology, Volume 65. Pages 485-489. Benzo (k)fluoranihene TABLE E-8 BIRD TOXICITY REFERENCE VALUES (Page 8 of 13) Brunstrom, H., D. Broinan, and C. NaT. 1991. "Toxicity and EROD-Inducing Potency of 24 Polycyclic Aromatic Hydrocarbons (PAHs) in Chick Embryos." Archives of Toxicology. Volume 65. Pages 485-489. Chyrsene Brunstrom, B., D. Broman, and C. NaT. 1991. "Toxicity and EROD-Inducing Potency of 24 Polycyclic Aromatic Hydrocarbons (PAHs) in Chick Embryos." Archives of Toxicology. Volume 65. Pages 485-489. Dibenzfa, hjanthracene Brunstrom, B., D. Broman, and C. NaT. 1991. "Toxicity and EROD-Inducing Potency of 24 Polycyclic Aromatic Hydrocarbons (PAHs) in Chick Embryos." Archives of Toxicology. Volume 65. Pages 485-489. Indenofl. 2,3-cdJpyrene Brunstrom, B., D. Broman, and C. NaT. 1991. "Toxicity and EROD-Inducing Potency of 24 Polycyclic Aromatic Hydrocarbons (PAHs) in Chick Embryos." Archives of Toxicology. Volume 65. Pages 485-489. Polychlorinated Biphenyls Peakall, D.B., J.L. Lincer, S.E. Bloom. 1972. "Embryonic Mortality and Chromosomal Alterations Caused by Aroclor 1254 in Ring Doves." Environmental Health Perspectives. Volume 1. Pages 103-104. Dahlgren, R.tV, R.L. Lindcr, andC.W. Carlson. 1972. "Polych I urinated Biphenyls; Their Effects on Penned Pheasants," Environmental Health Perspectives. Volume I. Pages 89-101. McLane, M.A.R., and D.L. Hughes. 1980. "Reproductive Success of Screech Owls Fed Aroclor 1248." Archives of Environmental Contamination and Taxicalog. Volume 9. Pages 661-665. /, 3-Dinitrobenzene Schafer, ILW. 1972. "The Acute Oral Toxicity of 369 Peslicidal, Pharmaceutical and Other Chemicals to Wild Birds." Toxicotogical and Applied Pharmacology. Volume 21. Pages 315-330. TABLE E-8 BIRD TOXICITY REFERENCE VALUES (Page 9 of 13) Pentachloronitrobenzenc Dunn, J. S., P. B. Bush, N. II. Booth, R.L, Farrell, D. M. Thomason, and D. D. Goetsch. 1979. Effect of Pentachloronitrobenzeiie upon Egg Production, llatchability, and Residue Accumulation in the Tissues of White Leghorn Hens. Toxicology and Applied Pharmacology. Volume 48. Pages 425-433. Bis(2-elhylhexyJ)phlhalate Peakali, D.B. 1974. "Effects of Di-n-butyl and Di-2-ethylhexyl Phthalate on the Eggs of Ring Doves. Bulletin of Environmental Contamination and Toxicology," Volume 12. Pages 698-702. o ! ^ Acetone Hill, E.F., and M.B. Camardese. 1986. "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix." Fish and Wildlife Service. Technical Report 2. 1,4-Dioxane Giavini, E., C. Vismara, and L. Broccia. 1985. Teratogenesis Study of Dioxane in Rats." Toxicology Letters. Volume 26. Pages 85-88. This study did not evaluate an ecologically relevant endpoint. Therefore, the data were not used to develop a TRV. Hexachlorobenzene Hill, E.F., and M.B. Camardese. 1986. "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coin mix." Fish and Wildlife Service. Technical Report 2. Hexach ioro butadiene Schweiz, B.A., J.M. Norris, R.J. Kocilia, P.A. Keeler, R.F. Cornier, and P.J. Gehring. 1974. "Reproduction Study in Japanese Quail Fed Hexachlorobutadiene for 90 Days." Toxicology and Applied Pharmacology. Volume 30. Pages 255-265. Pentachlorophenol Hill, E.F., and M.B. Camardese. 19S6. "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnfx." Fish and Wildlife Service. Technical Report 2. TABLE E-8 BIRD TOXICITY REFERENCE VALUES (Page 10 of 13) 4,4-DDE Hill, E.F., and M.B. Camardcse. 1986. "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to CoCurnix." Fish and Wildlife Service, Technical Report 2. Mendenhall, V.M., E.E. Klaas, and M.A.R, McLane. 1983, "Breeding Success of Barn Owls {Tyto alba) Fed Low Levels of DDli and Dicldiin." Archives of Environmental Contamination and Toxicology. VohtmeYl. Pages 235-240. Shellenbergcr, T.E. 1978. "A Multi-Generation Toxicity Evaluation of P-P'-DDT and Dieldrin with Japanese Quail. I. Effects on Growth and Reproduction." Drug Chemistry and Toxicology. Volume I. Pages 137-146 Heptachlor Hill, F.F., and M.B. Cainardese. 1986. "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Colin nix." Fish anil Wildlife Service, Technical Report 2. Hexachlorophene Meister, R.J. (ed.) 1994. Farm Chemicals Handbook'94. Meister Publishing Company, Wllloughby, Ohio. Volume 80. PageC189. Aluminum Carriere, D,, K.L. Fischer, D.B. Peakall, and P. Anghcrn. 1986. "Effects of Dietary Aluminum Sulphate on Reproductive Success and Growth of Ringed Turtle Doves (Streptopelia risoria)." Canadian Journal of Zoology. Volume 64. Pages 1500-1505. Carriere, D., K. Fischer, D. Peakall, and P. Angehm. 1986. "Effects of Dietary Aluminum in Combination with Reduced Calcium and Phosphorus on the Ring Dove {Streptvpclia risoria)." Water, Air, and Soil Pollution. Volume 30. Pages 757-764, Antimony Ridgeway, L.P. and D.A. Karnofsky 1952. "The Effects of Metals on the Chick Embryo: Toxicity and Production of Abnormalities in Development," Annals of New York Academy of Sciences. Volume 55. Pages 203-215. TABLE E-8 BIRD TOXICITY REFERENCE VALUES (Page 11 of 13) Arsenic U.S. Fish and Wildlife Service. 1969. "Publication 74," Bureau of Sport Fisheries and Wildlife. As cited in Sample, Opresko, and Suter II (1996). Barium Johnson, D., Jr., A.L. Mehring, Jr., and H.W. Titus. 1960. "Tolerance of Chickens for Barium." Proceedings o fthe Society for Experimental Biology and Medicine. Volume 104. Pages 436-438. Cadmium White, D.H., and M.T. Finley. 1978. "Uptake and Retentinn of Dietary Cadmium in Mallard Ducks." Environmental Research. Volume 17. Pages 53-59. Chromium Haseltlne, S.D., and others. 1985. "Effects of Chromium on Reproduction and Growth of Black Ducks." As cited in U.S. Fisli and Wildlife Service. 1986. Chromium Hazards to Pish, Wildlife, and Invertebrates: A Synoptic Review. January. Page 38. Copper Mehring, A.L.Jr., J.H. Brumbaugh, A.J. Sutherland, and H.W. Titus. 1960. "The Tolerance of Growing Chickens for Dietary Copper." Poultry Science. Volume 39. Pages 713-719. Cyanids Wiemeyer, S.N., E.F. Hill, J. W. Carpenter, and A.J. Krynitsky. 1986, "Acute Oral Toxicity of Sodium Cyanide in Birds." Journal of Wildlife Diseases. Volume 22. Pages 538-46. Lead Kendall, R.J., and P.F. Scanlon. 1982. "The Toxicology of Ingested Lead Acetate in Kinged Turtle Doves Stretopelia risoritt." Environmental Pollution. Volume 27. Pages 255-262. TABLE E-8 BIRD TOXICITY REFERENCE VALUES (Page 12 of 13) Edens, F., W.E. Benton, S J. Bursian, and G.W. Morgan. 1976. "Effect of Dietary Lead on Reproductive Performance in Japanese Quail, Commix coturnix japonica." Toxicology and Applied Pharmacology. Volume38. Pages307-314. Pattee, Oil. 1984. "Eggshell Thickness and Reproduction in American Kestrels Exposed to Chronic Dietary Lead," Archives of Environmental Contamination and Toxicology. Volume 13. Pages 29-34. Mercuric chloride Hill, E.F., and M.B. Camardese. 1986, "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix." Fish and Wildlife Service. Technical Report 2. Hill, E, F. and C. S. Schaffncr, 1976. "Sexual Maturation and Productivity of Japanese Quail Fed Graded Concentrations of Mercuric Chloride." Poultry Science. Volume 55. Pages 1449-1459. Methyl mercury Heinz, G.H. 1979. "Mcthylmeicury: Reproductive and Behavioral Effects on Three Generations of Mallard Ducks." Journal of Wildlife Management. Volume 43. Pages 394-401. Spann, J.W., G.H. Heinz, M.B. Camardese, E.F. Hill, J.F. Moore, and H.C, Murray. 1986, "Differences in Mortality Among Bobwhite Fed Mcthylniercury Chloride Dissolved in Various Carriers," Environmental Toxicology and Chemistry. Volume 5. Pages 721-724. Nickel Hill, E.F., and M.B. Camardese. 1986. "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix." Fish and Wildlife Service. Technical Report 2. Cain, H.W., and E.A. Pafford. 1981. "Effects of Dietary Nickel on Survival and Growth of Mallard Ducklings." Archives of Environmental Contamination and Toxicology. Volume 10, Pages 737-745. Selenium Heinz, G., and others. 1987, "Research at Patuxent Wildlife Research Center." As cited in Sample, Opiesko, and Suter II (1996). Heinz, G.H., DJ. Hoffman, A.J. Krynitsky, and D.M.G. Wcllcr. 1987 "Reproduction in Mallards Fed Selenium." Environmental Toxicology and Chemistry. Volume 6. Page 423-433. TABLE E-8 BIRD TOXICITY REFERENCE VALUES (Page 13 of 13) Heinz, O.H., D.J. Hoffman, and L.G. Gold. 1989. "Impaired Reproduction of Mallards Fed an Organic Form of Selenium." Journalof Wildlife Management. Volume 53. Pages 418-428. Sample, B.E., D.M. Opresko, G.W. Sitter II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Risk Assessment Program Health Sciences Research Division, Oak Ridge, Tennessee. Prepared for U.S. Department of Energy. Silver U.S. Er A. 1997. Aquatic Toxicity Information Retrieval Database (AQUIRE). Office of Research and Development, National Health and Environ mental Effects Research Laboratory, Mid-Continent Ecology Division. January, o h Thallium Schäfer, E.W. 1972. "The Acute Oral Toxicity of 369 Pesticidal, Pharmaceutical and Other Chemicals to Wild Birds." Toxicological and Applied Pharmacology. Volume 21. Pages 315-330. Zinc Stahl, J.L., J.L. Greger, and M.E. Cook, 1990. "Breeding-Hen and Progeny Performance When Hens Are Fed Excessive Dietary Zinc." Poultry Science. Volume 69. Pages 2S9-2S3. APPENDIX H SITE-SPECIFIC SOIL SCREEiNING LEVELS Guidance for Assessing Ecological Risks Posed by Chemicals: Screening Level Ecological Risk Assessment HRMB Guidance Documeni SITE-SPECIFIC SOLL SCREENING LEVELS23 This is an OPTIONAL step that may be appropriate for large facilities which are screening a number of sites with similar habitats for common COPECs. It provides a method for calculating levels of COPECs in abiotic media that should not represent an excessive risk to the ecosystem as a whole because of the conservative assumptions in this method. The media specific screening levels are only protective of the food web exposure pathways for which they were derived; their appropriateness needs to be verified on a site-specific basis. Establish ecologically based screening levels (EBSLs) Site specific ecologically based screening levels (EBSLs) are calculated using the dietary exposure model and TRVs developed during the ecoscreen. EBSLs are determined by assembling a reliable set of TRVs from the available toxicity data. These TRVs are used to represent the maximum safe daily ingested dose for class-specific guild measurement receptors or media concentrations for community measurement receptors. In calculating these media concentrations it is assumed that there is no possibility for the transport of contamination between media. EBSLs cannot be calculated for sites where contamination may be transported from one media to another since this transport would alter the media concentration or dose ingested to differ from that calculated using the equations. The dose or media concentration is then put into the equations for each community and feeding guild measurement receptor, which are then solved for the allowable concentration in the media. For community receptors the media would be the one for the community, and for the guild measurement receptors all contaminated media would be included as a route of exposure. For each receptor, acceptable media levels would need to be calculated for all complete pathways. Once the calculations were completed for all receptors, the lowest calculated screening level for each media would be the EBSL for that media. Calculate screening level hazard quotients (SLHQ) for individual COPECs A screening level hazard quotient (SLHQ) can be calculated for each COPEC in each media found at each of the sites by dividing the maximum COPEC concentration found at the site by the EBSL developed above for that COPEC. These SLHQ can be used both to screen out sites that do not represent excessive ecological risk and to prioritize the different media at a single site for corrective action. See Section 6.0 for limitations of ecologically-based media screening levels. Appendix H APPENDIX I NM WQCC Standards for Surface Water STATE OF NEW MEXICO STANDARDS FOR INTERSTATE AND INTRASTATE SURFACE WATERS Filed with State Records Center January 24,2000 AsNMAC 6.1 Effective February 23,2000 New Mexico Water Quality Control Commission Harold Runnels Building 1190 St. Francis Drive P.O. Box 26110 Santa Fe, New Mexico 87502 Constituent Agencies: Environment Department State Engineer Office Game and Fish Department Oil Conservation Division Department of Agriculture State Parks Division Soil and Water Conservation Commission Bureau of Mines and Mineral Resources Members-at-Large i-l FILED WITH STATE RECORDS CENTER 2MM2k PH I: 27 for these uses is ensured by the general standards and numeric standards for bacterial quality, pH, and temperature which are established for all classified waters of the State listed in Subpart II of this Part (Sections 2000 through 2999). J. The following schedule of numeric standards and equations for the substances listed shall apply to the subcategories of fisheries identified in Section 3100 of this Part: 1. Acute Standards Dissolved aluminum 750 |ig/L Dissolved arsenic 340 ug/L Dissolved beryllium 130 Ug/L Total mercury 2.4 ug/L Total recoverable selenium 20.0 ug/L Dissolved silver e(i.72|taCb««taw)K«25) ^ Cyanide, weak acid dissociable 22.0 ug/L Total chlordane 2.4 ug/L Dissolved Cadmium (e(LI28[m(hardneSs)l-3.6867))cf ^ The hardness-dependent formulae for cadmium must be multiplied by a conversion factor (cf) to be expressed as dissolved values. The acute factor for cadmium is cf = 1.136672 - [(In hardnessX0.04I83E}]. Dissolved chromium e(Mi9Wtardness)^2J736) ^ Dissolved copper ^2im^^)]-i.^) ^ Dissolved lead (e(bardiKíss)H2.715^c£ Ug/L The hardness-dependent formulae for cadmium must be multiplied by a conversion factor (cf) to be expressed as dissolved values. The chronic factor for cadmium is cf = 1.101672 - [(In hardnessXO.041838)]. Dissolved chromium éQ£l sW-*-«H«SM) ^ 20 NMAC 6.1 February 23,2000 1-4 ----------......... FILED WITH STATE RECORDS CENTER " 2H80JM12U PH 1:27 Dissolved Copper ^545^^^-1.7428) ^ Dissolved lead ^(l^fmfhank^HJOS}^ ^ The hardness-dependent formulae for lead must be multiplied by a conversion factor (cf) to be expressed as dissolved values. The acute and chronic factor for lead is cf = 1.46203 - [(In hardness)(0.l45712)]. Dissolved nickel 6(P**fM*^W*SX) ^ DiSSOlved 2dllC e(0.M73pn(hardaess)rK).g699) ^ Total chlorine residual 11 jag/L K. Livestock Watering: The following numeric standards shall not be exceeded: Dissolved aluminum 5.0 mg/L Dissolved arsenic 0.2 mg/L Dissolved boron 5.0 mg/L Dissolved cadmium 0.05 mg/L Dissolved chromium 1.0 mg/L Dissolved cobalt 1.0 mg/L Dissolved copper 0.5 mg/L Dissolved lead 0.1 mg/L Total mercury 0.01 mg/L Dissolved selenium 0.05 mg/L Dissolved vanadium 0.1 mg/L Dissolved zinc 25.0 mg/L Radium-226 + radium-228 30.0 pCi/L Tritium 20,000 pCi/L Total gross alpha (mcluding radium-226, but excluding radon and uranium) 15 pCi/L L. WUdlife Habitat: Wildlife habitat should be free from any substances at concentrations that are toxic to or will adversely affect plants and amrnals that use these environments for feeding, drinking, habitat or propagation, or can bioaccumulate and impair the community of animals in a watershed or the ecological integrity of surface waters of the State. In the absence of site-specific iiiformation, and subject to the following paragraph, the foUowing chronic numeric standards shall not be exceeded: Total mercury 0.77 ug/L Total recoverable selenium 5.0 ug/L Cyanide, weak acid dissociable 5.2 ug/L Total chlorine residual 11 ug/L Total DDT and metabolites 0.001 ug/L Total PCBs 0.014 ug/L The discharge of substances which bioaccumulate, in excess of levels specified above is allowed if, and only to the extent that, the substances are present in the intake waters which are diverted and utilized prior to discharge, and then only if the discharger utilizes best available treatment technology to reduce the amount of bioaccummating substances which are discharged. 20 NMAC 6.1 February 23,2000 1-5