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FIGURE 1.14 The Born interpretation

of the wavefunction. The probability
density (the blue line) is given by the

square of the wavefunction and depicted

by the density of shading in the band
beneath. Note that the probability
density is zero at a node. A node is a
point where the wavefunction (the
orange line) passes through zero, not
merely approaches zero.

Note the “passes through”; merely
becoming zero is not enough to be
considered a node.

The symbol V is commonly used to

denote potential energy, rather than

Ep, in this context.

Derivatives are reviewed in
Appendix 1F.

FIGURE 1.15 Erwin Schrédinger
(1887-1961), thinking about his
equation.
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nothing mysterious about the form of wavefunctions: they are just mathematical
functions such as sin x, a function that varies like a wave, and e, a function that
decays exponentially toward zero.

The German physicist Max Born suggested how the wavefunction should be
interpreted physically. According to the Born interpretation of the wavefunction,
the probability of finding the particle in a region is proportional to the value of
y? (Fig. 1.14). To be precise, y* is a probability density, the probability that the
particle will be found in a small region divided by the volume of the region. It
follows that, to calculate the probability that the particle is in a small region of
space, we multiply i by the volume of the region. For instance, if §* = 0.1 pm™3
at a point, then the probability of finding the particle in a region of volume
2 pm? located at that point.would be (0.1 pm™3) X (2 pm®) = 0.2, or 1 chance in
5. According to the Born interpretation, wherever % is large, the particle has a
high probability density; wherever % is small, the particle has only a low proba-
bility density.

Because the square of any number is positive, we don’t have to worry about ¥
having a negative sign in some regions of space (as a function such as sin x has):
probability density is never negative. Wherever ¥, and hence {?, is zero, there is
zero probability density for the particle. A location where U passes through zero is
called a node of the wavefunction; so we can say that a particle has zero proba-
bility density wherever the wavefunction has nodes.

The Schrédinger equation is an equation for calculating wavefunctions. We
can see what the equation looks like in Fig. 1.15, which shows it emerging from
Schrodinger’s head. More formally, the equation for a particle of mass moving
in a region where the potential energy is Vi(x) is

ﬁZ 2
—Zj—xqzj + V(x)y = Ey (8a)
The Schrédinger equation is a “differential equation,” an equation that relates
derivatives of a function (in this case, a second derivative of U, d*/dx?) to the
value of the function at each point. It is impossible to solve exactly except in cer-
tain simple cases. However, in this text, we need only the form of some of its solu-
tions, not how those solutions are found. The left-hand side of the Schrodinger
equation is commonly written His, where H is called the hamiltonian for the sys-
tem, then the equation takes the deceptively simple form

Hy = Ey (8b)*

One of the simplest examples of an actual wavefunction is that for a particle
of mass m confined between two rigid walls a distance L apart, the so-called
particle in a box (Fig. 1.16). The shapes of the wavefunctions for this one-
dimensional system, some of which are shown in the illustration, make sense
when we view the particle as a wave. Only certain wavelengths can exist in the
box, just as a stretched string can support only certain wavelengths. Think of a
guitar string: because it is tied down at each end, it can support only shapes like
the ones shown in Fig. 1.16. The shapes of the wavefunctions are identical
with the displacements of a stretched string when it vibrates, and their mathemat-
ical form is that of a standing wave:

2\
i) =(7)sn ")

The integer 7 labels the wavefunctions and is called a “quantum number.” In gen-
eral, a quantum number is an integer (sometimes, a half-integer) that labels a
wavefunction, specifies a state, and can be used to calculate the value of a prop-
erty of the system. For example, we can use 7 to find an expression for the energy
corresponding to each wavefunction.

n=1,2,... 9)

HOW DO WE DO THAT (LEVEL 1)? |
The kinetic energy of a particle of mass  is related to its speed, v, by B, = %mvz. We
can relate thls energy to the wavelength of the particle by noting that the linear
momentum 1s p = rnv and then using the de Broglie relation (Eq. 6b):
pz /72
E,=ipp=Ft _ 7
2 2m  2mA\?

The potenFial energy of the particle is zero everywhere inside the box, and so the total
energy, E, is given by the expression for Ey alone. At this point, we recognize that only
whole-number multiples of half-wavelengths can fit into the box (see Fig. 1.16; the

waves have one bulge, two bulges, three bulges, and so forth with each “bulge”
half-wavelength). That is, for a box of length I, ] each “bulge” a

L=3\M\ ... =n X3\, withn =1,2, ...
Therefore, the allowed wavelengths are
A=2L/n, withn=1,2, ...
When this expression for \ is inserted into the expression for the energy, we obtain
n*h?
" 8ml?

HOW DO WE DO THAT (LEVEL 2)? |

The more soph.isticated—and more general—way of finding the energy levels of a par-
ticle in a box is to solve the Schrodinger equation. First, we note that the potential

energy of the particle is zero everywhere inside the box; so V(x) = 0, and the equation
that we have to solve is

This equation has the solutions
Y(x) = A sin kx + B cos kx

with A, B, and k constants, as may be verified by substituting the solutions into the

differential equation and using d(sin kx)/dx = k cos kx and d(cos kx)/dx = —F sin kx
Indeed, because .

Py 4
P w(A sin Rx + B cos kx) = —k*(Asin kx + B cos kx) = —k*y

We can conclude, by substituting this relation into the Schrédinger equation, that
R*h* k22
E B — R
2m 8mm
1 Now we ha\_/e to find the constants A, B, and k. First, we note that the wavefunc-
100 s zero outside the box but must be continuous, Therefore, for a box of length L,
Y(x) must be zero at the edges of the box, at x = 0 and 5 — L. We call these con-

Straints “boundary conditions.” If we setx = 0 and use sin 0 = 0 and cos 0 = 1 in

Y(x) = A sin kx + B cos kx, we find $(0) = B. However, $(0) = 0;s0 B = 0 and the
Wavefunction is

Y(x) = A sin kx

This expression already resembles that in Eq. 9. To find the value of k, we use the sec-
ond boundary condition, that yi(L) = 0; that is,

W(L) = A sin kL = 0
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FIGURE 1.16 The arrangement
known as “a particle in a box,” in which
a patticle of mass m is confined between
two impenetrable walls a distance
apart. The first six wavefunctions and
their energies are shown. The numbers
on the left are values of the quantum
number n. Note that there is a zero-point

energy because n cannot be zero.
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FIGURE 1.17 As the length of the
box increases (compare boxes on left
and right), the energy levels fall and
move closer together.

Setting A = 0 is unacceptable, because then §s(x) would be 0 everywhere, which would
mean that the particle would be nowhere. Therefore, to guarantee that $(L) = 0, we

use the relation sin #mw = 0 and set kL = nw, withn = 1,2, .... We now have
Lb(x)=Asin% n=1,2,...

To find the one remaining constant, A, we use the fact that the probability of find-
ing the particle in a region of length dx at x is ys(x)?dx, and therefore the total probabil-
ity of finding the particle between x = 0 and x = L is the sum (integral) of these proba-
bilities and must be equal to 1 (the particle must be somewhere in the box). Therefore,

L L
J Y(x)2dx = AZJ sin? 2% dx = 1
0 0 L

The integral évaluates to L/2; so A = (2/L)"? and the final form of the wavefunction
is that given in Eq. 9. Moreover, because k is limited to the values #n/L, it follows that
the energy of the particle is limited to
E- (nw/L)?h*  nh*
8mm 8mL>

exactly as we found in level 1. We see that the quantization of energy (see following
text) stems directly from the imposition of “boundary conditions” on the wavefunc-
tion, conditions that y must obey in order for it to be acceptable. In this example, the
boundary conditions are that ¢ must be zero at each wall of the box. The origin of
quantization from the imposition of boundary conditions on the wavefunction is a
general result for any system.

We have established that the allowed energies of a particle of mass 7 in a one-
dimensional box of length L are
n*h?

E —_—
" 8mlL?

(10)*

A striking implication of this result is that the energy of the particle is quantized,
meaning that it is restricted to a series of discrete values, called energy levels.
According to classical mechanics, an object can have any total energy—high, low,
and anything in between. For example, a particle in a box could bounce from wall
to wall with any speed and hence any kinetic energy. According to quantum
mechanics, however, energy is quantized: only certain wavelengths fit into the box.
Quantization is a little like pouring water into a bucket. Water seems to be a con-
tinuous fluid that can be transferred in any amount, no matter how small. However,
the smallest amount of water that we can transfer is one H,O molecule. Energy
seems to be unrestricted on the macroscopic scale; but, on the subatomic scale, we
can transfer only discrete amounts to the particle in a box and it can lose energy
only in discrete amounts corresponding to the differences between the energy levels.
As we saw in the derivation of Eq. 10, the existence of quantization stems from the
boundary conditions on the wavefunction, the constraints that the wavefunction
must satisfy at different points of space (such as fitting into a container correctly).

We can use Eq. 10 to calculate the energy separation between two neighbor-
ing levels with quantum numbers 7 and 7 + 1:

(n+ 1)2h*  w*h? (2n + 1)h?

L S Yo e o 5 (11)

We see that, as L or m increases, the separation between neighboring energy levels
decreases (Fig. 1.17). That is why no one noticed that energy is quantized until
they investigated very small systems such as an electron in a hydrogen atom: the
separation between levels is so small for ordinary particles in ordinary-sized ves-
sels that it is completely undetectable. We can, in fact, ignore the quantization of
the motion of the atoms of a gas in a typical flask.
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EXAMPLE 1.5 Calculating the energies of a particle in a box

Treat a hydrogen atom as a one-dimensional box of length 150. pm (the approximate
diameter of the atom) containing an electron and predict the wavelength of the radia- |
tion emitted when the electron falls to the lowest energy level from the next higher

energy level.

STRATEGY The lowest enérgy level has #» = 1, and so we can use Eq. 11 with z = 1
and m = m,, the mass of the electron. The energy difference is carried away as a pho-
ton of radiation; so we set the energy difference equal to hv and express v in terms of
the corresponding wavelength by using Eq. 1 (A = ¢/v). As usual, it is good practice to
go as far as possible symbolically and then to insert numerical values at the last possi-

ble stage.
SOLUTION According to Eq. 11, with n = 1: o
[(2 x 1) + 1]p? 3h%
hy = E, — Eq = 2 v 2
8m L 8m L
It follows that,
e 3h* " 50i3h
R w12 YT g 12
¢ 8myL?
and, from \v = ¢, )\—;—T

Finally, insert the data:

8 X (9.109 X 10~ kg) X (2.998 X 10° m-s™") X (1.50 X 107" m)?
3. %01 6:626 X0 & s)

kg X (m-s”

(kg:m?s~

2.47 x 1073

Il

1 X 2]
Je I s x 0
) X's

Note how the complicated collection of units is treated: arriving at the correct units
for the answer is a sign that you have set up the equation correctly. This wavelength
corresponds to 24.7 nm. The experimental value for an electron in a hydrogen atom is
122 nm. Although there is a big discrepancy, the fact that the predicted wavelength
has nearly the same order of magnitude as the actual value suggests that a quantum
theory of the atom, based on a more realistic three-dimensional model, should give
good agreement.

SELE-TEST 1.7A Use the same model for helium but suppose that the box is 100. pm
long, because the atom is smaller. Estimate the wavelength of the same transition.
[Answer: 11.0 nm]

SELE-TEST 1.7B Use the same model for hydrogen and estimate the wavelength for
the transition from the # = 3 energy level to the #n = 2 level.

Another surprising implication of Eq. 10 is that a particle in a container can-
not have zero energy. Because the lowest value of 7 is 1 (corresponding to a wave
of one-half wavelength fitting into the box), the lowest energy is E; = h*/8mL>.
This lowest possible energy is called the zero-point energy. The existence of a zero-
point energy means that, according to quantum mechanics, a particle can never be
perfectly still when it is confined between two walls: it must always possess an
energy—in this case, a kinetic energy—of at least #*/8mL>. This result is consistent
with the uncertainty principle. When a particle is confined between two walls, the
Uncertainty in its position cannot be larger than the distance between the two
walls. Because the position is not completely uncertain, the linear momentum
must be uncertain, too, and so we cannot say that the particle is completely still.
The particle must therefore have some kinetic energy. The zero-point energy is a
purely quantum mechanical phenomenon and is very small for macroscopic sys-
tems. For example, a billiard ball on a pool table has a completely negligible zero-
point energy of about 1077 J.
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Finally, the shapes of the wavefunctions of a particle in a box also reveal some
interesting information. Let’s look at the two lowest energy wavefunctions, corre-
sponding to # = 1 and n = 2. Figure 1.18 shows, by the density of shading, the
likelihood of finding a particle: we see that when a particle is described by the
wavefunction s; (and has energy h*/8mL?), then it is most likely to be found in
the center of the box. Conversely, if the particle is described by the wavefunction
5, (and has energy h*/2mL?), then it is most likely to be found in regions between
the center and the walls and is unlikely to be found in the middle of the box,
Remember that the wavefunction itself does not have any direct physical signifi-
cance: we have to take the square of § before we can interpret it in terms of the
probability of finding a particle somewhere.

EXAMPLE 1.6 Plotting the wavefunctions for a particle in a box

(a) Using the Living Graphs on the Web site for this book, plot the particle-in-a-box
wavefunction for » = 2 and L = 1 m. (b) How many nodes does the wavefunction
have? Where do these nodes occur? (c) Repeat parts (a) and (b) for n = 3. (d) What
general conclusion can you draw about the relation between # and the number of
nodes present in a wavefunction? (e) Convert the # = 2 plot into a probability density
distribution: at what values of x is the particle most likely to be found? (f) Repeat part
(e) for n = 3.

STRATEGY The wavefunctions for a particle in a box are given by Eq. 9. Use the Liv-
| ing Graphs “Particle-in-a-Box Wavefunctions” on the Web site for this book to plot
| them. (a) To plot the wavefunction, enter the parameters L = 1 m and # = 2, set the
| range for the entire box (x = 0 m to 1 m), check the f{x) box, and hit New Plot.
| (b) The nodes are found where the curve passes through zero. To find the value of x at
| a point, click on the plot at that point. (c) Create a new plot as before, but set 7 = 3.
| (d) Look for the patterns in the number of nodes and the value of the quantum num-
| ber 7. (e) Repeat part (a) with the f%(x) box checked and look for the maxima in the
| probability density. (f) Repeat part (e) for n = 3.

| SOLUTION

| (a) 142 & I ‘ i -
Location, x/L i \ \ =

|

£ o >§~ 1+
FIGURE 1.18 The two lowest energy B N
wavefunctions (s, orange) for a particle = = L
in a box and the corresponding |
probability densities (%, blue). The _1.42 0 ! L 1
probability densities are also shown by | 0 0.5 1 0 0.5 1
the density of shading of the bands | x (m) x (m)

beneath each wavefunction.

| (b) The plot for # = 2 has one node at x = 0.500 m. (c) The plot for » = 3 has two
nodes at x = 0.333 m and 0.667 m. (d) The number of nodes is equal to n — 1.
(e) Maxima occur at x = 0.25 m and 0.75 m. (f) Maxima occur at x = 0.17 m,
0.50 m, and 0.83 m.

SELF-TEST 1.8A Verify the conclusion in part (d) of Example 1.6 by plotting the

wavefunction for # = 4 and determining the number of nodes.

[Answer: Three nodes]

| SELE-TEsT 1.8B Verify the conclusion in part (d) of Example 1.6 by plotting the
| wavefunction for » = 5 and determining the number of nodes.

The probability density for a particle at a location is proportional to the square
of the wavefunction at that point; the wavefunction is found by solving the
Schrodinger equation for the particle. When the equation is solved subject to
the appropriate boundary conditions, it is found that the particle can possess
only certain discrete energies.

Infrared i Ultrayiolet
radiation - radiation

(b) Balmér Lyman series
series
Y o =oN © v
<+ Boiow S — Gl g
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o O S Wavelength (nm) — - o

Ultraviolet

Infrared Visible

FIGURE 1.19 (a) The visible spectrum. (b) The complete spectrum of atomic hydrogen. The spectral
lines have been assigned to various groups called series, two of which are shown with their names.

1.6 Atomic Spectra and Energy Levels

Compelling evidence for the validity of quantum mechanics came from its ability
to explain atomic spectra. When an electric current is passed through a low-pres-
sure sample of hydrogen gas, the sample emits light. The electric current, which is
like a storm of electrons, breaks up the H, molecules and excites the free hydro-
gen atoms to higher energies. These excited atoms quickly discard their excess
energy by giving off electromagnetic radiation; then they combine to form H,
molecules again.

When white light is passed through a prism, a continuous spectrum of light
results (Fig. 1.19a). However, when the light emitted by excited hydrogen atoms is
passed through a prism, the radiation is found to consist of a number of compo-
nents, or spectral lines (Fig. 1.19b). The brightest line (at 656 nm) is red, and the
excited atoms in the gas glow with this red light. Excited hydrogen atoms also
emit ultraviolet and infrared radiation, which are invisible to the eye but can be
detected electronically and photographically.

The series of discrete lines making up the spectrum of atomic hydrogen was
highly puzzling to early spectroscopists. They wondered how an atom could emit
only particular frequencies of electromagnetic radiation and not all possible fre-
quencies. The answer must be that an atom can lose energy only in certain dis-
crete amounts. This answer, in turn, suggests that the electron in the atom can
exist only in a series of discrete energy levels, just like a particle in a box. When an
electron undergoes a transition, a change of state, in which its energy changes
from a higher energy level to a lower one, the difference in energy, AE = E, ., —
Ejyer> 18 carried away as a photon. Because the energy of a photon is hv, where b
is Planck’s constant, the frequency v, of an individual line in a spectrum, is related
to the energy difference between two energy levels (Fig. 1.20):

hv = E (12)*

upper  p—

This relation is called the Bohr frequency condition. Each spectral line arises from
a specific transition. By analyzing the appearance of the spectrum, we can build a
picture of the ladder of energy levels for the atom, which is called an energy-level
diagram (Fig. 1.21).

FIGURE 1.21 The spectrum of atomic hydrogen (reproduced on the right) tells us the arrangement
of the energy levels of the atom because each line results from the transition of electrons between two
specific states. The frequency of the radiation emitted in a transition is proportional to the energy
difference between the two energy levels. The zero of energy corresponds to the completely separated
Proton and electron. The numbers on the right identify the energy levels: they are examples of
quantum numbers.
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FIGURE 1.20 When an atom
undergoes a transition from a state of
higher energy to one of lower energy, it
loses energy that is carried away as a
photon. The greater the energy loss (A
compared with B), the higher the
frequency (and the shorter the
wavelength) of the radiation emitted.

The components of different
frequency or wavelength are called
lines because, in the early
spectroscopic experiments, the
radiation from the sample was
passed through a slit and then
through a prism; the image of the
slit was then focused on a
photographic plate, where it
appeared as a line.
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Energy —>
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The first person to identify a pattern in the lines of the visible region of the
spectrum was Joseph Balmer, a Swiss schoolteacher. In 1885, he noticed that the
frequencies of all the lines then known could be generated by the expression

1 1
22 7
As experimental techniques advanced, more lines were discovered, and the

Swedish spectroscopist Johann Rydberg noticed that all of them could be pre-
dicted from the expression

VX

n=3,4,... (13)

v=i7{<12—i2> n=1,2,... ny=n +1,n +2,... (14)*
n= ny :

Here R is an empirical (experimentally determined) constant now known as the
Rydberg constant; its value is 3.29 X 10'5 Hz. This empirical formula for the lines,
together with the Bohr frequency condition, strongly suggests that the energy levels
themselves are proportional to ®/#*. The Balmer series is the set of lines with
ny =2 (and n, = 3, 4, . ..). The Lyman series, a set of lines in the ultraviolet
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FIGURE 1.22 The permitted energy
levels of a hydrogen atom as calculated
from Eq. 14. The levels are labeled with
the quantum number n, which ranges
from 1 (for the lowest state) to infinity
(for the separated proton and electron).

FIGURE 1.23 When white light
shines through an atomic vapor, radiation
is absorbed at frequencies that
correspond to excitation energies of the
atoms. Here is a small section of the
spectrum of the Sun, in which atoms in
its outer layers absorb the radiation from
the incandescence below. Many of the
lines have been ascribed to hydrogen,
showing that hydrogen is present in the
cooler outer layers of the sun.

region of the spectrum, has 7, = 1 (and n, = 2, 3, ...) (Fig. 1.22).

Another consequence of quantization is that an atom can absorb radiation
only of certain frequencies. The energy of the incoming photon excites electrons
from one quantum level to another. If we pass light through a vapor composed of
the atoms of an element, we see its absorption spectrum, a series of dark lines on
an otherwise continuous spectrum (Fig 1.23). The absorption lines have the same
frequencies as those of the lines in the emission spectrum. Absorption spectra are
used by astronomers to identify elements in the outer layers of stars.

EXAMPLE 1.7 Identifying a line in the hydrogen spectrum

| Calculate the wavelength of the radiation emitted by a hydrogen atom when an elec-

tron makes a transition between the levels with 7, = 3 and n; = 2. Identify in

| Fig. 1.19b the spectral line produced by this transition.

| STRATEGY The frequency of a line arising from a transition is given by Eq. 14. Con-
| vert frequency into wavelength by using Eq. 1. The wavelength should match one of
| the lines in the Balmer series in Fig. 1.19b.

| SOLUTION For the transition from a level with 7, = 3 to a level with n; = 2, from
' Eq. 14 with n; = 2 and n, = 3,

5 <i_i>_i
v=R{2ZT32) T 3R

- From \v = ¢,

gl e B i T
v (5/36)%R SR

| Now substitute the values of ¢ and R:

36 % (2.998 x 108 m-s™!) 36 % 2.998 x 10°
5% (3.29 X 1085 5°1) 5x329%x 108 ™

=6.57 X107 m

| This wavelength, 657 nm, corresponds to the red line in the Balmer series of lines in
| the spectrum. Light of this wavelength is absorbed when the electron is promoted
| from the 7 = 2 level to the # = 3 level and is given off when the electron falls back to
| the n = 2 level.

< —_—
Ultraviolet Infrared

X-rays and radio
y-rays spectrum

‘|'u ' | vy
400 450 500 550 600 650 700 750
Wavelength, A (nm)
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| spLE-TEST 1.9A Repeat the calculation for the transition from the state with n = 4 to
| that with 7z = 2 and identify the spectral line in Fig. 1.19b.
[Answer: 486 nm; blue line]

spLE-TEST 1.9B Repeat the calculation for the transition from the state with 7 = 5 to
that with 7 = 2 and identify the spectral line in Fig. 1.19b.

The observation of discrete spectral lines suggests that an electron in an atom
can have only certain energies. Transitions between these energy levels generate
or absorb photons in accord with the Bobr frequency condition.

MODELS OF ATOMS

Our next task is to combine the wavelike properties of electrons with the nuclear
model of the atom and explain the strange ladder of energy levels observed exper-
imentally in a hydrogen atom. We proceed in two steps. First, we develop the
quantum mechanical model of a hydrogen atom. Then we use that model to
account for the structures of atoms with more than one electron and see how a
few simple ideas account not only for atomic spectra but also for the structure of
the periodic table.

1.7 The Principal Quantum Number

An electron in an atom is like a particle in a box, in the sense that it is confined
within the atom by the pull of the nucleus. We can therefore expect the electron’s
wavefunctions to obey certain boundary conditions, like the constraints we
encountered when fitting a wave between the walls of a container. As we saw for
a particle in a box, these constraints result in the quantization of energy and the
existence of discrete energy levels.

We find the actual energy levels of an electron in a hydrogen atom by setting
up and solving the appropriate Schrodinger equation. To set up the equation, we
insert the appropriate expression for the potential energy, V; in Eq. 8. For an elec-
tron in a hydrogen atom, the Coulomb potential energy of the electron of charge
—¢ (Section A) varies with distance, 7, from the nucleus of charge +e as follows
(as remarked earlier, V is commonly used rather than Ej in this context):

(—e)(+e) e

= = (15)
vir) 4reyr 4mreyr

Solving the Schrodinger equation for a particle with this potential energy is diffi-
cult, but Schrédinger himself achieved it in 1927. He found that the allowed
energy levels are

hR _ m.e* _ .
n= T3 R 83l n="1,2%s: ‘ (16a)
These energy levels have exactly the form suggested by the wavelengths of the
lines measured spectroscopically, but now we have an expression for % in terms of
more fundamental constants. When the fundamental constants are inserted into
the expression for ®, the value obtained is 3.29 X 10" Hz, the same as the exper-
imental value of the Rydberg constant. This agreement is a triumph for
Schrédinger’s theory and for quantum mechanics. A very similar expression
applies to other one-electron ions, such as He™ and even C**, with atomic num-
ber Z:

_ _Z'hR (16b)
n 112

The greater the value of Z, the more tightly the electron is bound to a nucleus,
and so these energies are more strongly negative for heavy atoms than for a
hydrogen atom.

19
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The ionization energy is discussed
further in Section 1.16.

FIGURE 1.24 The spherical polar
coordinates: r is the radius, 6 is the
colatitude, and ¢, the “longitude,” is the
azimuth.

Geographical latitudes are measured
from the equator, not the poles.

In an early model of the hydrogen
atom proposed by Niels Bohr, the
electron traveled in a circular orbit
of radius a;, around the nucleus. The
uncertainty principle rules out this
model.

Figure 1.22 shows the energy levels calculated from Eq. 16. From the minusg
signs in Fig. 1.22 and in Eq. 16, we can see that the energy of an electron in
hydrogen atom is always lower than that of a free electron. The principal quan-
tum number, 7, is an integer that labels these energy levels, from 7 = 1 for the
first (lowest, most negative) level, #» = 2 for the second, continuing to infinity. The
lowest energy possible for an electron in a hydrogen atom, —h R, is obtained when
n = 1. This lowest energy state is called the ground state of the atom. A hydrogen
atom is normally found in its ground state, with its electron in the level with
n = 1. The energy of the bound electron climbs up the ladder of levels as #
increases. It reaches the top of the ladder, corresponding to E = 0 and freedom,
when 7 reaches infinity. At that point, the electron has left the atom. This process
is called ionization. The difference in energy between the ground state and the
ionized state is the energy required to remove an electron from the neutral atom in
its ground state.

The energy levels of a hydrogen atom, Eq. 16, are defined by the principal
quantum number, n = 1, 2, . . ., and form a converging series, as shown in
Fig. 1.22.

1.8 Atomic Orbitals

Wavefunctions of electrons in atoms are called atomic orbitals. The name was
chosen to suggest something less definite than an “orbit” of an electron around a
nucleus and to take into account the wave nature of the electron. The mathemati-
cal expressions for atomic orbitals—which are obtained as solutions of the
Schrodinger equation—are more complicated than the sine functions for the par-
ticle in a box, but their essential features are quite simple. Moreover, we must
never lose sight of their interpretation, that the square of a wavefunction tells us
the probability density of an electron at each point. To visualize this probability
density, imagine a cloud centered on the nucleus. The density of the cloud at each
point represents the probability of finding an electron there. Denser regions of the
cloud therefore represent locations where the electron is more likely to be found.

To interpret the information in each atomic orbital, we need a way to identify
the location of each point around a nucleus. It is most convenient to describe
these locations in terms of spherical polar coordinates, in which each point is
labeled with three coordinates:

e 1, the distance from the center of the atom;

® 0 (theta), the angle from the positive z-axis (the “north pole”), which can be
thought of as playing the role of the “latitude”; and

® ¢ (phi), the angle about the z-axis, the “longitude.”

These coordinates are shown in Fig. 1.24. Each wavefunction, which in general
varies from point to point, can be written as a function of the coordinates,
U(1,0,d). It turns out, however, that all the wavefunctions can be written as the
product of a function that depends only on » and another function that depends
only on the angles 6 and ¢. That is,

W(r0.b) = R(Y(0,0) . .

The function R(r) is called the radial wavefunction, and the function Y(,4) is
called the angular wavefunction. For example, the wavefunction corresponding to
the ground state of the hydrogen atom is

R(r) Y(6,4)
— —
2¢™ 1 e/ 4re i
P(r,0,0) = A7 "2 T (ma) ap = .

The quantity a4, is called the Bohr radius; when the values of the fundamental con-
stants are inserted, we find 4y = 52.9 pm. For this wavefunction, the angular

wavefunction Y is a constant, 1/27'2, independent of the angles, and the radial

wavefunction R decays exponentially toward zero as r increases. One of the wave-
. 1 s
functions for the next higher energy level (at E, = —3bR) is

R(r) Y(6,4)

1 1R . 3\/2
tll(faead)):z—\/g(a_()) re X - sin 0 cos ¢

1/2
= %(2 1 3> re "% sin O cos
'Trao

Notice how this wavefunction depends on the angles 6 and ¢. .

The expressions for a number of other atomic orbitals are shown in Table
1.2a (for R) and Table 1.2b (for Y). To understand these tables, we need to know
that each wavefunction is labeled by three quantum numbers, 7, [, and my. As we
shall see, 7 is related to the size and energy of the orbital, / is related to its shape,
and 7, is related to its orientation in space. . ‘

We have already encountered #, the principal quantum number, which speci-
fies the energy of the orbital (through Eq. 16). In a hydrogen atom, all atomic
orbitals with the same value of # have the same energy and are said to belong to
the same shell of the atom.

The second quantum number needed to specify an orbital is /, the orbital
angular momentum quantum number. This quantum number can take the values

1=0,1,2,...,n—1

There are 7 different values of [ for a given value of 7. For instance, when n = 3,
] can have any of the three values 0, 1, and 2. The orbitals of a shell with.princi-
pal quantum number # therefore fall into # groups (each identified by a dlfferent
value of /), which are called subshells of the shell. There is only one subshell in the
n = 1level (I = 0), two in the # = 2 level (I = 0 and 1), three in the » = 3 level

'?ABLE 1.2 Hydrogen Wavefunctions (Atomic Orbitals), Y = RY
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We shall see shortly that, with the
exception of the ground state, there
is more than one wavefunction for
each energy level.

(a) Radial wavefunctions, R,(r) (b) Angular wavefunctions, Ylml(ﬁ,d))
n l Rnl(r) l “ml”* Ylml(e’d))
3/2 1 1/2
i o o2 emm 0o o (=)
3/2 1/2
D 0 1 (2 / 2 — Zr —Zr/2a, 1 x <i> sin 6 cos ¢
2V2 \a, a, 4 /
3/2 1/2
1_(ZVP(Z1\ ~zipsay 2" sin 0 sin ¢
! 2V6 \a a0/ # 4
0 0
3/2 1/2
L g 1 £> /< _ 2Zr z 2Z 7’2> ~Zrf3a s (i) cos 0
9V3\a, ag 9ay 4 5
3/2 1/2
1 L g / 2 — E —Zr/3a, 2 xy <1—5> sin2 0 cos 2(1)
27V6 \a, 3a, 16w /
3/2 2 1/2
4 Z P Zr —Zr/3a, 2z 1 cos 6 sin 6 sin ¢
2 81v30\ay) \a Y 4m
0 0 ey I
X <T> cos 0 sin 6 cos ¢
m
1/2
x* —y? <%> sin® 0 sin 2¢
12
2 (%) (3 cos’ 0 — 1)
w

Note: In each case, 4, = 4mey*Im,e?, or close to 52.9 pm; for hydrogen itself, Z = 1. '
*In all cases except m; = 0, the orbitals are sums and differences of orbitals with specific values of ;.
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The names come from the fact that
spectroscopic lines were once
classified as sharp, principal, diffuse,
and fundamental.

FIGURE 1.25 A summary of the
arrangement of shells, subshells, and
orbitals in an atom and the
corresponding quantum numbers. Note
that the quantum number m; is an
alternative label for the individual
orbitals: in chemistry, it is more common
to use x, y, and z instead, as shown in
Figs. 1.31 through 1.33.

(I=10,1, and 2), and so on. All orbitals with / = 0 are called s-orbitals, those with
I =1 are called p-orbitals, those with / = 2 are called d-orbitals, and those with
I = 3 are called f-orbitals. Although higher values of / (corresponding to g-,
h-, ... orbitals) are possible, the lower values of [ (0, 1, 2, and 3) are the only
ones that chemists need in practice.

Just as the value of # can be used to calculate the energy of an electron, the
value of / can be used to calculate another physical property. As its name suggests,
[ tells us the orbital angular momentum of the electron, a measure of the rate at
which the electron circulates round the nucleus:

Orbital angular momentum = {/([ + 1)}"# (18)*

An s-electron, for which [ = 0, has zero orbital angular momentum. That means
that we should imagine it not as circulating around the nucleus but simply as dis-
tributed around it. An electron in a p-orbital has nonzero orbital angular momen-
tum (of magnitude 2'%4); so it can be thought of as circulating around the
nucleus. An electron in a d-orbital has a higher orbital angular momentum (6%%)
one in an f-orbital has an even higher angular momentum (12"24), and so on.

An important feature of the hydrogen atom is that all the orbitals of a given
shell have the same energy, regardless of the value of their orbital angular momen-
tum (we see from Eq.16 that / does not appear in the expression for the energy).
We say that the orbitals of a shell in a hydrogen atom are degenerate, which
means that they all have the same energy. This degeneracy is true only of the
hydrogen atom and one-electron ions (such as He™ and U°'™)

The third quantum number required to specify an orbital is #7;, the magnetic
quantum number, which distinguishes the individual orbitals within a subshell.
This quantum number can take the values

m=0L1-1,..., -l

b

There are 2/ + 1 different values of 7 for a given value of [ and therefore 2/ + 1 orbitals
in a subshell of quantum number /. For example, when / = 1,7, = +1, 0, —1 (note that
a + sign is always used for positive values of #2); so there are three p-orbitals in a given
shell. Alternatively, we can say that a subshell with = 1 consists of three orbitals.

The magnetic quantum number tells us the orientation of the orbital motion
of the electron. Specifically, it tells us that the orbital angular momentum around
an arbitrary axis is equal to mjh, the rest of the orbital motion (to make up the full
amount of {/(I + 1)}'*2%) being around other axes. For instance, if m; = +1, then
the orbital angular momentum of the electron around the arbitrary axis is +%,

Shell Subshell Orbital

3d

3s

R

}A&i‘i[{: 1.3 Quantum Numbers for Electrons in Atoms

Name Symbol Values Specifies Indicates
principal n 1,2, shell size
orbital angular ! 0,1,...,n—1 subshell: shape
momentum” 1=0,1,2,3,4,...

spd fg ...

magnetic m, LlI—-1,...,-I orbitals of subshell orientation
spin magnetic m +%, —% spin state spin direction
*Also called the azimuthal quantum number.
whereas, if 7, = —1, then the orbital angular momentum of the electron around

the same arbitrary axis is —#. If m; = 0, then the electron is not circulating
around the selected axis. The difference in sign simply means that the direction of
motion is opposite, the electron in one state circulating clockwise and an electron
in the other state circulating counterclockwise.

The hierarchy of shells, subshells, and orbitals is summarized in Fig. 1.25
and Table 1.3. Each possible combination of the three quantum numbers speci-
fies an orbital. For example, an electron in the ground state of a hydrogen atom
has the specification n = 1, [ = 0, m; = 0. Because | = 0, the ground-state wave-
function is an example of an s-orbital and is denoted 1s. Each shell has one s-
orbital, and the s-orbital in the shell with quantum number 7 is called an
ns-orbital.

All s-orbitals are independent of the angles 6 and ¢; so we say that they are
spherically symmetrical (Fig. 1.26). The probability density of an electron at the
point (r,0,¢) when it is in a ls-orbital is found from the wavefunction for the
ground state of the hydrogen atom:

C*Zr/a0

" (19)

U2 (1,6,0)

 may’
In principle, the cloud never thins to exactly zero, no matter how large the value
of 7. So we could think of an atom as being bigger than the Earth! However, there
is virtually no chance of finding an electron farther from the nucleus than about
250 pm, and so atoms are in fact very small. As we can see from the high density
of the cloud at the nucleus, an electron in an s-orbital has a nonzero probability of
being found right at the nucleus: because | = 0, there is no orbital angular
momentum to fling the electron away from the nucleus.

EXAMPLE 1.8 Sample exercise: Calculating the probability of finding an
electron at a certain location

What is the probability of finding the electron in a small region a distance 4, from_the
nucleus relative to the probability of finding it in the same small region located right
at the nucleus?

SOLUTION W calculate the following ratio of the squares of the wavefunction at the
two points:

Probability density at 7 = @y *(ap,0,0) _ e 2/%/ma,’

Probability density at7 = 0 *(0,8,0) 1/may’
2 3
S I
1/’“'40

That is, the probability of finding the electron in a small region at a distance 4, from
the nucleus is only 14% of that of finding the electron in a similar region located at
the nucleus.
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FIGURE 1.26 The three-dimensional
electron cloud corresponding to an
electron in a 1s-orbital of hydrogen. The
density of shading represents the
probability of finding the electron at any
point. The superimposed graph shows
how the probability varies with the
distance of the point from the nucleus
along any radius.




