1 Multinukleární NMR spektroskopie C6800  Jiří Pinkas, A12-224  Materiály z přednášky v ISu  Řešené úlohy ze spektroskopie nukleární magnetické resonance http://nmr.sci.muni.cz  Úlohy – vyřešit a odevzdat  Prezentace (na konci semestru) 10-15 min na vybrané téma NMR  Závěrečná písemná zkouška 2 NMR – Historical Perspective  1922 Electron spin is observed (Stern-Gerlach)  1926 Nuclear spin - David Dennison (H2)  1938 I. I. Rabi observes NMR in a molecular beam of H2  Isidor I. Rabi awarded Nobel prize in physics 1944 "for his resonance method for recording the magnetic properties of atomic nuclei" (1898 – 1988) 3 NMR – Historical Perspective  1945 Purcell, Torrey, Pound @ Harvard solid paraffin  1945 Bloch, Hansen, Packard @ Stanford liquid H2O  Varian Bros. & Russell klystron for radars (WWII)  1948 Pake, van Vleck solid state NMR  1950 W. G. Proctor, F. C. Yu @ Stanford  - chemical shift in 14NH4 14NO3  1950 W. C. Dickinson @ MIT  - chemical shift in 19F  1952 Commercial NMR instruments used at DuPont, Shell, Humble Oil 4 NMR – Historical Perspective Edward M. Purcell (1912-1997) & Felix Bloch (1905-1983) NP in physics 1952 "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith" 5 NMR – Historical Perspective  1951 Proctor , Yu - the first observed J scalar coupling 121Sb-19F in NaSbF6  1951 Gutowsky, McCall, Slichter @ U. of IL - J scalar coupling 31P-19F  1952 Hahn, Maxwell @ Berkeley - J scalar coupling  1955 Bloom, Shoolery spin decoupling  1960 Shoolery integration  1966 Ernst, Anderson FT NMR at Varian  1968 Waugh @ MIT HR, multipulse NMR in solids 6 NMR – Historical Perspective  1971 Jeener - 2D NMR  1971 Damadian - different NMR relaxation times of tissues and tumors  1972 CP, HP decoupling  1972 The first routine 13C NMR spectrometer (before mainly 1H, 19F, and 31P NMR)  1973 Lauterbur - MRI 7 MRI-Magnetic Resonance Imaging Paul C. Lauterbur (1929-) Sir Peter Mansfield (1933-) NP in physiology and medicine 2003 8 NMR – Historical Perspective  1974/1979 R. R. Ernst 2D COSY, NOESY  1977 MAS  1981 Bax, Freeman INADEQUATE  1982 APT  1983 Freeman BB decoupling, MLEV, WALTZ  1990 3D and 1H/15N/13C Triple resonance  1991 R. R. Ernst NP in chemistry  2001 The first commercial 900 MHz instrument  2002 K. Wüthrich NP in chemistry 9 NMR – Historical Perspective Richrad R. Ernst (1933-) NP in chemistry 1991 "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy" Kurt Wüthrich (1938-) NP in chemistry 2002 "for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution" 10 NMR – Historical Perspective 11 Nuclear Magnetic Resonance  High resolution liquid state NMR spectroscopy  Solid state NMR spectroscopy  High-pressure NMR  NMR in the gas phase  NMR spectroscopy in liquid crystalline media  Magnetic resonance imaging (MRI) 12 Hyperfine Interactions • Interactions of nuclei with the electric and magnetic fields • Interactions between a nucleus and electrons • Transfer of chemical (electronic) information from bonds and lone pairs to a nucleus: • Indirect • Direct 13 Hyperfine Interactions Indirect • Electric field gradient (EFG) with nuclear electric quadrupole • Induced magnetic field with nuclear magnetic moments (shielding) Direct • s-electrons within nuclei, polarization of bonding spins by nuclear spin (J-coupling) 14 Direct Interactions ONLY s-electrons can interact with nuclei ONLY s-electrons have non-zero electron density at a nucleus p, d - nodal planes Which quantum number determines the number of angular nodes? Which quantum number determines the number of radial nodes? 15 Relationship Between Wavelength, Frequency and Energy  Speed of light (c) is the same for all wavelengths c = 2.9979 108 m s1  Frequency (), the number of wavelengths per second, is inversely proportional to wavelength:  c  Energy of a photon is directly proportional to frequency and inversely proportional to wavelength: E = h = hc/ h = Plank’s constant = 6.626176 1034 J s 16 Electromagnetic Radiation NMR 17 Method Energy Scale 18 Energy Scale Conversion Factors Hz eV J mol1 Hz 1 4.136 1015 3.990 1010 eV 2.418 1014 1 9.649 104 J mol1 2.506 109 1.036 105 1 19 Isotopes Isotopes = a set of nuclides of an element, same Z, different A there is about 2600 nuclides (stabile and radioactive) 340 nuclides found in nature 270 stabile and 70 radioactive Monoisotopic elements: 9Be, 19F, 23Na, 27Al, 31P, 59Co, 127I, 197Au Polyisotopic elements: 1H, 2H (D), 3H (T) 10B, 11B Sn has the highest number of stabile isotopes – 10 112, 114, 115, 116, 117, 118, 119, 120, 122, 124Sn 20 Natural Abundance, % AHg I NA% 196 0 0.146 198 0 10.02 199 1/2 16.84 200 0 23.13 201 3/2 13.22 202 0 29.80 204 0 6.850 Mass number, A Isotopic Compositions of the Elements I = Nuclear Spin 21 Natural Abundance, % 1H 99.985 2H 0.015 12C 98.89 13C 1.11 14N 99.63 15N 0.37 16O 99.759 17O 0.037 18O 0.204 32S 95.00 33S 0.76 34S 4.22 36S 0.014 Isotopic Compositions of the Elements 22 Variability in Isotopic Compositions Isotope Range Average 10B 18.927 - 20.337 19.9 (7) 11B 81.073 - 79.663 80.1 (7) 16O 99.7384 - 99.7756 99.757 (16) 17O 0.0399 - 0.0367 0.038 (1) 18O 0.2217 - 0.1877 0.205 (14) Natural Abundance, % 23 Nuclear Spin electron spin s = ½ proton and neutron I = ½ nuclear spin I = z ½ z = integer 0, 1, 2, 3, ..... Number of protons, Z Number of neutrons, N I even even 0 odd odd integer even odd multiples of ½odd even 24 Nuclear Spin protons and neutrons are Fermions, obey Pauli exclusion principle 12C 13C n np p I = ½I = 0 25 Nuclear Spin  even – even: I = 0 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca  odd – odd: I = integer ONLY 2H, 6Li, 10B, 14N, 40K, 50V, 138La, 176Lu  even – odd and odd – even: I = multiples of ½ 13C ½, 17O 5/2, 33S 3/2 26 Nuclear Spin Number of protons Z Number of neutrons N Number of nuclides even even 168 odd odd 8 odd even 50 even odd 57 27 28 Nuclear Spin 29 Nuclear Spin  NO stable nucleus has spin 2  the highest value of spin for a stable nucleus is 7 176Lu  unstable nuclei highest integral spin 16 - isomer 178Hf highest half-integer 37/2 - isomer 177Hf) 30 Nuclear Spin • Nuclei with spin ½ - a spherical charge distribution • Nuclei with I > ½ - nonspherical charge distributions (prolate or oblate) • Nuclei with a non-zero spin → magnetic moment () • Nonspherical nuclei → electric quadrupole moment (eQ) 31 Nuclear Spin Rotating positive charge generates magnetic field 32 Nuclear Spin 33 Nuclear Spin Nuclear spin = Spin angular momentum, P (vector) (moment hybnosti) Spin quantum number I Magnetic quantum number mI Magnitude of P is quantized: Direction with respect to the magnetic field B0 is quantized: P µ  1 2  II h P  Iz m h P 2  34 Spin Angular Momentum, P 59Co, I = 7/2 mI I = Nuclear spin quantum number I = 0, ½, 1, 3/2, 5/2, 3, 7/2,..... mI = Nuclear spin magnetic quantum number Multiplicity, M 2I + 1 values mI = I, I  1, I  2, ..., I + 2, I + 1, I 1/2 3/2 5/2 -3/2 7/2 -1/2 -5/2 -7/2 B0 1 2  II h P  Iz m h P 2   1 cos   II m P P Iz  35 Spin Angular Momentum, P I [I (I + 1)]½ ½ 0.866 1 1.414 3/2 1.936 5/2 2.958 3 3.464 7/2 3.969 4 4.472 9/2 4.975  1 2  II h P  36 Spin Magnetic Moment, µ The electrons, nucleons (protons, neutrons) and some nuclei possess intrinsic magnetism, which is not due to a circulating current. Permanent magnetic moment similarly as spin angular momentum. Magnetic moment, µ, is directly proportional to the spin angular momentum, P : µ = γ P γ is the gyromagnetic (magnetogyric) ratio 37 Magnetogyric Ratio γ - the magnetogyric ratio is the ratio of the nuclear magnetic moment µ to the nuclear angular momentum P. µ = γ P γ - Important characteristic of nuclei !!! [rad T1 s1] 38 Spin Magnetic Moment, µ µ = γ P = γ ħ [I (I + 1)]½ µz = γ Pz = γ ħ mI Nucleus 1H 2H 13C 15N 19F 29Si 31P γ [10-7 rad T-1s-1] 26.75 4.11 6.73  2.71 25.18 5.32 10.84 electron γe = 17 609  107 = 658 γ(H) 39 Nuclear Spin in Magnetic Field 40 Nuclear Spin in Magnetic Field E =  absorbed light Applied Magnetic Field Hext E =  absorbed light Applied Magnetic Field Hext Random orientation No Field Magnetic Field Zeeman plitting to 2I + 1 levels Alignment of spins 41 Nuclear Spin in Magnetic Field magnetic dipole 42 Nuclear Spin in Magnetic Field • An angular momentum is associated with each rotating object • A nuclear spin possesses a magnetic moment µ arising from the angular momentum of the nucleus • The magnetic moment µ is a vector perpendicular to the current loop • In a magnetic field (B) the magnetic moment behaves as a magnetic dipole  = i A 43 Nuclear Spin in Magnetic Field In B0, a magnetic moment µ is directed at some angle w.r.t. B0 direction the B0 field will exert a torque on the magnetic moment. This causes µ to precess about the magnetic field direction Torque is the rate of change of the nuclear spin angular momentum 44 Nuclear Spin in Magnetic Field Spin precession in the external magnetic field. Quantum description of precession shows that the frequency of the motion is: ω0 =  γ B0 [rad s1] or ν0 =  γ B0/ 2π [Hz] It is called the Larmor frequency (if γ > 0 then ν0 < 0) 45 Larmor Frequency ω0 =  γ B0 [rad s-1] ν0 =  γ B0/ 2π [Hz]    2 0 0 B  46 Larmor Frequency Sir Joseph Larmor (1857-1942) ω0 =  γ B0 [rad s1] or ν0 =  γ B0/ 2π [Hz] Ensemble of spins Resonance Frequencies of Nuclei 47 Resonance Frequencies of Nuclei 48 Nucleus Magnetogyric Ratio 11.74 T 7.05 T 1H 26.75 950 MHz 700 MHz 500 MHz 300 MHz 11B 13C 6.73 19F 25.18 27Al 29Si - 5.32 31P 10.84 103Rh Nuclei are charged and if they have spin, they are magnetic No Field Applied Magnetic Field = B0 Energy of transition = energy of radiowaves Higher energy state: magnetic field opposes applied field Lower energy state: magnetic field aligned with applied field Nuclear Zeeman Effect - Splitting mI ½ mI +½ 50 Nuclear Spin in Magnetic Field Emag =  µ  B0 (a scalar product of 2 vectors) Emag =  µz B =  γ Pz B Emag =  mI ħ γ B The magnetic energy depends on the interaction between the magnetic moment and B0 field: NMR selection rule ∆mI = ± 1 51 52 Spin in Magnetic Field ∆ Emag = Em=-1/2  Em=1/2 = ∆mI ħ γ B = h ν  ν = γ B/2π I = ½ E m = 1/2 E m = 1/2 The frequency of the electromagnetic radiation that corresponds to the energy difference between the two energy levels is equal to the precessional frequency of the nuclei. 53 Spin in Magnetic Field  =  2.7116 107 54 Amplitude Frequency (Hz) Excitation of NMR Spin E   E  Irradiate with Frequency so as to satisfy Planck's Law E=h Energy 55 56 Energy Levels for I = ½ Protons ∆E = (6.626 1034 J s 26.75 107 rad T-1s-1 11.743 T)/2π = 3.313 1025 J very small energy difference ∆ Emag = Em=-1/2  Em=1/2 = ∆mI ħ γ B = h γ B/2π 57 Energy Levels for I = ½     58 Energy Levels for I = ½ 59 Boltzmann Distribution The excess of nuclei on the lower energy level is given by Boltzmann distribution: N↑↓/N↑↑ = exp(∆E/kBT) = exp(ħ γ B /kBT) = exp(3.313 10-25/ 4.101 10-21) = exp(8.078 10-5) = 0.99991922 If N↑↑ = 1 000 000 then N↑↓ = 999919 Only 81 out of 2 million 1H nuclei contribute to NMR signal at 500 MHz! ħ = 1.055 10-34 J s γH = 26.75 107 rad T-1s-1 B = 11.7433 T (500 MHz) kB = 1.3807 10-23 J K-1 T = 297 K                 Tk B Tk E N N BB  expexp 60 Boltzmann Distribution N↑↓/N↑↑ = exp(∆E/kBT) = exp(ħ γ B /kBT) the stronger the field and the higher the magnetogyric ratio, the larger the population difference the higher the temperature, the smaller the population difference 61 Boltzmann Distribution The higher the field B, the larger the energy difference, the larger the population difference, the larger the net magnetization, and the bigger the NMR signal 62 Nuclear Magnetic Resonance (NMR)  Nuclear – spin ½ nuclei (e.g. protons) behave as tiny bar magnets.  Magnetic – a strong magnetic field causes a small energy difference between + ½ and – ½ spin states.  Resonance – photons of radio waves can match the exact energy difference between the + ½ and – ½ spin states resulting in absorption of photons as the protons change spin states. 63 Magnetization More nuclei point in parallel to the static magnetic field. The macroscopic magnetic moment, M0 M0 = Σ μi In-Field Bloch equations: the nuclear magnetization M = (Mx, My, Mz) as a function of time and relaxation timesT1 and T2 64 Longitudinal Magnetization 65 Spin-Lattice Relaxation Time R1 = 1/T1 [Hz] longitudinal relaxation rate constant T1 [s] longitudinal relaxation time spin-lattice relaxation time enthalpy 66 Transverse Magnetisation Spin coherence 67 Spin-Spin Relaxation Time R2 = 1/T2 [Hz] transverse relaxation rate constant T2 [s] transverse relaxation time constant spin-spin relaxation time entropy 68 One RF Pulse 69 Relaxation 70 Free Induction Decay FID 71 72 73