1 Chemical shift for a given molecule: • Number of signals = nonequivalent nuclei molecular symmetry • Relative intensity = number of nuclei • Position in the spectrum = shielding/chemical shift electronic structure • Multiplicity = connectivity of atoms and groups 2 Magnetic Coupling The interaction of nuclear spins is composed of two parts: 1. Dipolar coupling direct interaction of magnetic moments thru space solids oriented phases NOE relaxation 2. Scalar coupling indirect interaction mediated by electrons chemical information about the bonding Bz ~  rAX 3(3cos2  1) 3 Dipolar Coupling Dipolar coupling constant DAX ~ h A X rAX 3 hetero = DAX(3cos2 1) homo = 1.5 DAX(3cos2 1) DAX 2DAX 4 Dipolar Coupling Bz ~  rAX 3(3cos2  1) 5 Scalar Coupling Analysis of the coupling patterns consists of three parts: • number of lines in a multiplet • relative intensities of lines in the multiplet • magnitude (and possibly sign) of the coupling constants (Hz) 6 Scalar (Spin-Spin) Coupling The simplest case: Two magnetically active nuclei Interacting through bonds (see each other) Both spins I = ½ 0.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0 0.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0 Ha HbJ = 0 J  0 7 Scalar Coupling A splitting of a signal = more energy levels involved in the transitions Origin = The magnetic moment of the nucleus Ha produces polarization at Hb (and vice versa) Spectrum of Ha 8 Two Spins I = ½ 9 Homo vs. Hetero Coupling 10 Number of Lines in a Multiplet CH3-CHCl2 3Hb Ha M = 2 n I + 1 Number of Lines in a Multiplet 11 M = 2 n I + 1 12 13 14 Scalar Coupling M = 2 n I + 1 15 Relative Intensities of Lines in the Multiplet Spin, IX Polynomial, n = number of nuclei X Examples 1/2 (x + y)n 1H 1 (x2 + xy + y2)n 2H, 6Li, 14N 3/2 (x3 + x2y + xy2 + y3)n 11B, 7Li 2 (x4 + x3y + x2y2 + xy3 + y4)n - 5/2 (x5 + x4y + x3y2 + x2y3 + xy4 + y5)n 17O, 27Al 3 (x6 + x5y + x4y2 + x3y3 + x2y4 + xy5 + y6)n 10B 7/2 (x7 + x6y + x5y2 + x4y3 + x3y4 + x2y5 + xy6 + y7)n 51V, 59Co Line intensities of the multiplet A are given by the coefficients of polynomial expansion A----Xn 16 Pascal’s Triangle only for Spin ½ Pattern n Relative Peak Height (x + y)n Singlet 0 1 Doublet 1 1 : 1 Triplet 2 1 : 2 : 1 Quartet 3 1 : 3 : 3 : 1 Quintet 4 1 : 4 : 6 : 4 : 1 Sextet 5 1 : 5 : 10 : 10 : 5 : 1 Septet 6 1 : 6 : 15 : 20 : 15 : 6 : 1 And so on …… Splitting by a Spin  ½ 17 Tento obrázek nyní nelze zobrazit. 31P NMR 27Al I = 5/2 NA = 100 % Number of lines = 2 n I + 1 = 6 Intensities = (x5 + x4y + x3y2 + x2y3 + xy4 + y5)n = = 1 : 1 : 1 : 1 : 1 : 1 18 (a) 1H (400 MHz) and (b) 2H NMR (60.7 MHz) spectra (o-dichlorobenzene-d4) of the region for encapsulated hydrogen molecule inside open-cage fullerene 1 2H I = 1 No. of lines = 2 n I + 1 = 3 Intensities = (x2 + xy + y2)n = = 1 : 1 : 1 19 Coupling with Several Spins B FF3C F F3C CF3 CF3 11B NMR CF3 n = 9 F(2) n = 1 F(3) n = 1 CF3(too far) K+ M = (2 ni Ii + 1) 20 11B NMR Spectrum of K[B(CF=CF2)4] 11B NMR spectrum of K[B(CF=CF2)4] in CD3CN: an overlapping quintet of quintets of quintets (2JB,F = 21.5, 3JB,F = 3.2, 3JB,F = 2.2 Hz). Multiplet overlap 21 K[AgF4] K[AgF4] d8 square planar 109Ag I = ½ NA = 48.2%  = - 1.2448 107 rad T-1 s-1 107Ag I = ½ NA = 51.8%  = - 1.0828 107 rad T-1 s-1 19F NMR 22 K[AgF4] M = 2nI + 1 1J(109Ag – F) = 425.8 Hz 1J(107Ag – F) = 370.4 Hz 109Ag NMR 1J(109Ag – F) must have the same value in both 109Ag and 19F spectra Coupling with Several Spins I  ½ 23 31P NMR 7Li I = 3/2 NA = 92.6 % n = 2 Number of lines = 2 n I + 1 = 7 Intensities = (x3 + x2y + xy2 + y3)2 = ……..good luck Coupling with Several Spins  ½ 24 31P NMR The first 7Li The second 7Li splits each line 25 Signal Multiplicity 17O NMR TcO4 - in 20.1% enriched H2 17O. H2 17O 26 Signal Multiplicity CCN Pt Tl NCB NCC CAN CCN CCN M = (2 ni Ii + 1)13C enriched CN- 27 2J (Tl– CC) < 1J (Tl– CB) < 2J (Tl– CA) cis CC 0.45 kHz trans CA 9.71 kHz 205Tl NMR 1H Scalar Coupling 28 29 Magnitude and Sign of the Coupling Constants Spin-spin couplings between two nuclei will be dependent upon several factors: • the nuclei involved – magnetogyric ratio • the distance between the two nuclei • the angle of interaction between the two nuclei • the nuclear spin of the nuclei Indirect nuclear spin–spin coupling constants •through-bond •through-space •through hydrogen bonds 30 Scalar Coupling Isotropic part of J Four (Ramsey) contributions: • Fermi-contact (FC) • Spin-dipolar (SD) • Paramagnetic orbital (PARA) • Diamagnetic orbital (DIA) 31 Scalar Coupling The most important contribution to scalar coupling arises from the FERMI-CONTACT INTERACTION which can be described in the Dirac-vector model: B0 A B The nuclear spin polarization of nucleus A in a magnetic field polarizes the spins of a bonding electron pair, which in turn transfer this polarization to nuclear spin B. Scalar Coupling 32 33 Scalar Coupling FERMI-CONTACT INTERACTION is mediated only by selectrons (p, d, f electrons have no contact with the nucleus) s-electron has definite probability at nucleus e-spin and nuclear spin can interact only when they occupy same space An approximate expression for the scalar coupling constant J was given by Mc CONNELL: JAB ~ A B sA 2(0) sB 2(0) (E)1 AB 2 s2(0) = s-electron density at the nucleus AB 2 = s-character in the A-B bond 34 Conventions on the Notation of Scalar Coupling Constants Spin-spin couplings are generally expressed in terms of the COUPLING CONSTANT nJ where n denotes the number of bonds between coupled nuclei Dimension [ J ] = s1 [Hz] The magnitude of J depends on the gyromagnetic ratios A, B of the coupled nuclei. For comparison of coupling constants involving different isotopes use the REDUCED COUPLING CONSTANT K KAB = (42/h) (A B )1 JAB Dimension [ K ] = 1019 N A2 m–3 35 Scalar Coupling Constants To compare substituent influences on coupling for different nuclei, use the EFECTIVE REDUCED COUPLING CONSTANT K’ K’AB = KAB [sA 2(0) sB 2(0)]1 Dimension [K’ ] = 1042 N A–2 m3 36 Signs of Scalar Coupling Constants Signs of scalar coupling may be both POSITIVE or NEGATIVE. The sign of a coupling constant is defined as follows: KAB < 0 if PARALLEL alignment of the spins I(A) and I(B) is energetically favored KAB < 0 A B KAB > 0 A B KAB > 0 if ANTIPARALLEL alignment of the spins I(A) and I(B) is energetically favored 37 Signs of Scalar Coupling Constants > 0 if A, B have same sign < 0 if A, B have different sign KAB JAB NMR spectroscopic measurements in liquids yield generally only information on RELATIVE SIGNS of two couplings, i.e. KAB / KAC > 0 or KAB /KAC < 0. Determination of absolute signs for KAB or KAC requires other experiments (e.g. molecular beam experiments, observation of dipolar interactions in the solid state) 38 Signs of Scalar Coupling Constants The sign of 1KEH is generally positive. (E = any first to fourth row atom) If the relative sign of a coupling constant nKXY can be determined from nKXY / 1KEH , it can be translated into an absolute sign. Methods for sign determination: analysis of higher order spectra homo- or heteronuclear 2D-Experiments selective irradiation experiment Coupling signs may provide useful structural information on: the number of bonds connecting two nuclei the oxidation state of elements the stereochemical details (conformation and configuration analysis) 39 Visualization of Spin–Spin Coupling      EEKJ ABBAAB 2 1 2    the energy splitting between states with parallel and antiparallel nuclear spins AB(r) = the coupling energy density (CED) integral of CED over all space = KAB CED is a real-space function, can be visualized in 3D contains all the information about the propagation of the nuclear spin–spin interaction throughout a molecule          dVrdVrrKJ ABBAABBAAB     22 1 2  40 Visualization of Spin–Spin Coupling          dVrdVrrKJ ABBAABBAAB     22 1 2  3JHH through-bond Benzene through-space H2P-CH2-CH2-PH2 3JPP 41 Visualization of Spin–Spin Coupling       21   rr rAB    The coupling electron deformation density (CDD), the integration of CDD over space = 0 CDDCED 3JHH 42 Types of Coupling Coupling between two nuclei can be categorized as follows: Homonuclear Coupling - coupling between nuclei of the same type 1H-C-C-1H, 195Pt-195Pt, 31P-C-31P, 199Hg-C-C-199Hg Heteronuclear Coupling - coupling between nuclei of different types 1H-13C, 1H-31P, 205Tl-195Pt, 14N-51V 43 Distance Dependence The absolute value of the coupling constant decreases as the number of interceding bonds between coupled nuclei increases. The order of the strength of coupling is as follows: 1J > 2J > 3J > 4J > nJ 1J one-bond or direct 2J two-bond or geminal 3J three-bond or vicinal nJ long-range 44 Distance Dependence P 3JPCCC = 14 Hz 2JPCC = 12 Hz 1JPC = 55 Hz 1J > 3J > 2J 45 Largest Heteronuclear J CN PtNC CN CN CN Tl NC CN PtNC CN CN CN Tl CN PtNC CN CN CN Tl NC CN 2 CN PtNC CN CN CN Tl NC CN 3 NC 1J(205Tl-195Pt), kHz !!!! 71 57 47 38 46 Largest Homonuclear J 1J(199Hg-199Hg) = 220 300 Hz 1J(199Hg-199Hg) = 263 200 Hz in CD2Cl2 284 100 Hz in MeOH 47 Dependence of J on Magnetogyric Ratio 1H spectrum of natural abundance NH4Cl (1.5 M) in 1M HCl/H2O • coupling to 14N (I = 1) – a triplet (1:1:1) • coupling to 15N – a weak doublet The 14N coupling constant is smaller than that of 15N WHY?? 1H 48 Dependence on Magnetogyric Ratio For the same elements, different nuclides JAB ~ A B sA 2(0) sB 2(0) (E)1 AB 2 BH4  1J(11B – H) = 80 Hz (11B) = 8.57 107 rad T1s1 1J(10B – H) = 28 Hz (10B) = 2.87 107 rad T1s1 49 Dependence on Magnetogyric Ratio * * *)( )( *)( )( B B BA BA BAJ BAJ FBAJ FBAJ          The nuclide with larger  has larger coupling constant J(A-B)~ A B sA 2(0) sB 2(0) (E)1 AB 2 50 Dependence on Magnetogyric Ratio compound (X) 107 rad T1s1 1J(117Sn – X) Hz 1J(119Sn – X) Hz nBu3Sn – H 26.7510 1505 1575 nBu3Sn – D 4.1064 231 242 nBu3Sn – T 28.5335 1610 1685 JAB ~ A B sA 2(0) sB 2(0) (E)1 AB 2 51 Effects of Electronegative Substituents 1. Changes in hybridization: Bent’s rule, more electronegative substituents prefer orbitals with more p-character. Remaining orbitals have more s-character - AB 2, hence the J increases 2. Removal of electron density increases effective nuclear charge, contraction of e-cloud, s-density increases - sA 2(0), hence the J increases JAB ~ A B sA 2(0) sB 2(0) (E)1 AB 2 52 Effects of Electronegativity PAEt3 Pt Cl PBEt3Me PAEt3 Pt Cl PBEt3 PAEt3 Pt PBEt3Me Me More p-character More s-character Cl 1J(195Pt - PA) = 4179 Hz 1J(195Pt - PB) = 1719 Hz JAB ~ A B sA 2(0) sB 2(0) (E)1 AB 2 53 Effects of Electronegativity J increases with increasing sum of substituent electronegativity CO WOC CO PX3 OC CO 54 Effects of Coordination Number Et3P Pt Cl Cl PEt3 Cl Cl Et3P Pt Cl Cl PEt3 1J(195Pt - P) = 1455 Hz 1J(195Pt - P) = 2397 Hz Et3P Pt PEt3 PEt3 PEt3 PhMe2P Pt PMe2Ph PMe2Ph PMe2Ph 2+ 1J(195Pt - P) = 3740 Hz 1J(195Pt - P) = 2342 Hz Increasing coordination number results in decreasing J 55 Effects of Coordination Number [Cp2WH2] [Cp2WH3]+ 1J(183W - H) = 73.2 Hz 47.8 Hz Increasing coordination number results in decreasing J 56 Effects of s-Character B XPs XsPs AXPJ    )(1 )()%(% )( 2 1 s2 (P-X) = overlap integral in the P-X bond 1J(P - X) decreases with increasing coordination number and oxidation state 57 Effects of s-Character Group hybridization 1J(183W – 13C), Hz alkyl sp3 80 alkylidene sp2 120 alkylidyne sp 210 W PMe3H2 C CH C PMe3 t-Bu t-Bu t-Bu W oxidation state Point group Coupling C-H, P-C 58 Effects of s-Character F P F F F F P F F F F P F F F 1J(31P - C) = 189.2 Hz 261.1 Hz 476.0 Hz C H C H H C 1J(13C- H) = 120 Hz 160 Hz 250 Hz 59 Effects of s-Character 1J(P-Faxial) = 777 Hz 1J(P-Fequat) = 966 Hz F P F F CF3 F CF3 P CF3 NMe2 Cl F3C 2J(P-Faxial) = 53 Hz 2J(P-Fequat) = 130 Hz 60 Effects of s-Character H H H H 123 130 134 161 1J (C-H), Hz Increasing J Intraring angle decreases More p-character in C-C More s-character in C-H 61 Effects of s-Character H2 P B B PH2 PH2 PH2 H2P H2P PH2 1J(P-11B) = 56.9 Hz 1J(P-11B) = 26.3 Hz Explain the difference 62 Effects of s-Character 1J(P-11B) = 56.9 Hz 1J(P-11B) = 26.3 Hz Lone pair = substituent with zero electronegativity Resides in orbital with large s-character P B B P H2P H2P PH2 H HH H 63 Effects of Coordination Number F P F F F F F P F F FF F P F F F H P F F F 1J(31P - F) negative 1400 Hz 1109 Hz 1080 Hz 706 Hz Increasing coordination number results in decreasing J Dilution of s-character into more bonds 64 Effects of Oxidation State Cl Pt Cl Cl PBu3 P(OPh)3 Cl Cl Pt Cl P(OPh)3 PBu3Bu3P Pt Cl Cl PBu3 Bu3P Pt PBu3 PBu3 PBu3 1J (195Pt - 31P) 3740 Hz 2411 Hz Bu 3159 1921 OPh 6304 4060 Increasing oxidation state results in decreasing J Decreasing electron density 65 Information from signs of KAB PIII PV PV lp changes sign 1J(P - C) 14 56 68 SnII SnIV SnIV 1J(Sn - C) 155 380 339 P Me Me Me P Me Me Me Me P Me Me Me O Sn Me Me Me Me Sn Me Me Sn Me Me Me Me 66 Angle Dependence Two types of coupling are most affected by bond angles: • geminal coupling (two-bond coupling or 2J) • vicinal coupling (three-bond coupling or 3J) 67 Geminal Coupling Geminal coupling or 2J coupling is dependent upon the bond angle between the nuclei. The smaller the angle the bigger the coupling constant. 68 Geminal Coupling The smaller the angle the bigger the coupling constant. 2J (1H – 1H) 69 Trans/Cis Coupling H H H H H H gem 0 – 3 vic cis 6 – 12 vic trans 12 – 18 nJ (1H – 1H), Hz 70 Trans/Cis Coupling Ph2 P Pd PPh2H H PPh2H (OC)4Mn 2J (31P – Pd – 31P) cis 0 Hz trans 213 Hz 71 Trans/Cis Coupling 2J (31P – M – 31P) cis < trans Complex Coord. 2J PP cis, Hz 2J PP trans, Hz PdCl2(PMe3)2 SPl 8 610 PtBr2(PMe3)2 SPl 16 514 Cr(CO)4(PF3)2 Oh 36 28 Mo(CO)4(PF3)2 Oh 55 312 Mo(CO)4[P(NMe2)3]2 Oh 12 101 W(CO)4(PF3)2 Oh 38 315 mer-RhCl3(PMe3)3 Oh 29 567 72 Vicinal Coupling Vicinal coupling or 3J coupling is dependent upon the dihedral angle between the nuclei. The more eclipsed or antiperiplanar the nuclei the greater the coupling constant. The relationship between dihedral angle and coupling constant is known as the Karplus curve. C C H H C C H H C C H H  minimum  23 coscos CBAJ  73 Vicinal Coupling  23 coscos CBAJ  the Karplus equation 74 The Karplus Equation 75 Population Analysis Z H H X H Y H H Z X H Y H ZH X H Y p1 p2 p3 )180( )60( 1321 3212 3211   t g gtg tgg J J ppp pJpJpJJ pJpJpJJ      from independent measurements 3 inequivalent protons 2 time-averaged vicinal J (1 geminal J) pi = population of rotamers g = gauche, t = trans experiment 76 Population Analysis KOH OH HX HX HA HB HA HB Axial Equatorial p 1 - p )exp( 1 )1( )1( 0 RT G p p K JppJJ JppJJ Equ BX Axial BXBX Equ AX Axial AXAX       77 Decoupling Heteronuclear broadband decoupling Selective homonuclear decoupling 78 15N–15N Coupling Across an NHN Hydrogen Bond CD2Cl2/[d6]DMSO (5:1) a) 233 K b) 233 K c) 193 K d) 193 K 2J(15N–15N) = 16.5 Hz 79 6Li–15N Coupling 6Li I = 1 NA = 7.42 % 15N I = 1/2 NA = 0.37 % 80 6Li–15N Coupling 6Li NMR: •two triplets 1:1  = 2.15 ppm (JLiN = 3.7 Hz)  = 2.32 ppm (JLiN = 6.1 Hz) •triplet  = 1.63 ppm (JLiN = 4.5 Hz) 81 6Li–15N Coupling6Li NMR: •two triplets 1:1  = 2.15 ppm (JLiN= 3.7 Hz) a  = 2.32 ppm (JLiN= 6.1 Hz) •triplet  = 1.63 ppm (JLiN= 4.5 Hz)