C8953 NMR structural analysis seminar Information about classes + 1D 1H-NMR Ondˇrej Jurˇcek, Martin Novák jurcekondrej@mail.muni.cz, 323460@mail.muni.cz February 26, 2018 Information about classes Credit: � Max. 2 unexcused absences � 2 successfully solved tests (midterm and final) Study materials: https://is.muni.cz/auth/el/1431/jaro2018/C8953/um E-tests: https://is.muni.cz/auth/el/1431/jaro2018/C8953/odp Energy levels splitting α β B0 E B0ms=+1/2 α ms=‐1/2 β s=1/2 ΔE Nα>Nβ Behavior of nuclear spin after irradiation by RF pulse y x z Mz B0 B0 Bloc Precession frequency: ω = ‐γB0 Precession frequency affected by nuclear shielding: ω = ‐(1+σ)B0 Chemical shift: δ = ω ‐ ωref Definition of th relative scale of the chemical shift: δ = (ω ‐ ωref)/ωref.106 ppm B0 induces local mag. field Bloc, which affects against B0 Nuclear shielding RfpulseB1 Characteristic intervals of chemical shifts values Increase of chemical shift Increase of shielding Higher ω Lower ω 12 10 8 6 4 2 0ppm H H H H H H R H O R O O H R1 R2 H H R Cl HH R H R O H R N O H H Trends in chemical shifts � Electronegativity, inductive and mesomeric effects of substituents � Hybridisation � Relative position towards the ring, double bond H I H H H Cl H H H Br H H H OR H H Cl Cl H H Cl Cl Cl H H NO2 H H 3 ppm 5,3 ppm 7,3 ppm 2,1 ppm 2,3 ppm 3,1 ppm 4,5 ppm Substituents with ‐I effect =N+ R2>‐N+ R3>‐NO2>‐NR2 ‐SO2R>‐SO3>‐SOR>‐SR ‐F>‐OR>‐NR2>‐CR3 ‐F>‐Cl>‐Br>‐I =N>=NR>‐NR2 ‐C=CH>‐CH=CH2>‐CH2‐CH3 = = Substituents with +I effects ‐N‐R>‐O‐>S‐ ‐C(CH3)3>‐CH(CH3)2>‐CH2CH3>‐CH3 metals Mesomeric effect 5,29 5,29 6,11 6,52 3,74 3,93 ‐M +M 7,24 6,55 7,08 6,70 8,15 7,55 7,70 MM ‐+ Substituents with ‐M effects ‐F, ‐Cl, ‐Br, ‐I, ‐OH, ‐OR, ‐NH2, ‐NHR, ‐NR2, ‐SH, ‐SR Substituents with +M effect ‐CH=O, ‐RC=O, ‐C(OH)=O, ‐C(OR)=O, ‐C(NH2)=O, ‐NO2, ‐SO3H, ‐C=N= Spin-spin interaction, J-coupling H H H B0 ‐ Bloc Bloc Nucleus H: spin α ‐Bn spin β +Bn B0 ‐ Bloc + Bn B0 ‐ Bloc ‐ Bn H R R R R H Interaction constant J ωaωb ωc =ωa+1/2J =ωa‐1/2J J=ωb‐ωc B0 Interaction constant J – CH2 – CH3 � Multiplicity of the nucleus I with the spin 1/2 is given by: m = n + 1, n = number of interacting nuclei with nucleus I � Intensity of lines in multiplet follows Pascal’s triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1D 1 H NMR spectrum HO – CH2 – CH3 3J1 3J2 3J2 3J2 3J2 3J1 3J1 3J1 3J2 3J2 3J2 3J2 3J2 3J2 3J1 3J1 3J1 3J1 Values of J-constants - trends R1 R2 H H R1 H H R2 C13 H C13 H C13 H 3JHH = 13 ‐ 18 Hz 5JHH = 7 ‐ 12 Hz 1JCH = 125 Hz 1JCH = 160 Hz 1JCH = 250 Hz N N NH2 O H H H H H 2JHH= ‐12,5 Hz 3JHH= 12 Hz CH3 H C 13 H OH O 2JCH= 3.1 Hz 5JHH= 2 ‐ 3 Hz Values of J-constants - trends H H A B B H H A B H H A 3JHH = 7,5 Hz 4JHH = 1,5 Hz 5JHH = 0,7 Hz X= Li H Cl OMe F 2JHH (Hz) 7,1 2,5 ‐1,4 ‐2,0 ‐3,2 1D 1 H NMR spectroscopy � the fastest measuring, the highest sensitivity � complicated interpretation in case of more complex systems We are looking for: � position of the signal (ppm) � multiplicity (2J, 3J, 4J) � intensity (integral) � halfwidth We are considering: � chemical/magnetic equivalence � enantiotopicity/diastereotopicity � averaging of signals (dynamics, chemical exchange) 1D 1 H NMR spectrum of methyl-5-acetylsalicylate 1 2 6 3 5 4 7 O CH3 8 9 O O CH3 10 OH 1D 1 H NMR spectrum of cinnamic acid 1 2 6 3 5 4 7 8 9 OH OH H Draw approximate 1D 1 H NMR spectrum of the following compound 1D 1 H NMR spectrum of ethyl glutarate 1D 1 H NMR spectrum of benzyl butyrate 1D 1 H NMR spectrum of cartilagineal