F3390 – Výroba mikro a nanostruktur 2018 Lekcia 1 Mikroobrábanie Substráty a príprava hrubých (tlustých) vrstiev Mikroobrábanie / microfabrication Elektróny v polovodičoch + → Mikroelektronika Fotóny v polovodičoch + → Optoelektronika Kvantová mechanika + → Nanotechnológie Chémia a biotechnológie + → Mikrofluidika Optika + → Mikro-optika Prístroje + → Mikrosenzory Robotika/mechatronika + → MEMS, NEMS mikro- obrábanie Teória Typické rozmery (100nm-100 µm)horiz. x (10 nm-1 µm)vert. Prax Základné procesy mikroobrábania N. Maluf: An Introduction to Micromechanical Systems Engineering, Artech House 2004 Základný vývojový diagram procesov pri mikrobrábaní: Prebehne depozícia vrstiev; Na fotorezist sa litograficky vytvorí motív ktorý slúži jako maska pri leptaní podkladového materiálu. Proces sa opakuje až kým nedôjde k dokončeniu požadovanej mikroštruktúry. Vytvorenie vrstvy Leptanie Obrazový motív viď. F3370 Substráty Kremík Si – (silicon) • Základný materiál v elektronike, ktorý na začiatku 60-tych rokov nahradil germánium. • Hlavné výhody: – Obrovské prírodné zásoby (26% zloženia zemskej kôry) = nízka cena – Ľahko sa oxiduje, pričom oxidová vrstva • je výborný elektrický izolant a • má vhodné selektívne vlastnosti pri difúznej úprave dopantami. – Širší zakázaný pás (1,12 eV) ako Ge (0,67 eV), čo umožňuje pracovať aj pri vyšších teplotách. – Vďaka mechanickej pevnosti sa Si využíva aj pri senzoroch a MEMS • Podľa potrieb využívame kremík vo forme: – kryštalickej (monokryštál), – polykryštalickej (napr. solárne panely) – alebo amorfnej (sklo, SiO2+ iné oxidy kovov). Výroba čistého kremíka – MG-Si Kremenný piesok (SiO2) sa v oblúkovej peci redukuje uhlíkom, čím získame metalurgický Si s čistotou 98% (MGS - metallurgical grade silicon) Schéma Si oblúkovej pece 1 m široké oblúkové elektródy v kontakte s Si rudou (kvarcit) a koksom Výroba čistého kremíka – EG-Si Jemne pomletý MGS prevedieme pomocou HCl na plynný trichlórosilán SiHCl3 (TCS) aby sa hlavné nečistoty (Fe, B, P) premenili na zlúčeniny FeCl3, BCl3 a PCl3/PCl5, ktoré následne destilačne odstránime. Naspäť získame kremík depozíciou na horúce kremíkové tyče (Siemens process): Získame vysokočistý, polykryštalický Si, tzv. EGS – electronic grade silicon, vhodný pre výrobu kremíkových monokryštálov. Rast kryštálu Czochralského metódou • Tavný kelímok z SiO2 naplníme EGC a pri cca 1420°C vo vákuu roztavíme. • Následne do taveniny ponoríme malý kryštál (kryštalizačné jadro, nemusí byť nutne Si) so známou kryštalickou orientáciou. Jadro pomaly vyťahujeme z taveniny. Kremík tuhne na jeho povrchu a kopíruje jeho kryštalickú štruktúru. • Ťažný prút (ingot) aj kelímok počas procesu pomaly rotujú (20 a 10 rpm) aby sa minimalizovali poruchy od nerovnomerného ohrevu. • Samotný SiO2 kelímok je nevyhnutným zdrojom kontaminácie. • Rýchlosti rastu sú na úrovni 1mm/min. • Čistota 1:10 000 000 Výroba substrátov (wafers) • Delenie na 50cm „polienka“ XRD kontrola kryštalickej orientácie a označenie • Narezanie na substráty • Dohladenie na rovinnosť, planparalelitu a zhodnú drsnosť oboch plôch (lapping) • Zaoblenie hrán (proti štiepaniu a ulpievaniu vody pri sušení) • Očistenie leptaním (KOH alebo HF-HNO3) • Žíhanie pri 600 až 800°C odstráni medzimriežkové kyslíkové komplexy (tzv. termálne donory) • Finálne leštenie 10nm Si pastou v alkalickom roztoku na drsnosť 0,1-0,2 RMS (tzn. úroveň jednotlivých atómov) Dohodnuté značenie waferov Zhrnutie pre Si: Alternatívy pre kremík Magnetický Czochralski Roztavený Si je elektricky vodivý preto ho magnetické pole môže teplotne aj tokovo stabilizovať. F = j x B = nqv x B Metóda plávajúcej zóny / float zone Pre extra čistý kremík sa taví len oblasť v kontakte s kryštalizačným jadrom, pričom sa polykryštalický ingot pomalu dvíha. Problém s kontamináciou od kelímka je tak odstránený. Monokryštály (1) Z taveniny: Cz. met.; Vernuil (fúzia plameňom); metóda plávajúcej zóny (float zone) (1) Z roztoku: - hydrotermálny (H2O, α- quartz) - z tavidla (flux) (3) Z pár: hlavne pre nanokryštály Verneuil proces: typický pre rast zafíru a rubínu (tzn. Al2O3 ). Vodíkovým plameňom roztavená prášková surovina vytvára tenkú vrstvu taveniny (~20 µm) na povrchu oddiaľovaného ingotu. Lacná, menej kvalitná metóda. Monokryštály z roztokov Hydrotermálny autokláv: Zárodočné kryštály sú zavesené v oblasti s nižšou teplotou ako má roztok. Nasýtený roztok z dolnej oblasti sa konvekciou dostáva ku krystalizačnému jadru, kde vďaka nižšej teplote kryštalizuje. Sklo • Sklo - oxidové (kremičitanové), neoxidové (napr. halogenidové a chalkogenidové S, Se, Te + Ge, As, Sb, Ga atď., transparentné v IČ), kovové, organické • Vznikajú keď pri chladnutí zabránime vzniku kryštalizácie. Vnútorná štruktúra skla teda nemá tzv. translačnú symetriu. Výroba plochého skla a trubiek • Valcovanie • Technológia float (plavení) - 1959 Pilkington UK - Najrozšírenejšia (90%) - Výborná planparalelita - Rýchla výroba Cín 1000°C Redukčná atmosféra 90%N2 + 10%H2 Vytláčanie (vyťahovanie) skl. trubice Keramika • Princíp výroby keramiky je slinování (spekanie, sintering) = vytvorenie pevných spojov medzi časticami tuhej fázy (práškov) • Štádia “slinování” Zhutňovanie – transport hmoty do priestorov pórov Vznik krčkov Rast veľkosti zŕn (pozn. k téme sa vrátime v lekcii č. 3 – povrchové napätie/energia) Príklady mikroštruktúry Al2O3 keramiky Spekanie 1300oC/60’ Žiarové lisovanie 1700oC/60’ + žíhanie 1750oC/600’ Sklokeramika • Vzniká kontrolovanou kryštalizáciou skla. • Využitie - nízky koeficient teplotnej rozťažnosti, mechanicky obrobiteľné materiály (Macor, Dicor). • Obsahuje vysokú koncentráciu (>95 obj. %) malých kryštálov v sklennej matrici • Tavenina sa vytvaruje a mierne schladí, aby sa v nej následným zohriatím naštartovala nukleácia (niekoľko hodín). Ďalším zvýšením teploty docielime rast zŕn. Vytváranie vrstiev • Hrubé vrstvy: 10-25 µm, vytvára sa z kvapalnej fázy – Spin coating – Dip coating – Sieťotlač (sítotisk, screenprinting) – Sol-gel – Pokovenie: galvanické (electroplating) a bezprúdové (electroless) • Tenké vrstvy: menej ako 5µm, vytvára sa v plynnej fáze – CVD – chemical vapor deposition – ALD – atomic layer deposition – PECVD – plasma enhanced CVD – Naparovanie – evaporation – Naprašovanie - sputtering – Epitaxia – epitaxy, MBE – molecular beam epitaxy Spin coating • Nanášanie polymérneho fotorezistu, sol-gel vrstvy. • Využíva odstredivú silu k radiálnemu tečeniu prchavej kvapaliny. Nutný plochý substrát. • Staticky: Kvapky sa roztečú až potom sa rozkrúti disk (20 000 rpm) • Dynamicky: Kvapky dopadnú na pomaly sa krútiaci disk (500 rpm), rotácia sa následne zrýchli (5 000 rpm) • Hrúbka (tloušťka) filmu je úmerná ω-2/3 a η1/3 Spin coating – možné chyby Vzduchové bubliny Bubliny v nanášanej kvapaline. Zle zrezané kapátko. Čmuhy Prirýchle dávkovanie. Prisilný odťah. Náter čaká pridlho na roztočenie. Príliš rýchla rotácia resp. zrýchlenie. Nečistoty na vzorke. Kvapka mimo stred rotácia. Vírovitý obrazec Príliš rýchle odsávanie. Kvapka nanesená mimo stred rotácie. Vysoké otáčky. Krátky čas otáčania. Upínacia značka Tepelná výmena náteru s kovovým upínacím systémom vzorky Plocha bez vrstvy Malý objem kvapaliny. Dierky Vzduchové bublinky. Čiastočky v nátere. Čiastočky na vzorke. Dip coating Obvykle na vytváranie sol-gel vrstiev pre následný výpal. Vzorka ponorená do vhodného roztoku sa z neho pomaly vyťahuje (10-30 cm/min). Pre hrúbku t nanesenej vrstvy platí (V – vyťahovacia rýchlosť): Sieťotlač, sítotisk / screen printing • Čína 1000 p.n.l. Pasta sa pomocou gumovej stierky pretlačí cez jemné sito na potlačovaný substrát. Prenesie sa tak obrazec na site. Vhodné pre rozlíšenie až do 5 x 5µm. Napr. pre cínovanie dosky plošného spoja pre SMD súčiastky. Sól-gel Sol – koloidná suspenzia malých (1-1000 nm) častíc v kvapaline Gel – porézna pevná trojrozmerná sieť, ktorá vznikne v kvapalnej suspenzii. Kvapalina sa následne vysuší a prípadne kalcinuje pri vyššej teplote. Umožňuje vytvoriť vrstvy oxidov kovov (keramika) pri rel. nízkych teplotách. Typický sol-gel proces používa alkoxid kovu M-(O-R)n v organickom rozpúšťadle (R = alkyl = CnH2n+1), ktorý ochotne reaguje s vodou a následná hydrolýza vytvorí 3D sieť. Príklad: SiO2 sol-gel vrstva: sol gel Si(OC2H5)4 + 2 H2O → SiO2 + 4 R-OH – O – Si – O – Si – – Si – O – Si – O – – Si – O – Si – O – | | | | |||| C2H5 – O – Si – O – OC2H5 O – C2H5 O – C2H5 | | TEOS tetraetoxysilán Pokovenie – galvanické (princíp) • Vodivá vzorka, ponorená do elektrolytu s požadovaným kovovými iónmi, sa pripojí ako katóda (mínus) ku zdroju elektrického napätia. Protielektróda je buď pasívna (napr. platinová), alebo je vyrobená z kovu ktorý sa snažíme deponovať. Rýchlosti 0,1-10 µm/min. • Katióny rozpusteného kovu sa na elektróde (katóde) redukujú (zneutralizujú) a usadia sa na jej povrchu. Meď: elektrolyt: roztok CuSO4 Cu2+ + 2e-  Cu (s) Zlato: 1.krok Au(CN)2 -   AuCN + CN- 2.krok AuCN + e-  Au(s) + CNelektrolyt na báze: KAu(CN)2 dikyanozlatnan draselný Štandardný redukčný potenciál kovov Kov je mriežka katiónov medzi ktorými sa pohybuje elektrónový plyn. Ak vložíme kov M do roztoku, ktorý obsahuje jeho ióny Mz+(napr. roztok soli daného kovu), ióny z kovovej mriežky budú unikať do roztoku a naopak, kým na fázovom rozhraní nenastane dynamická rovnováha, s rozdielom elektrického potenciál Δφ: redukcia   oxidácia Δφ= φmetal - φsolution Aby sme Δφ zmerali, spojíme ju s iným referenčným systémom (napr. štandartná vodíková elektróda). NadbytokM+vkoveNadbytokM+ vroztoku redukcia oxidácia 1M HCl Spontánne vylučovanie kovových povlakov /displacement deposition • Štandartný redučný potenciál kovov vysvetľuje, prečo sa na Zn ponorenom do vodného roztoku CuSO4 spontánne vytvorí vrstva medi. Zinok sa začne uvoľňovať do roztoku a nechá v kove e- (nabíja sa záporne) Kladné ióny medi sú priťahované k povrchu zinku. Tam využijú voľné e- a redukujú sa na ňom. Niekedy hovoríme, že meď je „vzácnejšia“ ako zinok, preto sa naň spontánne deponuje. Účinok priloženého napätia na molekuly v roztoku Redukcia Oxidácia A + e  AA - e  A+ B+ + e  B B- - e  B Bezprúdové (chemické) pokovenie / electroless plating • Umožňuje pokoviť elektricky nevodivé povrchy. V elektronike hlavne pokovenie otvorov v doskách plošných spojov. Rýchlosť 0,1 µm/min. • 1. krok – redukovanie katalyzátoru na povrchu, zvyčajne paládium Pd, napríklad z SnCl2/PdCl2: Pd2+ + Sn2+  Sn4+ + Pd0 • 2. krok – adsorbované Pd odoberie elektrón redukčnému činidlu R (formaldehyd, NaH2PO2 ...) tento elektrón je následne schopný pritiahnuť a redukovať kov (Cu2+, Ni2+) z elektrolytu. Proces následne pokračuje samostatne (autokatalyticky) Cu+2 + 2HCHO + 4OH-  2HCOO- + 2H2O + Cu0 +H2 Ni+2 + H2PO2 - + 3OH-  HPO3 -2 + 2H2O + Ni0 Pd Pd Literatúra Sami Fransilla: Introduction to Microfabrication, Wiley; 2nd Edition 2010 Carter C. Barry, Norton M. Grant: Ceramic materials/Science and Engineering, Springer 2007 Nasser Kanani: Electroplating, Basic Principles, Processes and Practice, Elsevier 2004 Allen J. Bart, Larry R. Faulkner: Electrochemical methods : fundamentals and applications, John Wiley & Sons 2001