from scipy import stats as st
import numpy as np
alp=[0.1,0.05,0.02,0.01,0.005]
colname=["%.1f%%"%(a*100) for a in alp]
import pandas as pd
ns=range(3,51)
df=pd.DataFrame(np.array([st.t(n).isf(alp) for n in ns]),columns=colname)
df.rename(index=dict(enumerate(ns)))
10.0% | 5.0% | 2.0% | 1.0% | 0.5% | |
---|---|---|---|---|---|
3 | 1.637744 | 2.353363 | 3.481909 | 4.540703 | 5.840909 |
4 | 1.533206 | 2.131847 | 2.998528 | 3.746947 | 4.604095 |
5 | 1.475884 | 2.015048 | 2.756509 | 3.364930 | 4.032143 |
6 | 1.439756 | 1.943180 | 2.612242 | 3.142668 | 3.707428 |
7 | 1.414924 | 1.894579 | 2.516752 | 2.997952 | 3.499483 |
8 | 1.396815 | 1.859548 | 2.448985 | 2.896459 | 3.355387 |
9 | 1.383029 | 1.833113 | 2.398441 | 2.821438 | 3.249836 |
10 | 1.372184 | 1.812461 | 2.359315 | 2.763769 | 3.169273 |
11 | 1.363430 | 1.795885 | 2.328140 | 2.718079 | 3.105807 |
12 | 1.356217 | 1.782288 | 2.302722 | 2.680998 | 3.054540 |
13 | 1.350171 | 1.770933 | 2.281604 | 2.650309 | 3.012276 |
14 | 1.345030 | 1.761310 | 2.263781 | 2.624494 | 2.976843 |
15 | 1.340606 | 1.753050 | 2.248540 | 2.602480 | 2.946713 |
16 | 1.336757 | 1.745884 | 2.235358 | 2.583487 | 2.920782 |
17 | 1.333379 | 1.739607 | 2.223845 | 2.566934 | 2.898231 |
18 | 1.330391 | 1.734064 | 2.213703 | 2.552380 | 2.878440 |
19 | 1.327728 | 1.729133 | 2.204701 | 2.539483 | 2.860935 |
20 | 1.325341 | 1.724718 | 2.196658 | 2.527977 | 2.845340 |
21 | 1.323188 | 1.720743 | 2.189427 | 2.517648 | 2.831360 |
22 | 1.321237 | 1.717144 | 2.182893 | 2.508325 | 2.818756 |
23 | 1.319460 | 1.713872 | 2.176958 | 2.499867 | 2.807336 |
24 | 1.317836 | 1.710882 | 2.171545 | 2.492159 | 2.796940 |
25 | 1.316345 | 1.708141 | 2.166587 | 2.485107 | 2.787436 |
26 | 1.314972 | 1.705618 | 2.162029 | 2.478630 | 2.778715 |
27 | 1.313703 | 1.703288 | 2.157825 | 2.472660 | 2.770683 |
28 | 1.312527 | 1.701131 | 2.153935 | 2.467140 | 2.763262 |
29 | 1.311434 | 1.699127 | 2.150325 | 2.462021 | 2.756386 |
30 | 1.310415 | 1.697261 | 2.146966 | 2.457262 | 2.749996 |
31 | 1.309464 | 1.695519 | 2.143833 | 2.452824 | 2.744042 |
32 | 1.308573 | 1.693889 | 2.140904 | 2.448678 | 2.738481 |
33 | 1.307737 | 1.692360 | 2.138159 | 2.444794 | 2.733277 |
34 | 1.306952 | 1.690924 | 2.135581 | 2.441150 | 2.728394 |
35 | 1.306212 | 1.689572 | 2.133157 | 2.437723 | 2.723806 |
36 | 1.305514 | 1.688298 | 2.130871 | 2.434494 | 2.719485 |
37 | 1.304854 | 1.687094 | 2.128714 | 2.431447 | 2.715409 |
38 | 1.304230 | 1.685954 | 2.126674 | 2.428568 | 2.711558 |
39 | 1.303639 | 1.684875 | 2.124742 | 2.425841 | 2.707913 |
40 | 1.303077 | 1.683851 | 2.122910 | 2.423257 | 2.704459 |
41 | 1.302543 | 1.682878 | 2.121170 | 2.420803 | 2.701181 |
42 | 1.302035 | 1.681952 | 2.119515 | 2.418470 | 2.698066 |
43 | 1.301552 | 1.681071 | 2.117940 | 2.416250 | 2.695102 |
44 | 1.301090 | 1.680230 | 2.116438 | 2.414134 | 2.692278 |
45 | 1.300649 | 1.679427 | 2.115005 | 2.412116 | 2.689585 |
46 | 1.300228 | 1.678660 | 2.113636 | 2.410188 | 2.687013 |
47 | 1.299825 | 1.677927 | 2.112327 | 2.408345 | 2.684556 |
48 | 1.299439 | 1.677224 | 2.111073 | 2.406581 | 2.682204 |
49 | 1.299069 | 1.676551 | 2.109873 | 2.404892 | 2.679952 |
50 | 1.298714 | 1.675905 | 2.108721 | 2.403272 | 2.677793 |
kvantily pro $F(n,n)$ (stejně velké vzorky)
import pandas as pd
df=pd.DataFrame(np.array([st.f(n,n).isf(alp) for n in ns[2:]]),columns=colname)
df.rename(index=dict(enumerate(ns[2:])))
10.0% | 5.0% | 2.0% | 1.0% | 0.5% | |
---|---|---|---|---|---|
5 | 3.452982 | 5.050329 | 7.952932 | 10.967021 | 14.939605 |
6 | 3.054551 | 4.283866 | 6.392778 | 8.466125 | 11.073039 |
7 | 2.784930 | 3.787044 | 5.435476 | 6.992833 | 8.885389 |
8 | 2.589349 | 3.438101 | 4.789995 | 6.028870 | 7.495906 |
9 | 2.440340 | 3.178893 | 4.325487 | 5.351129 | 6.541090 |
10 | 2.322604 | 2.978237 | 3.974972 | 4.849147 | 5.846678 |
11 | 2.226930 | 2.817930 | 3.700781 | 4.462436 | 5.319667 |
12 | 2.147437 | 2.686637 | 3.480166 | 4.155258 | 4.906249 |
13 | 2.080185 | 2.576927 | 3.298599 | 3.905204 | 4.573279 |
14 | 2.022434 | 2.483726 | 3.146376 | 3.697541 | 4.299287 |
15 | 1.972216 | 2.403447 | 3.016768 | 3.522194 | 4.069785 |
16 | 1.928079 | 2.333484 | 2.904969 | 3.372046 | 3.874654 |
17 | 1.888929 | 2.271893 | 2.807449 | 3.241930 | 3.706622 |
18 | 1.853923 | 2.217197 | 2.721560 | 3.128006 | 3.560332 |
19 | 1.822403 | 2.168252 | 2.645274 | 3.027358 | 3.431750 |
20 | 1.793843 | 2.124155 | 2.577015 | 2.937735 | 3.317786 |
21 | 1.767823 | 2.084189 | 2.515535 | 2.857371 | 3.216028 |
22 | 1.743999 | 2.047770 | 2.459836 | 2.784859 | 3.124572 |
23 | 1.722088 | 2.014425 | 2.409108 | 2.719068 | 3.041889 |
24 | 1.701854 | 1.983760 | 2.362688 | 2.659072 | 2.966742 |
25 | 1.683101 | 1.955447 | 2.320026 | 2.604113 | 2.898116 |
26 | 1.665661 | 1.929213 | 2.280665 | 2.553560 | 2.835173 |
27 | 1.649393 | 1.904823 | 2.244219 | 2.506883 | 2.777213 |
28 | 1.634174 | 1.882079 | 2.210362 | 2.463636 | 2.723648 |
29 | 1.619900 | 1.860811 | 2.178814 | 2.423439 | 2.673979 |
30 | 1.606479 | 1.840872 | 2.149335 | 2.385967 | 2.627781 |
31 | 1.593832 | 1.822132 | 2.121719 | 2.350941 | 2.584689 |
32 | 1.581890 | 1.804482 | 2.095786 | 2.318118 | 2.544388 |
33 | 1.570591 | 1.787822 | 2.071378 | 2.287288 | 2.506606 |
34 | 1.559881 | 1.772066 | 2.048358 | 2.258266 | 2.471103 |
35 | 1.549712 | 1.757140 | 2.026605 | 2.230890 | 2.437672 |
36 | 1.540040 | 1.742973 | 2.006011 | 2.205018 | 2.406127 |
37 | 1.530829 | 1.729507 | 1.986481 | 2.180523 | 2.376308 |
38 | 1.522042 | 1.716687 | 1.967930 | 2.157292 | 2.348070 |
39 | 1.513650 | 1.704465 | 1.950282 | 2.135225 | 2.321286 |
40 | 1.505625 | 1.692797 | 1.933470 | 2.114232 | 2.295839 |
41 | 1.497941 | 1.681644 | 1.917431 | 2.094234 | 2.271629 |
42 | 1.490575 | 1.670971 | 1.902110 | 2.075156 | 2.248563 |
43 | 1.483506 | 1.660744 | 1.887458 | 2.056934 | 2.226558 |
44 | 1.476716 | 1.650935 | 1.873430 | 2.039508 | 2.205538 |
45 | 1.470187 | 1.641516 | 1.859982 | 2.022824 | 2.185436 |
46 | 1.463902 | 1.632464 | 1.847079 | 2.006834 | 2.166190 |
47 | 1.457849 | 1.623755 | 1.834686 | 1.991492 | 2.147743 |
48 | 1.452012 | 1.615370 | 1.822770 | 1.976757 | 2.130044 |
49 | 1.446381 | 1.607289 | 1.811305 | 1.962593 | 2.113047 |
50 | 1.440942 | 1.599495 | 1.800262 | 1.948964 | 2.096708 |
kvantily pro $F(n,n+1)$ (přidání parametru)
df=pd.DataFrame(np.array([st.f(n,n+1).isf(alp) for n in ns[2:]]),columns=colname)
df.rename(index=dict(enumerate(ns[2:])))
10.0% | 5.0% | 2.0% | 1.0% | 0.5% | |
---|---|---|---|---|---|
5 | 3.107512 | 4.387374 | 6.584743 | 8.745895 | 11.463696 |
6 | 2.827392 | 3.865969 | 5.575612 | 7.191405 | 9.155336 |
7 | 2.624135 | 3.500464 | 4.897197 | 6.177624 | 7.694143 |
8 | 2.469406 | 3.229583 | 4.410456 | 5.467123 | 6.693300 |
9 | 2.347306 | 3.020383 | 4.044201 | 4.942421 | 5.967570 |
10 | 2.248230 | 2.853625 | 3.758439 | 4.539282 | 5.418259 |
11 | 2.166031 | 2.717331 | 3.529052 | 4.219820 | 4.988377 |
12 | 2.096588 | 2.603661 | 3.340664 | 3.960326 | 4.642890 |
13 | 2.037038 | 2.507263 | 3.183024 | 3.745241 | 4.359146 |
14 | 1.985321 | 2.424364 | 3.049036 | 3.563943 | 4.121889 |
15 | 1.939921 | 2.352223 | 2.933640 | 3.408947 | 3.920483 |
16 | 1.899696 | 2.288800 | 2.833127 | 3.274823 | 3.747297 |
17 | 1.863766 | 2.232546 | 2.744717 | 3.157545 | 3.596716 |
18 | 1.831444 | 2.182263 | 2.666287 | 3.054058 | 3.464522 |
19 | 1.802185 | 2.137009 | 2.596187 | 2.962011 | 3.347485 |
20 | 1.775551 | 2.096033 | 2.533112 | 2.879556 | 3.243091 |
21 | 1.751183 | 2.058728 | 2.476023 | 2.805229 | 3.149352 |
22 | 1.728788 | 2.024600 | 2.424073 | 2.737849 | 3.064681 |
23 | 1.708123 | 1.993239 | 2.376574 | 2.676456 | 2.987789 |
24 | 1.688981 | 1.964306 | 2.332955 | 2.620260 | 2.917623 |
25 | 1.671191 | 1.937514 | 2.292738 | 2.568605 | 2.853313 |
26 | 1.654606 | 1.912622 | 2.255525 | 2.520943 | 2.794133 |
27 | 1.639099 | 1.889424 | 2.220977 | 2.476810 | 2.739475 |
28 | 1.624562 | 1.867744 | 2.188803 | 2.435815 | 2.688822 |
29 | 1.610901 | 1.847428 | 2.158757 | 2.397620 | 2.641735 |
30 | 1.598034 | 1.828345 | 2.130624 | 2.361937 | 2.597836 |
31 | 1.585889 | 1.810379 | 2.104219 | 2.328515 | 2.556802 |
32 | 1.574402 | 1.793429 | 2.079378 | 2.297136 | 2.518349 |
33 | 1.563519 | 1.777407 | 2.055960 | 2.267611 | 2.482233 |
34 | 1.553189 | 1.762233 | 2.033840 | 2.239773 | 2.448238 |
35 | 1.543369 | 1.747838 | 2.012908 | 2.213474 | 2.416174 |
36 | 1.534018 | 1.734160 | 1.993064 | 2.188585 | 2.385876 |
37 | 1.525102 | 1.721142 | 1.974222 | 2.164988 | 2.357196 |
38 | 1.516589 | 1.708736 | 1.956304 | 2.142582 | 2.330000 |
39 | 1.508450 | 1.696896 | 1.939239 | 2.121274 | 2.304172 |
40 | 1.500659 | 1.685582 | 1.922965 | 2.100981 | 2.279606 |
41 | 1.493193 | 1.674758 | 1.907424 | 2.081629 | 2.256208 |
42 | 1.486031 | 1.664389 | 1.892566 | 2.063150 | 2.233893 |
43 | 1.479152 | 1.654447 | 1.878344 | 2.045483 | 2.212583 |
44 | 1.472539 | 1.644904 | 1.864714 | 2.028573 | 2.192209 |
45 | 1.466176 | 1.635733 | 1.851640 | 2.012370 | 2.172708 |
46 | 1.460048 | 1.626913 | 1.839086 | 1.996828 | 2.154021 |
47 | 1.454141 | 1.618423 | 1.827018 | 1.981905 | 2.136097 |
48 | 1.448442 | 1.610242 | 1.815409 | 1.967563 | 2.118886 |
49 | 1.442940 | 1.602354 | 1.804230 | 1.953766 | 2.102346 |
50 | 1.437624 | 1.594741 | 1.793457 | 1.940483 | 2.086435 |
np.sqrt(15*14*3**2+5*4*5**2)
48.887626246321268
np.sqrt(15*6)
9.4868329805051381
np.sqrt(15*6*19/21.)
9.0237781127735754
st.norm().isf(0.025)
1.9599639845400545
5/np.sqrt(9+25)
0.8574929257125441