Integration of simple differential rate laws

Zero-order reaction A —>:
Ca (f}
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This rate law does not represent an ER (something goes to nothing)



First-order reaction A —> B:

de,
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Second-order reaction with a single reactant 2A —> A,:

dc, 5
kb, SR
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Second-order reaction with two reactants A+B —> A—B:
dj = -*kc.C
dt A*b

If ,(0) = c5(0): c(t)/cg(t) = 1; same solution as 2A—>A, ...

Ifc, =G : c:ji: = —Ek(cA(U)— x)(cB(O)— x); partial fraction expansion ...
CA ( r)f;;,x,.
/€, (0)
in—2 %O (¢ 0)- () ke
CB (r)f,f ( A B )
/ 6(0)

Note: this solution becomes indefinite for ¢, = ¢ (Taylor expansion)
Hence: Avoid



Average lifetime T of reacting species

B

a0

[tdc,(®
0

This is the gravity center of the area under the curve c,(t)

ca(t]

Ca(7) = c4(0)e* = 0.368c,(0)

First-order reaction:

1

v= -k te dtm —
0

lk’

Half-life t,,: time, at which 7 of the conversion at t = inf is reached.
If c\(inf) = O (irreversible reaction): t, , = In2/*k = 0.693/k;

Second-order reaction, 2A or c,=c; =¢, c(inf) =0
T=inf(l), t;, = 1/{c,(0) %k} is inversely proportional to c,(0)!
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Complex reactions (combinations of ERs)

ki
a) Reversible first-order reactions A ﬂ—k_'— B
b
dc,(t
t;t( ) - —kch(t) + kch(t)

initial condition: CB(O) =0

conservation of mass: cA(t) + cB(t) = CA(O)

) i1+ K[u(0)-euf] =k + ket + ko
at equilibrium, t = dchfr) =0, hence kbcA(O) = (.0'-:f + kb)cA(oo)
dc,(t
C“t( )k« e )efo) -] cexo
cald) ch(t) t
=k +k,)|d
-0 CA(I') & CA(m) ( £ ¥ b)_{ t
| CA(I)_ CA(OO) L _(kf " kb)t —— growth of B
CA(O) - CA(DG) OER —— decay of A ]
Example: k;=4 s, k, =15
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1
b) Parallel reactions A <
" C

Gl | i) kealq) -k + k) eld

()= (o), (o) - CA(O)L[l_ E(“fﬁ**fc)*] (1) CA(G)L[I_E(M%]

s wik

Example: k=151, kt=3s"1
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The rate constants for the decay of A and the growth of B and of C are all equal to k., = k& + k, but the

partition ratios or efficiencies are k8/k_ ., and k' /k,, . different.

obs obs



dcc(t)
dt

% = k?ch(r) - kfcca(t),

initial conditions: CB(O) = CC(O) =0

= kch(t)

conservation of mass: CA(U) - cA(t) + CB(!‘) + cc(t)

integration (e "is “integrating factor"):

ofq)- S0 (e )

Example: k=157, k=0.25571 kE=0.25s"1 k=157
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A note regarding c) sequential reactions

0k} , . :
r:g(t) - E:(—)kf; (E"‘" —e " ')

is unchanged upon exchange of the rate constants k. and k!

The equation

The growth part of the growth—decay curve B always corresponds to the faster
reaction, but it does not follow that it corresponds to the step
A—>B. For an assignment, other information is needed., e.g.:

log(kops/s™)
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JACS, 1994, 116, 954



Scheme 1. Mechanism of the Photo-Favorskii Rearrangement 1
—%

HO RN hv ISC -HX, H,O
— S| _.-T| > A
7 x HO
8 0

1 0O

1a: X =diethyl phosphate
1b: X = tosylate
1¢: X = mesylate

HO. o o HO
HO N |-co H,0
COH=— & - - OH

2 4 5 6

JACS, 2008, 130, 3307



Pump—probe spectroscopy




ps Time-resolved resonance Raman
Phillips et al. JACS, 2006, 128, 2558
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Analysis of experimental data

Given: A set of data pairs A(t) A 0 . $
Task: Define a model (rate law) and ' &
determine the model parameter(s) 02k " i
by fitting the rate law to the data
0.1} ® -
Pre-computer times (and still many textbooks):
Linearise the model and fit by linear regression 0 00 e é . 35, N
' 1 4 5
E.g., 1st-order: A =e¢ecd t/s
\
A,lt
A(t) = Ay(0)e ™ | (Y - lkt
A:(0)

This not recommended, because errors in A(t) are usually homoskedastic and become heteroskedastic upon

linearisation:
In{A()/A(0)}
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Proper fitting

Least-squares fitting of nonlinear functions (e.g., y= c*exp(—kt) to a given data
set can be done only iteratively (Levenberg—Marquart algorithm), but fitting is
very fast with modern computers (seconds with 500 data pairs) and provides fit
parameters (rate constants) with error limits.

Never state: “The data were fitted to function xy”!
Enlarge the time scale settings to define the end point (t = inf) accurately.
A second-order decay can look very similar to a sum of two exponentials!

Plot and check residuals (A_,—A.) iN @ normalized window.
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Numerical integration of complex differential rate laws

Given: A differential rate law dc/dt = f(c, t)

Replace the differential quotient by a difference quotient and use a recursive formula:

de/dt ~ (cpuq = €)/BL, €y ~ ¢, + flc,, t)/DE pen

0.8H
This is Euler’s method [\

. 0.6
Note: errors are cumulative! i \

Cn+1

7/
|

Improved method: Runge—Kutta

Determine (c,,, — ¢,)/At as the average in the interval At (2" order RK)
Better: divide the interval At into 4 parts (4t order RK)

This approximation is commonly used in computer programs.



Important approximations

Ki 1 Ki 2
a) Pre-equilibrium: A+B — C — D
Ko, 1

Under what condition is the pre-equilibrium approximation valid?
K = cc/(caCg) = k;1/ky, 1 (NOte the units!)
dep/dt = k; 5 = ki ,Kcacy (approximately a 1t order reaction with k.= k;,K

ki ko
b) Stationary-state approximation (Bodenstein): A -?-L—‘ B — C
b.1

Note: This scheme contains only 15t order reactions —> exact integration is possible

Write the set of differential equations:

dc dg dc
b, _kf,lcﬁn + kb,lCE" B kf,ICA = (kb,l + kfgg)c, —< = kf,ECB

dt dt dt
(1) (2 (3 \/\Bf\/
A

: C
If ky, 1 + k¢, >> k; 4, then ¢ will always be small:

Assume dcg/dt ~ 0 (in fact: dcg/dt << k;;cp), then (2): cg ™ k¢ 1€/ (kp, 1 + ki)
Replace cgin (1): dc,/dt = ki 1k ,ca/(ky, o + ki 1); 15t order eq., kg = ki 1k o/ (K, 1 + ki q)




General and specific acid catalysis
reaction rate v

V =dc/dt = k, + k. +[H*] + k. ;,[HA]

genera

specific general

specific How can it be that a reaction is catalyzed only by

H* and not by general acids HA?

e
-

buffer concentration ¢,
pH = const

Specific acid catalysis is observed when a reaction proceeds by pre-equilibrium

protonation: fast slow fast
A+ H* AH® g BH* —— B+H*
{

V= KCap+ = (K/Ka)Cacir, Ky = Caliy+/Cye
The pre-equilibrium is not affected by any general acid present.
General acid is not involved in the transition state between A and B, but H* is.



Quantum yield

Definition: The quantum yield (P(,?L)'X/np’ where n, is the amount of
photophysical or photochemical events that occurred, and n, is the
amount of photons at the irradiation wavelength t';it were absorbed by
the reactant. [n,] = [n ] = mol; [ ]= 1. D(A)

The quantum vyield of a single-step process x is equal to its efficiency

7N, = kx/zkf'here k. are the rate constants of all processes competing
tor the depletion of the reactant. The overall quantum yield for a complex

reaction (several ER steps) is equal to the product of the efficiencies of all

reaction steps. (Note: Stationary-state approximation not needed for
derivation!)

A typical photochemical reaction sequence (different notation!):
Kige + Koh + *kaCy

g \

hv
A1ﬂ 1 1" S1(A) 1 > T4(A)
Kic + 'Kit "KqCq l Kisc
1k 13k
r r

B C




Kinetic and thermodynamic isotope effects

K
Thermodynamic: HT +H,0 = H,+H;0 K=6.3

The heavy isotope prefers to be in the strong bond, because of the zero-point
vibrational energy.

Kinetic: maximal effect, when the bond to H/D/T is broken.

_hv h [k mm,

€y

=—_.|—, u= =m, if m >>m
2 4x\u 3 m, + m, ‘ : ‘

&H) 5 &H) 3
£,(D) V2 £,(T) 3

£ (H) - &, (D) = h—"z"H(l- 1/42) ~ 0.15hv,

For Vu=3000cm™, T~ 300 K: k,/k, ~ 7 (£2) primary isotope effect
When H/D are only “spectators”: k,,/ky ~ 1 (+0.2) secondary isotope effect




Summary

measurement:
data set A(t, A)

change /
/ conditions
invent a model Ieast squares
(mechanism) flthng to data

a ﬂ

write the differential » | (numerical) integration:
rate laws dA/dt = rate laws A(t,A) = f(k)




Exercises

Express the equilibrium concentrations of A and B in a reversible 15t-order reaction in terms of the
rates constants k; and k, and c,,.

Explain why the hypothetical cyclopropanone reaction intermediate 4 is not observed in the
photo-Favorskii rearrangement.

The chemical yield of B in a photoreaction is 100%, yet the quantum yield of formation of B may
be <1. Explain.

Express the quantum yields of formation of products B and C as a function of the reaction rate
constants shown in the Scheme on the slide “quantum vyields”.

The equilibrium constant of the Diels—Alder reaction of anthracene (A) with a diene (D) in hexane
is K2(298 K) = 2. The decrease of the initial concentration of A, ¢,(t=0)=1x10% M, inalM
solution of D is measured by the UV-absorption of A. It obeys a first-order rate law, k.. = 0.01 s™1.

a) How big is the end concentration of A, c,(t = inf)?
b) How big is the second-order rate constant %k of the Diels-Alder reaction?
c) Give the integrated first-order rate law for the decrease of A.

d) How big is the first-order rate for the dissociation of the Diels—Alder adduct DA?
Compound A, is formed by the following reaction mechanism:

Ky k K,

. e ey ey A1 AQ & ' A3 l . A . . .
With the initial conditions Cl(ﬁ%‘l: 1 M, ’c,(0) =c5(0)=¢c,(0) =0 I\/f, one observes the following kinetics
for the formation of A;: ¢,(t) = {1-exp(—k,,t)} M, where k_, . =1 s
a) Draw a qualitative concentration diagram c,(t). Both axes must be labelled correctly.

b) Give a combination of boundary conditions for the rate constants k; .. k,, for which the observed,
simple rate law would hold [e.g., k; >> k,, etc.].

c) Indicate, how k,, . depends on the microscopic rate constants [e.g., k... = k,/k,] for the boundary
conditions given under b).



6)

7)

Exercises

The mechanism for the substitution of fluorine in 2,6-dinitrofluorbenzene (E) by dimethylamine (B)
is shown in the following scheme. The concentrations of the intermediates Z and Z' is very small at
all times. Dimethylamine B is used in great excess (cg = const.)

+ N,
F —\NH F N
O:N NO, : ko ON NO, B O:N NO,
+ N ‘K_I +HF
E B Z et k4/4 P
/

N F

O,N NO, H,
N +
+ N
a) Give a differential equation for the concentration change of intermediaieig, dc,/dt.

b) The decrease of compound E obeys a first-order rate law, cg(t) = cE(O)exﬁ('—kobst). Give a relation
between k_, . and microscopic rate constants k; shown in the scheme.

Oxygen radicals O- are mixed with chlorine gas in a stopped-flow apparatus. The reaction Cl, + O-->
ClO + Cl- is second order (first order in each component). The concentration of O- was measured at
various distances from the mixing point:

The initial concentration of Cl, is 2.54 x 10" M and
remains essentially constant after mixing of the

distance /m  [c0/M \w after mixing amounts to 6.6 m s71.
(jo.00 3.30000 x 10 "° f the reaction.
0.02 212107 = 107"
0.05 1.09190 x 107"
0.10 3.61289 x 107"
0.15 1.19543 x 107"
0.25 1.30878 x 1072
0.30 4.33048 x 107"




10) Consider three limiting cases for the reaction shown below:

a)  The Bodenstein-approximation holds for B (dcg/df = 0), but B is not in a
rapid pre-equilibrium with A,

b) B isin rapid pre-equilibrium with A, but the Bodenstein-approximation does
not hold, and

c)  both conditions (Bodenstein-approximation und and rapid pre-equilibrium)

hold.
E
Kk, k,
A —_— —’C
-1
| [ | y - .
A B C reaction coordinate !

Sketch three energy diagrams (as indicated on the right) for the three limiting cases and
state, which conditions the three rate constants must obey in each case.



11) The photoreaction of benzophenone (B) in the presence of benzhydrole (BH) gives
benzpinakole (P). The electronically excited triplet state of benzophenone (3B*) 1s
formed very rapidly (< 50 ps) and quantitativel;/ after excitation of B. The decay of B
obeys a first-order rate law, because [BH] >> ['B*], i.e., [BH] = const. The lifetime of
B is 1.0 us in a degassed solution with [BH] = 0.1 mol dm ~. Saturation of the solution
with air reduces the lifetime of *B* to 200 ns. The oxygen concentration in air-saturated
solution is [O,] =2 x 10~ mol dm.

0 1% Kky[BH]

Ph)kPh -2

(Ph),CHOH

3B*

— @ (Ph),C(OH)-C(OH)(Ph)

P

a) Calculate the second-order rate constants Ay und &, (hint: Consider only the

reactions starting from 3B"‘)
b) By which factor is the quantum yield of P reduced, when the degassed solution is

saturated with air?



