Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 836537, 6 pages http://dx.doi.org/10.1155/2013/836537 Research Article Nonlinear Dynamics in the Solow Model with Bounded Population Growth and Time-to-Build Technology Luca Guerrini1 and Mauro Sodini2 1 Department of Management, Polytechnic University of Marche, Piazza Martelli 8, 60121 Ancona, Italy 2 Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi 10, 56124 Pisa, Italy Correspondence should be addressed to Luca Guerrini; luca.guerrini@univpm.it Received 5 September 2013; Accepted 15 October 2013 Academic Editor: Carlo Bianca Copyright Β© 2013 L. Guerrini and M. Sodini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of this paper is to show that the Solow model equipped by realistic assumptions on technology and population dynamics is capable of explaining a well-known stylised fact of growth, that is, the presence of persistent oscillations of demoeconomic variables. In particular, our analysis shows that the coexistence of delays between (i) new investment and production and (ii) the birth date and the recruitment in the labour force is a source of cyclical behaviour in capital accumulation. 1. Introduction Following a long tradition, the theory of economic growth is nevertheless mostly concerned with constant population growth rates. There are only a few theoretical papers that consider more complex and realistic assumption on population dynamics. For example, Guerrini [1] generalizes the result of existence and global stability of the (stationary) equilibrium in the Solow model by assuming a bounded, but not necessarily constant, population growth rate; Fanti and Manfredi [2] show in a Solow-type model that the existence of distributed delays (age structure) that influence the labour force and a Malthusian mechanism that relates fertility and wage rates are sources of fluctuations in growth paths; and Fabi˜ao and Borges [3] study the effects of fluctuating population size on capital accumulation. Other cases of nontrivial population dynamics may be observed in models where agents allocate their resources between childbearing and consumption (e.g., [4–6]). The idea of the present paper is to study a Solowtype model in which one of the main characteristics is the introduction of reproductive mechanism that prevents unbounded population growth in the long run. In particular, we assume that (i) population dynamics is described by a delayed logistic equation [7], which presents a constant carrying capacity and (ii) a time-to-build technology characterizes the productive sector. Namely, we introduce two different sources of time-delays: with regard to the first assumption, it implies that there exists a lag between the birth date and the recruitment in the labour force; with regard to the second one, it means that production occurs with a delay while new capital is installed (investment gestation lag). Both processes affect the capital accumulation path by means of production function. It is interesting to notice that the theoretical question whether lags in productive activity induce cycles is a topic that dates back to early economists such as Jevons [8] and Kalecki [9], and the introduction of new mathematical tools for the study of functional differential equations (e.g., the influential book of Hassard et al. [10]) has revitalized this issue. Nonetheless, the large part of the literature is focused on investment lags (e.g., [11–14]), and the role of other kinds of lags in economic growth models or the linkages between population dynamics and lags in productive sector has received little attention. Exceptions are the papers of Fanti and Manfredi [2] described before; Bianca and Guerrini [15], who embed the problem of population dynamics in a network structure; Fanti et al. [16] who study problems related to demographic transition and the emergence of low-fertility traps in a model in which a system of differential equations with distributed delays is introduced to describe the age distribution of the population; Guerrini and Sodini [17] who 2 Abstract and Applied Analysis analyze the role of the assumption of a positive or a negative constant population growth rate in a model with a time-tobuild technology; and Ballestra et al. [18] who consider a Kaleckian type model of business cycle where a negative effect of the capital stock increases disproportionally as the capital stock builds up. In the present paper, two alternative hypotheses on capital depreciation are explored. In the first hypothesis, it is assumed that the productive capital (i.e., the capital that actually is used in the productive process) depreciates at a constant rate (e.g., [11]). In the second one, it the case in which depreciation affects directly the investments even if they have not yet created productive capital is explored. The second case represents a plausible assumption if we consider capital in a broad sense that includes intangible capitals such as new inventions, prototypes, and patents. It is worth noting that, differently by Hongliang and Wenzao [19], business cycles phenomena may be observed even in the second case. The paper is organised as follows. In Section 2, the models are formally introduced. Section 3 is focused on the study of the first model specification. In Section 4, the second model is analyzed. In Section 5, the global properties of the models are investigated via numerical simulations. Section 5 concludes. 2. The Models 2.1. First Specification. We introduce a Solow [20] model with the following characteristics. We assume that at time 𝑑 identical and competitive firms produce a homogeneous good, π‘Œ, by combining capital and labour 𝐾 and 𝐿, respectively, through the constant returns to scale Cobb-Douglas technology. New investments display a delay of period 𝜏 before they can be used for production (time-to-build technology). Thus, the evolution of capital accumulation is governed by the following equation: ̇𝐾 = 𝑠𝐴𝐾 𝛼 𝑑 𝐿1βˆ’π›Ό βˆ’ 𝛿𝐾 𝑑, (1) where 𝐴 is a positive parameter representing (exogenous) technological progress, 𝛼 ∈ (0, 1) measures the productivity of capital, 𝑠 ∈ (0, 1) is the exogenous constant saving rate, 𝐾 𝑑 := 𝐾(𝑑 βˆ’ 𝜏) is the state value of 𝐾 at time 𝑑 βˆ’ 𝜏, and 𝛿 is the constant rate of productive capital depreciation (in this specification, obsolescence only affects capital if and only if this last is used in a productive process). We assume that population of workers evolves according to the delayed logistic equation introduced by Hutchinson (see Arino et al. [21] for an alternative formulation): ̇𝐿 = 𝐿 (π‘Ž βˆ’ 𝑏𝐿 𝑑) , (2) where 𝐷 = π‘Ž/𝑏 is the constant carrying capacity and 𝐿 𝑑 := 𝐿(𝑑 βˆ’ 𝜏) is the state value of 𝐿 at time 𝑑 βˆ’ 𝜏. Notice that the presence of the delayed variable 𝐿 𝑑 captures the lag between the birth date and the recruitment in the labour force while 𝐷 defines a limit to population growth. Other specifications (see [16]) that use delayed differential equations are mostly concerned with the description agespecific fertility and mortality rates. Setting π‘˜ = 𝐾/𝐿, we have Μ‡π‘˜ = ̇𝐾 𝐿 βˆ’ ̇𝐿 𝐿 π‘˜ = 𝑠 (𝐴𝐾 𝛼 𝑑 𝐿1βˆ’π›Ό ) βˆ’ 𝛿𝐾 𝑑 𝐿 βˆ’ ̇𝐿 𝐿 π‘˜ = 𝑠𝐴(πΏβˆ’1 𝐿 𝑑) 𝛼 π‘˜ 𝛼 𝑑 βˆ’ 𝛿 (πΏβˆ’1 𝐿 𝑑) π‘˜ 𝑑 βˆ’ ̇𝐿 𝐿 π‘˜. (3) Hence, the model is described by Μ‡π‘˜ = [𝑠𝐴(πΏβˆ’1 𝐿 𝑑) 𝛼 ] π‘˜ 𝛼 𝑑 βˆ’ [𝛿 (πΏβˆ’1 𝐿 𝑑)] π‘˜ 𝑑 βˆ’ (π‘Ž βˆ’ 𝑏𝐿 𝑑) π‘˜, ̇𝐿 = 𝐿 (π‘Ž βˆ’ 𝑏𝐿 𝑑) . (4) 2.2. Second Specification. The second model differs from the first one in the fact that obsolescence affects capital regardless of its utilization in the productive process. Thus, (4) is replaced by the following: ̇𝐾 = 𝑠𝐴𝐾 𝛼 𝑑 𝐿1βˆ’π›Ό βˆ’ 𝛿𝐾. (5) Setting π‘˜ = 𝐾/𝐿, we obtain Μ‡π‘˜ = ̇𝐾 𝐿 βˆ’ ̇𝐿 𝐿 π‘˜ = 𝑠 (𝐴𝐾 𝛼 𝑑 𝐿1βˆ’π›Ό ) βˆ’ 𝛿𝐾 𝐿 βˆ’ ̇𝐿 𝐿 π‘˜ = 𝑠𝐴(πΏβˆ’1 𝐿 𝑑) 𝛼 π‘˜ 𝛼 𝑑 βˆ’ π›Ώπ‘˜ βˆ’ ̇𝐿 𝐿 π‘˜. (6) As a result, the model is now represented by Μ‡π‘˜ = [𝑠𝐴(πΏβˆ’1 𝐿 𝑑) 𝛼 ] π‘˜ 𝛼 𝑑 βˆ’ [𝛿 + (π‘Ž βˆ’ 𝑏𝐿 𝑑)] π‘˜, ̇𝐿 = 𝐿 (π‘Ž βˆ’ 𝑏𝐿 𝑑) . (7) It is simple to verify that systems (4) and (7) have the same (nontrivial) equilibria. By setting Μ‡π‘˜ = 0 and π‘˜ 𝑑 = π‘˜ = π‘˜βˆ—, ̇𝐿 = 0, and 𝐿 𝑑 = 𝐿 = πΏβˆ— for all 𝑑, we find that there exists a unique nontrivial equilibrium (π‘˜βˆ—, πΏβˆ—), where π‘˜βˆ— = ( 𝑠𝐴 𝛿 ) 1/(1βˆ’π›Ό) , πΏβˆ— = π‘Ž 𝑏 . (8) Notice that because the population dynamics is bounded from above and the level of technological progress is fixed, in the present work, differently from Guerrini and Sodini [17], a balanced growth path is not a feasible solution and (π‘˜βˆ—, πΏβˆ—) identifies the stationary solution of the model, for which 𝐾 = π‘˜βˆ— πΏβˆ—. 3. Local Analysis of System (4) In order to study the local properties of the system around nontrivial equilibrium, we linearize system (4) at (π‘˜βˆ—, πΏβˆ—). This gives [ Μ‡π‘˜ ̇𝐿 ] = [ 0 π›ΏπΏβˆ’1 βˆ— (βˆ’π›ΌπΏβˆ’1 βˆ— + π‘˜βˆ—) 0 0 ] [ π‘˜ βˆ’ π‘˜βˆ— 𝐿 βˆ’ πΏβˆ— ] + [ (𝛼 βˆ’ 1) 𝛿 (𝛼 βˆ’ 1) π›ΏπΏβˆ’1 βˆ— π‘˜βˆ— + π‘π‘˜βˆ— 0 βˆ’π‘πΏβˆ— ] [ π‘˜ 𝑑 βˆ’ π‘˜βˆ— 𝐿 𝑑 βˆ’ πΏβˆ— ] . (9) Abstract and Applied Analysis 3 The characteristic equation can be derived from det {[ 0 π›ΏπΏβˆ’1 βˆ— π‘˜βˆ— (βˆ’π›ΌπΏβˆ’1 βˆ— + 1) 0 0 ] βˆ’ πœ†πΌ +π‘’βˆ’πœ†πœ [ (𝛼 βˆ’ 1) 𝛿 (𝛼 βˆ’ 1) π›ΏπΏβˆ’1 βˆ— π‘˜βˆ— + π‘π‘˜βˆ— 0 βˆ’π‘πΏβˆ— ]} = 0, (10) where 𝐼 is the identity matrix. A direct calculation shows that the above equation can be rewritten as 𝑃 (πœ†, 𝜏) = 𝑃1 (πœ†, 𝜏) β‹… 𝑃2 (πœ†, 𝜏) = 0, (11) where 𝑃1 (πœ†, 𝜏) = πœ† + (1 βˆ’ 𝛼) π›Ώπ‘’βˆ’πœ†πœ , 𝑃2 (πœ†, 𝜏) = πœ† + π‘Žπ‘’βˆ’πœ†πœ . (12) By putting 𝜏 = 0 in (11), we obtain [πœ† + (1 βˆ’ 𝛼)𝛿](πœ† + π‘Ž) = 0. We derive that the two roots of this equation are negative. Hence, the equilibrium (π‘˜βˆ—, πΏβˆ—) is stable in case there is no delay. As 𝜏 increases, the stability of the equilibrium point will change when (11) under consideration has zero or a pair of purely imaginary eigenvalues. The former occurs when πœ† = 0, and this is not possible. The latter deals with the existence of a root πœ† = π‘–πœ” for (11). This means we need to investigate when 𝑃1(π‘–πœ”, 𝜏) = 0 and/or 𝑃2(π‘–πœ”, 𝜏) = 0. Without loss of generality, since the complex roots of (11) appear as complex conjugate pairs, we assume that πœ” > 0. Lemma 1. Equation 𝑃1(πœ†, 𝜏) = 0 (resp., 𝑃2(πœ†, 𝜏) = 0) with 𝜏 = 𝜏(1) 𝑗 (resp., 𝜏 = 𝜏(2) 𝑗 ), 𝑗 ∈ N0 = N βˆͺ {0}, has a pair of purely imaginary roots πœ† = Β±π‘–πœ”1 (resp., πœ† = Β±π‘–πœ”2), where πœ”1 = (1 βˆ’ 𝛼) 𝛿 (resp. πœ”2 = π‘Ž) , 𝜏(1) 𝑗 = 1 πœ”1 ( πœ‹ 2 + 2π‘—πœ‹) (resp. 𝜏(2) 𝑗 = 1 πœ”2 ( πœ‹ 2 + 2π‘—πœ‹)) . (13) Proof. Consider 𝑃1(π‘–πœ”, 𝜏) = 0; that is, π‘–πœ” + (1 βˆ’ 𝛼)π›Ώπ‘’βˆ’π‘–πœ”πœ = 0. Separating real and imaginary parts of this equation, we obtain πœ” = (1 βˆ’ 𝛼) 𝛿 sin πœ”πœ, 0 = (1 βˆ’ 𝛼) 𝛿 cos πœ”πœ. (14) From cos πœ”πœ = 0 in (14), and πœ” and (1 βˆ’ 𝛼)𝛿 being both positive, it follows that πœ”πœ = πœ‹/2 + 2π‘—πœ‹ (𝑗 = 0, 1, 2, . . .) and πœ” = (1 βˆ’ 𝛼)𝛿. We also obtain a sequence of the critical values 𝜏(1) 𝑗 of 𝜏. Next, suppose 𝑃2(π‘–πœ”, 𝜏) = 0; that is, π‘–πœ” + π‘Žπ‘’βˆ’π‘–πœ”πœ = 0. Then πœ” = π‘Ž sin πœ”πœ, 0 = π‘Ž cos πœ”πœ, (15) which lead to πœ” = π‘Ž and the existence of 𝜏(2) 𝑗 . This concludes the proof. We easily obtain the following result. Proposition 2. (1) If π‘Ž ΜΈ= (1βˆ’ 𝛼)𝛿, then characteristic equation (11) has a pair of purely imaginary roots πœ† = Β±π‘–πœ” π‘š at 𝜏 = 𝜏(π‘š) 𝑗 , π‘š = 1, 2, 𝑗 ∈ N0 . (2) If π‘Ž = (1 βˆ’ 𝛼)𝛿, then characteristic equation (11) has a multiple root with the multiplicity of two. Remark 3. When π‘Ž = (1 βˆ’ 𝛼)𝛿, the system (4) is a degenerated case and it is difficult to determine the crossing direction of the characteristic roots through the imaginary axis. Moreover, the criteria of stability switches fail to analyze the stability switches of system (4). Henceforth, we assume π‘Ž ΜΈ= (1 βˆ’ 𝛼)𝛿, so that (11) has no repeated roots. Lemma 4. For 𝜏 = 𝜏 π‘š 𝑗 , 𝑗 ∈ N0 , Β±π‘–πœ” π‘š, π‘š = 1, 2, are simple roots of (11) with 𝑑 (Re πœ†) π‘‘πœ 󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨 πœ†=π‘–πœ” π‘š > 0. (16) Proof. Both πœ† = π‘–πœ”1 and πœ† = π‘–πœ”2 are simple. If we suppose, by contradiction, that, for example, πœ† = π‘–πœ”1 is a repeated root, then 𝑃(π‘–πœ”1, 𝜏) = 0 and 𝑑𝑃(π‘–πœ”1, 𝜏)/π‘‘πœ† = 0 lead to a contradiction. Let πœ†(𝜏) = πœ‡(𝜏) + π‘–πœ”(𝜏) be the branch of characteristic roots of (11) such that πœ‡(𝜏(1) 𝑗 ) = 0 and πœ”(𝜏(1) 𝑗 ) = πœ”1 (𝑗 = 0, 1, 2, . . .). Taking the derivative of πœ† with respect to 𝜏 in (11), it follows that ( π‘‘πœ† π‘‘πœ ) βˆ’1 󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨 πœ†=π‘–πœ”1 = βˆ’ 1 πœ†2 βˆ’ 𝜏 πœ† . (17) Then, we get sign { 𝑑 (Re πœ†) π‘‘πœ 󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨 πœ†=π‘–πœ”1 } = sign {Re ( π‘‘πœ† π‘‘πœ ) βˆ’1 󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨 πœ†=π‘–πœ”1 } = sign {( π‘‘πœ† π‘‘πœ ) βˆ’1 󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨 πœ†=π‘–πœ”1 } = sign { 1 πœ”2 1 } . (18) Similarly for πœ† = π‘–πœ”2, the statement holds. Therefore, a pair of pure imaginary roots will cross the imaginary axis from left to right as 𝜏 increases. Furthermore, this also yields to the existence of a Hopf bifurcation at the equilibrium when 𝜏 = 𝜏 π‘š 𝑗 . Using this last lemma and the previous analysis about the existence of purely imaginary roots of (11), we can state the following theorem. Theorem 5. Let 𝜏(π‘š) 𝑗 , π‘š = 1, 2, 𝑗 ∈ N0 , be defined as in (13), and let 𝜏0 = min{𝜏(1) 0 , 𝜏(2) 0 }, where 𝜏(1) 0 = πœ‹/[(1 βˆ’ 𝛼)]𝛿, 𝜏(2) 0 = πœ‹/(2π‘Ž). (1) The equilibrium point (π‘˜βˆ—, πΏβˆ—) of (4) is locally asymptotically stable for 𝜏 ∈ [0, 𝜏0) and unstable for 𝜏 > 𝜏0. (2) System (4) undergoes a Hopf bifurcation at the equilibrium (π‘˜βˆ—, πΏβˆ—) when 𝜏 = 𝜏(π‘š) 𝑗 , π‘š = 1, 2, 𝑗 ∈ N0 . 4 Abstract and Applied Analysis 4. Local Analysis of System (7) In this section, we consider the model described by system (7). It is known that the modification of the Zak model [11] with the assumption that capital obsolescence affects the present capital makes the stationary equilibrium globally asymptotically stable for any value of time-delay (no Hopf bifurcation may occur) (see [19]). We will see that the introduction of population dynamics drastically changes the results. As in the previous model, in order to study the local dynamics, we linearize system (7) at (π‘˜βˆ—, πΏβˆ—). We have [ Μ‡π‘˜ ̇𝐿 ] = [ βˆ’π›Ώ βˆ’π›Όπ›ΏπΏβˆ’2 βˆ— π‘˜βˆ— 0 0 ] [ π‘˜ βˆ’ π‘˜βˆ— 𝐿 βˆ’ πΏβˆ— ] + [ 𝛼𝛿 π›Όπ›ΏπΏβˆ’1 βˆ— π‘˜βˆ— + π‘π‘˜βˆ— 0 βˆ’π‘πΏβˆ— ] [ π‘˜ 𝑑 βˆ’ π‘˜βˆ— 𝐿 𝑑 βˆ’ πΏβˆ— ] . (19) The associated characteristic equation of system (19) is det {[ βˆ’π›Ώ βˆ’π›Όπ›ΏπΏβˆ’2 βˆ— π‘˜βˆ— 0 0 ] βˆ’ πœ†πΌ +π‘’βˆ’πœ†πœ [ 𝛼𝛿 π›Όπ›ΏπΏβˆ’1 βˆ— π‘˜βˆ— + π‘π‘˜βˆ— 0 βˆ’π‘πΏβˆ— ]} = 0 (20) and takes the form 𝑄 (πœ†, 𝜏) = 𝑄1 (πœ†, 𝜏) β‹… 𝑄2 (πœ†, 𝜏) = 0, (21) where 𝑄1 (πœ†, 𝜏) = πœ† + 𝛿 βˆ’ π›Όπ›Ώπ‘’βˆ’πœ†πœ , 𝑄2 (πœ†, 𝜏) = πœ† + π‘Žπ‘’βˆ’πœ†πœ . (22) When 𝜏 = 0, all roots of (21) are negative, so that the system is stable. We will let 𝜏 vary and investigate possible stability switches and bifurcations. For (π‘˜βˆ—, πΏβˆ—) to become unstable, characteristic roots have to cross the imaginary axis to the right when 𝜏 increases. Let πœ† = π‘–πœ” (πœ” > 0) be a purely imaginary root of (21). Then, it satisfies 𝑄1(π‘–πœ”, 𝜏) = 0 and/or 𝑄2(π‘–πœ”, 𝜏) = 0. Let 𝑄1(π‘–πœ”, 𝜏) = 0. This can be rewritten as the following two equations: πœ” = βˆ’π›Όπ›Ώ sin πœ”πœ, 𝛿 = 𝛼𝛿 cos πœ”πœ, (23) which imply πœ”2 = (𝛼2 βˆ’ 1) 𝛿2 < 0. (24) Therefore, 𝑄1(πœ†, 𝜏) has no purely imaginary roots. Noticing that 𝑄2(πœ†, 𝜏) = 𝑃2(πœ†, 𝜏), with 𝑃2(πœ†, 𝜏) defined as in (12), it follows that 𝑄2(πœ†, 𝜏) has a unique pair of simple purely imaginary roots Β±π‘–πœ”2 at a sequence of critical values 𝜏(2) 𝑗 , where πœ”2 and 𝜏(2) 𝑗 are defined by (13). Let πœ†(𝜏) = πœ‡(𝜏) + π‘–πœ”(𝜏) denote the roots of (21) near 𝜏 = 𝜏(2) 𝑗 satisfying πœ‡(𝜏(2) 𝑗 ) = 0 and πœ”(𝜏(2) 𝑗 ) = πœ”2 (𝑗 ∈ N0 ). Then, the following transversality condition 𝑑[Re πœ†(𝜏(2) 𝑗 )]/π‘‘πœ > 0 holds and so the root crosses the imaginary axis from left to right (at 𝜏 = 𝜏(2) 𝑗 ) as 𝜏 increases. Since (π‘˜βˆ—, πΏβˆ—) is locally asymptotically stable when 𝜏 = 0, then it becomes unstable at the smallest value of 𝜏 for which an imaginary root exists. Thus, we can get the following results. Theorem 6. Let 𝜏(2) 𝑗 , 𝑗 ∈ N0 , be defined as in (13), where 𝜏(2) 0 = πœ‹/(2π‘Ž). (1) The equilibrium point (π‘˜βˆ—, πΏβˆ—) of (7) is locally asymptotically stable for 𝜏 ∈ [0, 𝜏(2) 0 ) and unstable for 𝜏 > 𝜏(2) 0 . (2) System (7) undergoes a Hopf bifurcation at the equilibrium (π‘˜βˆ—, πΏβˆ—) when 𝜏 = 𝜏(2) 𝑗 for 𝑗 ∈ N0 . Remark 7. Notice that bifurcation value of both the models is the same if 𝛼 > 𝛿/(2 + 𝛿). 5. Numerical Simulations In order to understand the dynamical properties of the model, we consider a numerical specification and let 𝜏 vary. In particular, we set 𝐴 = 1; 𝛿 = 0.09; 𝛼 = 0.43; π‘Ž = 0.6; 𝑏 = 0.4; 𝑠 = 0.8. (25) For this parameter specification (π‘˜βˆ— , πΏβˆ— ) = (1.5, 46.2) and from Theorem 5, we have 𝜏1 < 𝜏0. Thus, the bifurcation values for the two models are the same and we have verified by means of several numerical experiments that the associated dynamics look very similar. Therefore, we focus on the simulations for model 1. Figure 1 shows the evolution of long run dynamics when 𝜏 is varied. It is interesting to note that after bifurcation, differently from Guerrini and Sodini [17], both the state variables oscillate permanently along the unstable equilibrium. If 𝜏 is increased, the enlargement of the limit cycle induces larger and larger oscillations. However, by means of several numerical experiments, it seems that only nonchaotic dynamics arise. 6. Conclusions In this paper, we have analyzed the dynamics in Solow-type model with investment lags and nonstationary but bounded population. We have shown that the interaction between the population dynamics and time-to-build technology may be an engine of cyclical behaviour of capital accumulation. Formally, by applying the techniques developed by Hassard et al. [10] for delayed differential equations, we have proved that a Hopf bifurcation occurs once lag 𝜏 passes through a critical value and a family of periodic orbits bifurcates from the stationary equilibrium. Numerical simulations confirm the existence of oscillating dynamics in the demoeconomic variables. More complex structures of time-delays and microeconomic foundation of the model are left for future research. Abstract and Applied Analysis 5 46.9 46.8 46.7 46.6 46.5 46.4 46.3 46.2 46.1 0 50 100 150 200 250 t k(t) (a) 1.515 1.51 1.505 1.5 1.495 1.49 L(t) 0 50 100 150 200 250 t (b) 500 450 400 350 300 250 200 150 100 50 0 0 50 100 150 200 250 t k(t) (c) 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0 50 100 150 200 250 t L(t) (d) Figure 1: (a) Time evolution of size capital per worker (𝜏 = 2.3); (b) time evolution of population (𝜏 = 2.3); (c) time evolution of capital per worker (𝜏 = 3.3); and (d) time evolution of population (𝜏 = 3.3). Acknowledgment The authors would like to thank the referees for the careful review and the valuable comments. Mauro Sodini acknowledges that this work has been performed within the activity of the PRIN Project β€œLocal Interactions and Global Dynamics in Economics and Finance: Models and Tools,” MIUR, Italy. References [1] L. Guerrini, β€œThe Solow-Swan model with a bounded population growth rate,” Journal of Mathematical Economics, vol. 42, no. 1, pp. 14–21, 2006. [2] L. Fanti and P. Manfredi, β€œThe Solow’s model with endogenous population: a neoclassical growth cycle model,” Journal of Economic Development, vol. 28, no. 2, pp. 103–115, 2003. [3] F. Fabi˜ao and M. J. Borges, β€œExistence of periodic solutions for a modified growth solow model,” in Proceedings of the 36th International Conference β€œApplications of Mathematics in Engineering and Economics” (AMEE ’10), pp. 97–106, June 2010. [4] J. Benhabib and K. Nishimura, β€œEndogenous fluctuations in the Barro-Becker theory of fertility,” in DemographicChange and Economic Development, A. Wenig and K. F. Zimmermann, Eds., pp. 29–41, Springer, Berlin, Germany, 1989. [5] R. H. Day, K. Kim, and D. Macunovich, β€œComplex demoeconomic dynamics,” Journal of Population Economics, vol. 2, no. 2, pp. 139–159, 1989. [6] G. Feichtinger and E. J. Dockner, β€œCapital accumulation, endogenous population growth, and Easterlin cycles,” Journal of Population Economics, vol. 3, no. 2, pp. 73–87, 1990. [7] G. E. Hutchinson, β€œCircular causal systems in ecology,” Annals of the New York Academy of Sciences, vol. 50, no. 4, pp. 221–246, 1948. [8] W. S. Jevons, 1911, The theory of Political Economy, 4th Ed. First published in 1871, Second, enlarged Edition in 1879, Macmillan, London, UK, 1871. 6 Abstract and Applied Analysis [9] M. Kalecki, β€œA macroeconomic theory of business cycles,” Econometrica, vol. 3, no. 3, pp. 327–344, 1935. [10] B. Hassard, D. Kazarino, and Y. Wan, Theory and Application of Hopf Bifurcation, Cambridge University Press, Cambridge, UK, 1981. [11] P. J. Zak, β€œKaleckian lags in general equilibrium,” Review of Political Economy, vol. 11, pp. 321–330, 1999. [12] P. K. Asea and P. J. Zak, β€œTime-to-build and cycles,” Journal of Economic Dynamics and Control, vol. 23, no. 8, pp. 1155–1175, 1999. [13] A. Krawiec and M. SzydΕ‚owski, β€œA note on Kaleckian lags in the Solow model,” Review of Political Economy, vol. 16, no. 4, pp. 501–506, 2004. [14] M. SzydΕ‚owski, β€œTime to build in dynamics of economic models II: models of economic growth,” Chaos, Solitons and Fractals, vol. 18, no. 2, pp. 355–364, 2003. [15] C. Bianca and L. Guerrini, β€œOn the Dalgaard-Strulik model with logistic population growth rate and delayed-carrying capacity,” Acta Applicandae Mathematicae, 2013. [16] L. Fanti, M. Iannelli, and P. Manfredi, β€œNeoclassical growth with endogenous age distribution. Poverty vs low-fertility traps as steady states of demographic transitions,” Journal of Population Economics, vol. 26, no. 4, pp. 1457–1484, 2013. [17] L. Guerrini and M. Sodini, β€œDynamic properties of the Solow model with increasing or decreasing population and time-tobuild technology,” Abstract and Applied Analysis, 2013. [18] L. V. Ballestra, L. Guerrini, and G. Pacelli, β€œStability switches and Hopf bifurcation in a Kaleckian model of business cycle,” Abstract and Applied Analysis, vol. 2013, Article ID 689372, 8 pages, 2013. [19] Z. Hongliang and H. Wenzao, β€œInada conditions and global dynamic analysis of basic growth models with time delays,” in Stochastic Economic Dynamics, B. S. Jensen and T. Palokangas, Eds., pp. 229–246, Copenhagen Business School Press, Copenhagen, Denmark, 2007. [20] R. M. Solow, β€œA contribution to the theory of economic growth,” Quarterly Journal of Economics, vol. 70, pp. 65–94, 1956. [21] J. Arino, L. Wang, and G. S. K. Wolkowicz, β€œAn alternative formulation for a delayed logistic equation,” Journal of Theoretical Biology, vol. 241, no. 1, pp. 109–119, 2006. Submit your manuscripts at http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Mathematics Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Mathematical Problems in Engineering Hindawi Publishing Corporation http://www.hindawi.com Differential Equations International Journal of Volume 2014 Applied Mathematics Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Probability and Statistics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Mathematical Physics Advances in Complex Analysis Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Optimization Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 CombinatoricsHindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Operations Research Advances in Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Function Spaces Abstract and Applied Analysis Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Mathematics and Mathematical Sciences Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Algebra Discrete Dynamics in Nature and Society Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Decision Sciences Advances in DiscreteMathematics Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Stochastic Analysis International Journal of