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1. Introduction

The availability of landslide hazard and risk maps is essential to
identify the potential areas of landslide losses and to minimise
their societal impact. One of the first steps in this direction is the
preparation of a landslide susceptibility map, indicating the relative
susceptibility of the terrain for the occurrence of landslides. When
combined with temporal information, this can be converted into a
landslide hazard map, which can be used in combination with ele-
ments at risk information for estimating potential losses due to land-
slides, and aid long-term landslide risk management in mountainous
areas.

A landslide inventory is the basis for any landslide hazard and risk as-
sessment (Carrara and Merenda, 1976; Guzzetti et al., 2000; Brardinoni
et al., 2003). A typical landslide inventory map gives information about
the type, volume,magnitude, date and place of occurrence. Landslide in-
ventories can be used for the calculation of weights of the pre-disposing
factor maps during landslide susceptibility mapping as well as for per-
formance and reliability analysis in prediction modelling (Carrara and
Merenda, 1976; Guzzetti et al., 2000; Brardinoni et al., 2003) and in
magnitude and frequency analysis for the hazard mapping. However,
preparation of landslide inventories by manual methods is a substan-
tial challenge, as it requires time and a team of experienced people.
According to an estimate by Galli et al. (2008), preparation of a landslide
inventory required is on average one month per interpreter to cover a
100 km2 area in the Umbria region of Italy. Alternatively, landslide in-
ventories can be prepared through automatic methods by incorporating
expert knowledge in image analysis (Barlow et al., 2006; Moine et al.,
2009; Martha et al., 2010).

Preparation of semi-automatic landslide inventories can be fast, un-
biased and data driven in comparison to manual methods. Particularly
with object-oriented analysis (OOA), the outputs are also visually con-
sistent. Recently, Martha et al. (2010) updated landslide diagnostic fea-
tures using high resolution satellite data and a digital elevation model
(DEM), and synthesised them using OOA for landslide detection. They
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not only detected landslides accurately but also classified them into
translational rock slide, rotational rock slide, shallow translational
rock slide, debris flow and debris slide using a semi-automatic meth-
od (Martha et al., 2010, 2011). Recent literatures show that many at-
tempts have been made around the globe to prepare landslide
hazard maps using manually identified landslides (van Westen et
al., 2003; Guzzetti et al., 2005; Pradhan, 2010). Several attempts
were made for automatic detection of landslides (Nichol and Wong,
2005; Rosin and Hervas, 2005; Barlow et al., 2006; Borghuis et al.,
2007; Martha et al., 2010; Lu et al., 2011). Although it is implicit that
the semi-automatic detection of landslides has great potential for
short-term goals such as damage assessment after a disaster, evaluation
of the applicability of using semi-automatic detection to achieve
long-term goals, such as hazard and risk assessment, is worth doing.
This research aims to investigate the potential of semi-automatically
detected landslides for the preparation of landslide susceptibility and
hazard map using statistical methods, which could not be achieved so
far in many developing countries due to lack of systematic landslide
inventories.

The objective of this paper is to use the multi-temporal landslide
inventories, created using OOA, in assessing landslide susceptibility,
hazard and risk. In our previous studies (Martha et al., 2010, 2011),
we have used time-series images from high-resolution Cartosat-1
(2.5 m), Resourcesat-1 LISS IV Mx (5.8 m) and IRS-1D panchromatic
(5.8 m) sensors and prepared landslide inventories for a 13 year pe-
riod (1997–2009). These multi-temporal inventories in combination
with historical daily rainfall data for the same period were used to es-
timate the spatial and temporal probabilities for hazard assessment.
The hazard map was then integrated with data for elements at risk
prepared from a high resolution Cartosat-1 image to assess the land-
slide risk.

2. Materials and methods

2.1. Study area

Countries in the Himalayan region, which is a global hotspot for land-
slide hazards, frequently face the dangerous outfall of landslides (Nadim
et al., 2006). About half a million km2, i.e. 15% of India's land area is sus-
ceptible to landslide hazard. Out of this, 0.098 million km2 is located in
the northeastern region, while the remaining 80% is spread over the
Himalayas, Nilgiris, Ranchi Plateau, and Eastern and Western Ghats (GSI,
2006). An area covering 81 km2 around Okhimath in the Rudraprayag
district of Uttarakhand State, including the Garhwal Himalayas along
the Rishikesh–Kedarnath tourist and pilgrimage route, was selected for
hazard and risk mapping (Fig. 1).

The presence of landslides of different sizes and different types,
such as rock slides (rotational and translational), debris slides and de-
bris flows offers a good opportunity to test automatic landslide detec-
tion techniques for landslide inventory preparation, and the effect of
these inventories on subsequent landslide susceptibility and hazard
mapping. Okhimath is situated at an average elevation of 1300 m
on the confluence of the Mandakini (originating from Kedarnath)
and Madhyamaheshwar rivers. Two major rainfall events, the down-
pours on 9, 12, 17 and 19 August 1998, and the cloud burst on 16 July
2001 in this area, triggered 466 and 200 landslides, and claimed 103
and 27 lives, respectively (Naithani, 2001; Naithani et al., 2002). Un-
fortunately, no maps are available showing the spatial distribution of
these landslides, and of the damage caused.

2.2. Data

Both multispectral and panchromatic data (Table 1) were used
to prepare annual landslide inventories from 1997 to 2009 by OOA.
The data sources used for the preparation of evidence layers, which
were considered as the most important contributing factors for the
occurrence of landslides in the Himalayas, are provided in Table 2.
The available geological map prepared by the Geological Survey of
India on 1:250,000 scale (Rawat and Rawat, 1998) was used to refine
the boundary between different rock types using a break-in-slope
criteria (Fig. 2a). This area is traversed by two major thrusts, namely
the Main Central Thrust (MCT-II) that passes just south of Okhimath,
and the Vaikrita Thrust (also known as MCT-I) that passes north of
Okhimath (Fig. 2a). The MCT is a nearly 10 km wide shear zone, in-
clined at 20° to 45° northward. Foliations dip at moderate angles in
NE to NNW directions (Naithani, 2001; Naithani et al., 2002). While
thrusts and faults were derived from the available geological map,
lineaments were interpreted from LISS-IV Mx and hillshade images
(Fig. 2a). Finally, linear geological structures (lineaments, faults and
thrusts) were converted to a polygon layer using a variable buffer
criterion, since a lineament has a very narrow zone of influence on
the strength of the rock in comparison to a thrust, which has larger
zone of influence.

The slope angle derived from a 10 m DEM extracted from the
stereoscopic Cartosat-1 data, was classified into 10 classes using a
quantile classification system. Slope aspects have a significant role
for the occurrence of landslides in the Himalayas. South facing slopes
support more anthropogenic activities in comparison to other slope
directions due to maximum availability of sunlight in a day, leading
to the destabilisation of slopes. Therefore, slope aspects derived
from the DEMwere used for the creation of susceptibility map. Rela-
tive relief is another important parameter for the initiation of land-
slides. It was derived from the DEM using the zonal statistics tool
of ArcGIS, wherein slope facets were used as zones (Fig. 2b). Slope
facets or terrain units, which have more or less similar characters
of slope showing consistent slope direction and inclination, and are
generally delimited by ridges, spurs and gullies (Anbalagan, 1992),
were prepared manually with the help of the hillshade, slope angle
and aspect maps.

The landslides in this area are mainly due to excessive rainfall and
less related to the change in land use/cover (Naithani, 2001). As land
use has not changed a lot over the period of study, we selected the
first available multispectral image in the observation period, i.e. a
LISS-IV Mx image of 2004, to prepare the land use/cover map of
this area (Fig. 2c). The soil in this area is mostly transported and
composed of sub-angular rock fragments with a high proportion of
sandy to sandy–silty matrix (Naithani, 2001; Naithani et al., 2002).
Soil depth, which is an important parameter for the creation of land-
slide susceptibility map, was prepared using an available soil map
(Fig. 2d) (Atlas, 2001).

2.3. Methodology

The methodology adopted in this chapter for landslide susceptibil-
ity, hazard and risk assessment is briefly explained in Fig. 3. The de-
tails of the methodology are explained in the following sub-sections.

2.3.1. Preparation of multi-temporal landslide inventories by a semi-
automatic method

The knowledge-based semi-automatic method used to create land-
slide inventories is explained in detail by Martha et al. (2010, 2011).
However, for clarity and completeness, the methodology is explained
in brief here. All 13 images (Table 1), one corresponding to each year,
were processed separately. Multiresolution segmentation of the satel-
lite images was carried out to generate objects, whichwere used subse-
quently as image primitives for classification by OOA. A typical effect
mostly observed after the occurrence of landslides is loss of vegetation
and exposure of bare rock and soil. Therefore, landslide candidates
were identified using an NDVI threshold for multispectral images
and brightness threshold for panchromatic images. Subsequently, false
positives (roads, barren rocky and non-rocky lands, built-up areas,
shadows and river sands) were detected. The DEM and its derivatives



Fig. 1. Location map of the study area shown with Resourcesat-1 LISS-IV Mx image (01 April 2007). The yellow line indicates the main road (NH-109) in the valley.
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(slope, hill shade and flow direction), critical to the successful detection
of landslides, were used in the analysis. Landslideswere classified based
on the type of material and movement mechanism by using terrain
curvature and adjacency conditions.
Table 1
Details of the high resolution satellite data used for the preparation of historical landslide
inventories.

Satellite data Resolution (m) Date of acquisition

IRS-1D PAN 5.8 14 April 1998
02 November 1998
21 September 1999
28 May 2000
24 March 2001
14 November 2002
13 April 2003
13 Mar 2005

Cartosat-1 PAN 2.5 06 April 2006
Resourcesat-1 LISS-IV Mx 5.8 16 April 2004

01 April 2007
15 December 2008
28 October 2009
We used two images corresponding to the year 1998 (Table 1).
The results obtained from the image dated 14 April 1998 can be
assumed as the inventory corresponding to the landslides triggered
during the monsoon of 1997, since July and August are the wettest
months in this area, where rainfall is the major triggering event
Table 2
List of evidence layers and their sources used to derive landslide susceptibility.

Evidence layers Number of classes Data sources

Lithology 4 Geological map on 1:250,000 scale,
updated using Resourcesat-1 LISS-IV Mx
and DEM

Geological structure 2 Geological map on 1:250,000 scale,
Resourcesat-1 LISS-IV Mx and Hillshade

Soil depth 4 Soil map on 1:50,000 scale
Land use/Land cover 8 Resourcesat-1 LISS-IV Mx
Slope angle 10 10 m DEM
Slope aspect 9 10 m DEM
Relative relief 5 10 m DEM and slope facet



Fig. 2. Some of the important evidence layers used for preparation of landslide susceptibility map. (a) Lithology and structure (updated using a quadrangle geological map published by
GSI). (b) Relative relief. (c) Land use/cover. (d) Soil depth.
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(Fig. 4). Thus we have a continuous landslide inventory with annual
landslide inventories for 13 years (1997–2009). The maximum and
minimum detection percentage of all landslides, which was calculat-
ed by comparing the semi-automatically detected landslides with
manually identified landslides for the total period, were 96.7% and
71.5%, respectively (Martha et al., 2012). Corresponding quality per-
centages, which indicate how likely the landslides detected by the
semi-automatic method is true, are 88.1% and 55.3%, respectively
(Martha et al., 2012). However, the landslide inventories prepared
by semi-automatic methods, particularly those prepared from pan-
chromatic images, sometimes have a high error of commission,
i.e. non-landslide areas were falsely identified as landslides. The ma-
jority of the false positives were masked out, after visual inspection,
by applying specific rules based on landslide patterns from the previ-
ous year, land use, slope and lithology.

2.3.2. Generation of the landslide susceptibility map
One of the first and most important steps involved in landslide haz-

ard mapping is the assessment of landslide susceptibility, which indi-
cates the spatial distribution of localities that are favourable for future
occurrence of landslides. The susceptibility map shows the proneness
of an area to landslides. The susceptibility map can be prepared in a
GIS using statistical, heuristic or physically-based methods (Guzzetti
et al., 2005). With heuristic methods, weights are assigned to the
predisposing factors also known as causative factors or evidence layers,
based on the experience of the experts, whereas in data driven statisti-
cal techniques, weights are obtained by correlating landslide occur-
rences and evidence layers, using both univariate and multivariate
methods. Commonly used bivariate methods are information-value
and weights-of-evidence modelling in which weights for each parame-
ter are derived from the landslide inventory (Mathew et al., 2007).
Since the objective of this paper is to verify the effectiveness of semi-
automatically prepared landslide inventories in susceptibility, hazard
and risk mapping, we decided to use a relatively simple method
(weights-of-evidence) in order to analyse the relation of each annual
inventory map with the causative factors.

The method ‘weights-of-evidence’ or wofe was initially developed
for the identification and exploration ofmineral deposits using borehole
or geochemical data (Bonham-Carter et al., 1989; Carranza and Hale,
2003). Many researchers, such as Mathew et al. (2007), Neuhäuser
and Terhorst (2007), Poli and Sterlacchini (2007), Thiery et al. (2007)
and Ghosh et al. (2009) have used it also for landslide susceptibility
assessment. In this method, historical landslides are used to calculate
weights of evidence layers to demarcate future areas of landslides
under the assumption that similar factors will prevail in future also
(Neuhäuser and Terhorst, 2007). The main assumption of wofe is
that the evidence layers are independent of each other. The method
nevertheless provides relatively easy and understandable results, and
has proven to be a useful exploratory tool in susceptibility assessment,
for subdividing the terrain into classeswith similar susceptibility, rather
than for using the actual posterior probability values which are often
too high, due to the conditional dependence of the factors. By overlay-
ing landslide locations with each evidence layer, a pair of weights,
i.e. W+ and W−, are calculated for each class in each layer, which are
indicative of the spatial relationship between the landslides and evi-
dences. This calculation is done by applying likelihood ratios, which de-
scribe the probability of occurrence of landslides in the presence and
absence of evidences. The end product of this analysis is a map showing
the relative proneness of the terrain to produce landslides i.e. landslide
susceptibility.

In this study, we used ArcSDM software, a geoprocessing tool of
ArcGIS 9.3.1 for the wofe analysis (Sawatzky et al., 2009). This software
automatically calculates positive and negative weights (W+ and W−)
depending on the association between the response variable (land-
slides) and each class of predictor variables (evidence layers). The con-
trast (C) and studentised contrast (sC) calculated by the software are
useful to understand the spatial association of each class of predictor
variables and response variable (Poli and Sterlacchini, 2007). Since the
software accepts response variables as points, landslide inventories cre-
ated as polygonswere converted to grids (50×50 m), using themethod
applied by Poli and Sterlacchini (2007). Subsequently, the inventory
grids were converted to points, resulting in representation of one land-
slide by a number of points depending on its size. One common and fre-
quently used practice in landslidemodelling is to develop amodel using
one time period inventory and validate it with the inventory of the next
time period. Therefore, a temporal sub-setting of the landslide invento-
ry database was made to create the training and testing data for the
wofe analysis. Landslide inventories up to the year 2004 were treated
as training data, whereas those from 2005 until 2009 were treated as
testing data. While the training points were used to calculate the
weights of the evidence layers, testing points were used to validate
the usefulness of wofe model in predicting future landslides. The land-
slide susceptibility map was classified into high, moderate and low sus-
ceptibility categories using the success rate curve of the wofe model.

2.3.3. Landslide hazard estimation
After the susceptibility map was prepared, the next step was to as-

sess the landslide hazard. This was done by calculating the temporal
probability of landslide occurrence within the landslide susceptible
areas. To estimate the spatial and temporal probabilities, annual land-
slide inventories prepared by the semi-automatic method and histor-
ical daily rainfall data were used.

The spatial probability corresponding to each inventory year and
for all the three susceptibility classes was calculated separately by
ratioing the areas using the following equation:

spatial probabilty ¼ area of landslides
area of susceptibility class

: ð1Þ

We used the annual maximum daily rainfall amount over 13 years
for the frequency analysis of extremeevents using themethod described
by Gumbel (1958), which is used frequently in hydrological applications
(Jaiswal et al., 2011). The Gumbel extreme model can be applied to
model the probability of occurrence of the rainfall event (NR) equal to
or less than some value n. The model can be expressed as:

P NR≤nð Þ ¼ e−e− αþnð Þ=c
ð2Þ

where α and c are two parameters of the Gumbel distribution. By the
method of moments, the parameters are evaluated as (Chow et al.,
1988):

α ¼ γc−c ð3Þ

c ¼
ffiffiffi

6
p

π
σ ð4Þ

where γ=0.57721 is a Euler's constant and σ is the standard deviation.
For a specified time interval in a year, Eq. (2) can be rewritten for the
value (NR) equal to or greater than some value n as:

P NR≥nð Þ ¼ 1
T
¼ 1−e−e− αþnð Þ=c

ð5Þ

where T is the return period of the rainfall event. Twomethods are com-
monly used for fitting distributions to the Gumbel model for frequency
analysis; i) the plotting position method, and ii) the frequency factor
method. The former is a simple method to obtain the distribution func-
tion by the use of certain “plotting position” formula (Chow et al., 1988).
The technique is used to arrange the data in an increasing or decreasing
order of magnitude and to assign the order number R to the ranked
values. The Weibull formula is commonly used to obtain the plotting
position, and that for P(NR≥n) can be expressed as:

P ¼ R
mþ 1

ð6Þ



Fig. 3. Procedure for landslide hazard and risk assessment using semi-automatically prepared landslide inventory maps.
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where R is the rank andm is the total number of observations.When R is
ranked from the lowest to highest, P is an estimate of P(NR≤n); when
the rank is from the highest to lowest, P is P(NR≥n). Eq. (6) can be plot-
ted on a probability chart to represent the cumulative probability distri-
bution. The graph is designed in such a way that it gives the return
period for amagnitude of event. In this study,m=13. The rainfall values
were ranked from low to high, with the lowest rank (1) assigned to the
lowest rainfall value and the highest rank (13) assigned to the highest
rainfall value. Using the plotting position method, the data were plotted
on a probability chart and a curve was fitted to the plotted points. Then
the return period for each of four scenarios (daily rainfall amount of 50,
100, 150 and 200 mm)wasmeasured from the fitted curve.We selected
the four scenarios considering theminimumandmaximumannual daily
Fig. 4. Mean monthly rainfall pattern in the study area for 34 years (1976–2009).
Source: Central Water Commission, Dehradun, India.
rainfalls for the landslide inventory period (1997–2009): 23.4 and
204 mm, respectively.

2.3.4. Landslide risk estimation
Landslide risk can be defined as the expected number of lives lost,

persons injured, damage to properties and disruption of economic activ-
ities due to landslides for a given area and a reference period (Varnes,
1984). The concept of risk that has been applied to landslide studies
can be expressed by the following generic equation (van Westen et al.,
2006; Zêzere et al., 2008):

landslide risk ¼ landslide hazard� vulnerability
� value of exposed elements at risk: ð7Þ

In the previous section,we have explained how the landslide hazard
can be estimated quantitatively. In this study we focused on buildings
and roads as elements at risk, whichweremapped through visual inter-
pretation of Cartosat-1 images. The buildingswere categorised into nine
occupancy classes based on field verification. Further, each buildingwas
classified into good, regular and bad in terms of its structural condition
based on building sample surveys.

Most of the houses in the study area are confined to two localities,
i.e. Okhimath and Guptakashi. The houses there are reinforced with
concrete and well constructed. Other parts of the study area are in a
rural environment with small isolated clusters of houses, which are
not well constructed. It was not possible to map the daily movement
of population or the number of people living in each house for such a
large area. Therefore, the risk assessment was carried out for houses
and not the population.

Vulnerability is possibly the most difficult term to represent quanti-
tatively within landslide risk analysis (van Westen et al., 2008; Zêzere

image of Fig.�3
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Fig. 5. Semi-automatically prepared annual landslide inventories for 1998–2009 period. While landslide inventories from 1998 to 2004 were used as training dataset for the wofe
model, inventories from 2005 to 2009 were used as testing dataset.
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et al., 2008). Vulnerability depends on landslide type, magnitude and
type of risk element exposed, and its estimation requires data of past
damage (Fuchs et al., 2007; Papathoma-Kohle et al., 2007). Reliable
estimates of vulnerability for a specific element at risk are rare, though
in the literature vulnerabilities for particular conditions have been
suggested (Glade, 2003; Bell and Glade, 2004). Considering the land-
slide type in this area and consulting the literature, vulnerability values
between 0.3 and 1 were assigned to the different types of building
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Fig. 6. Contrast values for all classes of the seven evidence layers. Lithology (Mar: marble, SBAG: streaky banded and augen gneiss, QSS: quartz sericite schist, and QMSGA: quartz mica
schist, gneiss, amphibolite), land use (AT: agricultural terraces, BL (NR): barren land (non-rocky), BL (R): barren land (rocky), BA: built-up area, HDV: high dense vegetation, LDV: low
dense vegetation, RS: river sand and W: water).
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(Castellanos Abella, 2008). The cost of the building and the vulnerability
were estimated for each building type. The vulnerability map was mul-
tiplied on a cell by cell basis with the spatial probability of landslides for
the return period of four rainfall scenarios (50, 100, 150 and 200 mm)
in order to estimate the building risk.

The study area has a good road network, as the access to the origin
of the river Ganges is of national importance. The national highway
(NH-109) passing through this area is very busy, particularly during
the tourist season. Absolute vulnerability values (representing the ex-
pected reconstruction costs per unit length of road) were assigned to
the highway and district road, respectively, based on Nayak (2010).
The absolute vulnerability was multiplied with the spatial probability
Table 3
List of evidence classes showing a positive correlation. Studentised contrast (sC) is a
measure of the correlation significance.

Evidence layer Class W+ W− sC

Slope 47°–89° 0.3868 −0.0505 6.9791
41°–47° 0.3641 −0.1099 9.7745
36°–41° 0.3324 −0.1784 11.5885
32°–36° 0.3064 −0.2598 13.0476
28.5°–32° 0.2684 −0.3503 13.7068
25°–28.5° 0.2068 −0.4170 12.7178
21.5°–25° 0.1429 −0.4337 10.5914
18°–21.5° 0.0758 −0.3708 7.1558
13°–18° 0.0226 −0.2377 3.1994

Structure Close to fault, thrust and lineament 0.5169 −0.6858 25.2137
Lithology Marble 1.8394 −0.0405 18.2082

Streaky banded and augen gneiss 0.9380 −0.9215 38.8269
Land use Barren land (non-rocky) 1.2728 −0.6658 44.2759

Barren land (rocky) 0.5721 −0.0525 9.0118
Built-up area 0.1967 −0.0024 1.0450
River sand 0.7478 −0.0113 5.0240

Soil depth Shallow 0.9930 −0.4508 33.2545
Aspect Southeast 0.8352 −0.2190 22.3148

South 0.9127 −0.2087 23.1966
Southwest 0.2123 −0.0188 3.0571

Relative relief 0–130 m 0.1677 −0.0460 4.1723
130–202 m 0.0890 −0.0624 3.4611
202–288 m 0.0424 −0.0672 2.4466
288–408 m 0.0147 −0.0627 1.3851
on a cell by cell basis, the sum of which for a given return period es-
timates the risk to the road.

Total risk for a given return period of rainfall intensity was calcu-
lated by summing up the risk to the buildings and roads. In this man-
ner landslide risk for four rainfall scenarios was estimated separately.
Fig. 7. Performance of the wofe model for landslide susceptibility mapping in the
Okhimath area. The curves show the success and prediction rates of the model.
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Fig. 8. Landslide susceptibility map of the Okhimath area prepared using the wofe model.

Fig. 9. Relationship between the number of landslides (1997–2009) and daily maxi-
mum rainfall.
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Finally, a risk curve was plotted showing the relation between the
annual probability and consequences to estimate the annualised loss.

3. Results and discussion

3.1. Landslide susceptibility assessment

Using ArcSDM software, wofe analysis was performed. A total of
seven evidence layers and 2137 response variables, i.e. landslide points
in a 50×50 m grid corresponding to the inventory from 1997 to 2004
(Fig. 5), were used to calculate the weights. The evidence layers were
converted to a 10×10 m grid for the wofe analysis, since a 10 m DEM
was used in this study for derivation of the topographic layers.

Fig. 6 shows a comparison of contrast values (W+−W−) of all ev-
idence classes. This is an important measure of correlation between
the landslide locations and evidence layers. Table 3 summarises
only the evidence classes that were positively correlated. Although
the slope classes from 13° to 89° have a consistent contrast, the sC
values of the five slope classes from 21.5° to 41° were relatively
high compared to the other classes, showing that these slopes were
significant for the occurrence of landslides. Among the lithological
units, streaky banded and augen gneiss has the highest sC value.
This unit, which is mainly exposed in the Madhyamaheshwar Valley
along with the MCT was responsible for high occurrence of landslides.
Non-rocky barren land has both the highest contrast (Fig. 6) and sC
(Table 3), indicating that it was the most critical land use class for
the high occurrence of landslides. South-facing slopes are known for
their landslide proneness in the Himalayas. This was revealed clearly
by the wofe model, since it has only shown positive correlation among
all other aspect classes. Areas with high relative relief in the Himalayas
are mostly exposed as rocky escarpments consisting of hard rock and
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Table 4
Annual probabilities of landsliding for four scenarios derived from Gumbel analysis.

Rainfall scenario Gumbel y-axis value Return period (years) Annual probability

50 mm −0.42 1.3 0.76
100 mm 0.59 2.3 0.43
150 mm 1.61 5.5 0.18
200 mm 2.63 14 0.17

Table 5
Building categories in the Okhimath area and their vulnerability values based on the
literature.

Building category (total number) Good Regular Bad

Educational institution (6) 0.3 – –

Guest house/hotel (11) 0.4 – –

Hospital (2) 0.4 – –

Shop (50) 0.4 0.6 0.8
Petrol filling station (1) 0.3 – –

Place of worship (3) 0.3 0.6 –

Police station (1) 0.3 – –

Post office (1) 0.4 – –

Residential (2135) 0.5 0.8 1
Telephone exchange (1) 0.4 – –

Fig. 10. Gumbel plot for estimating the return period.
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are mostly stable. Therefore, only areas with low relative relief had
shown positive correlation with landslides.

Finally, overlay of all weighted factors and calculation of the over-
all susceptibility scores were carried out. The cumulative percentage
of landslide location was plotted against the cumulative percentage
of the area to create a success rate curve in order to classify the
study area for its landslide susceptibility. Fig. 7 shows the success
rate curve in which two inflection points were identified for classify-
ing the area into three susceptibility classes. The first inflection point
is at 67.6 cumulative percentages of all landslides, corresponding
to 14.7 cumulative percentage of the total study area. The second in-
flection point is at 96.9 cumulative percentages of all landslides, cor-
responding to 49.5 cumulative percentage of the total study area. It
means 67.6% and 29.3% of all landslides, and 14.7% and 34.8% of the
total, are in the high and moderate susceptibility classes, respectively.
The remaining part of the study area is in the low susceptibility cate-
gory (Fig. 8).

The prediction rate curve was created using 713 testing landslide
points (corresponding to the landslide inventory for the period 2005
to 2009). The prediction rate curve showed a good match with the suc-
cess rate curve, indicating that the wofe model and the seven selected
evidence layers were able to predict correctly the spatial occurrence of
landslides (Fig. 7).

3.2. Landslide hazard assessment

The spatial probability of landslide occurrence for each observation
yearwas estimated for the three susceptibility classes using Eq. (1). Pre-
vious researchers, such as Ghosh et al. (2012a,b) have shown that dis-
criminate analysis (DA) is useful to establish a relationship between
landslide events and various rainfall predictors in a data scarce environ-
ment, and the frequency of predicted landslides events can be used in a
Poisson's distribution model to calculate the temporal probability. We
attempted DA to establish the relationship, but the cross validation re-
sults were not significant due to a small number of known landslide
event days in our study area. Instead, the relationship is shown with a
linear regression analysis, between daily maximum rainfall and the
landslide event (Fig. 9). Daily maximum rainfall was preferred over
other rainfall variables for two reasons; i) daily maximum rainfall data
matched with the date of occurrence of some historic landslide events
available in the literature (Naithani, 2001), and ii) the landslide inven-
tories used in this study are annual inventories, and not event-based
ones. According to Naithani (2001), the August, 1998 rainfall event
mainly triggered debris slides and rock slides of translational and rota-
tional types. Therefore, we used daily maximum rainfall to estimate the
temporal probability of all types of landslides in this case study.

For estimating temporal probability, daily maximum rainfall for
13 years was analysed using Gumbel analysis. The resultant Gumbel
plot is shown in Fig. 10. The trend line in this plot was used to estimate
the temporal probability of the landslides for four rainfall scenarios (50,
100, 150 and 200 mm). Table 4 shows the estimated annual probabili-
ties for the four scenarios.
3.3. Risk assessment

Risk assessment for buildings and roads was carried out separately,
before both were added to estimate the total risk due to landsliding
in the Okhimath area. Although Naithani (2001) provided some details
of the 1998 Okhimath disaster including the reported damage to roads
and houses and the number of casualties, they are not available in the
form of spatial data. We created 2211 building foot prints through
stereoscopic interpretation of the high resolution Cartosat-1 data. We
categorised the buildings according to their occupancy class, material
types (reinforced masonry and wooden buildings) and state of conser-
vation in order to assign vulnerability values. The buildings in the
Okhimath area are mostly of reinforced concrete and either with a sin-
gle storey or two floors. Therefore, we have classified the buildings as
good, regular and bad conditions and applied the vulnerability values
as proposed by Castellanos Abella (2008). Table 5 lists the category of
buildings and their corresponding vulnerability values. The average
cost of the buildings in the hilly terrain according to the Border Road
Organisation (BRO) was multiplied with the spatial probability and
vulnerability to estimate the total building losses. Using the relationship
shown in Fig. 9, the number of landslideswas estimated for the four rain-
fall scenarios. We assume that the landslides for each rainfall scenario
will be spatially distributed in the same manner as our inventoried
data. For example, for the scenario of 100 mm rainfall return period,
we assumed the spatial distribution of landslides will be equivalent to
the landslide inventory for the year 1997 with recorded a daily maxi-
mum rainfall of 99.7 mm.

For the estimation of risk to the roads, stereoscopic interpretation
of satellite data was performed for a total road length of 105 km,
consisting of a national highway and district roads, was mapped. The
cost of reconstruction of completely damaged roads according to the re-
cords of the BRO, is Indian rupees 7 lakhs (15,910 US$) per kilometre
(Nayak, 2010). The absolute vulnerability of each road type was multi-
plied with a landslide probability on a cell by cell basis and summed to
estimate the total loss due to landslides for the four scenarios.

Finally, the building and road losses were summed and then
plotted against the annual probability of landslide occurrence to
obtain a risk curve (Fig. 11). The curve does not follow the ideal
concave shape, reflecting uncertainty in vulnerability quantifica-
tion and non-consideration of some elements at risk.
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Fig. 11. Total risk (building and road) due to landslide in the Okhimath area.
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4. Conclusions

This paper has demonstrated the use of a semi-automatically
prepared landslide inventory from high resolution images in land-
slide hazard and risk assessment. The landslide susceptibility map
was prepared using the established wofe model. This was possible
because the multi-temporal semi-automatic outputs derived by OOA
were georeferenced to a common spatial framework andwere available
in a GIS-ready format. The matching of the prediction rate curve with
the success rate curve indicated that semi-automatically prepared land-
slide inventories were useful in deriving weights of the evidence layers
essential for landslide susceptibility mapping. The results were on a par
with the susceptibility map from inventories prepared in a different
manner (e.g. field based or manually interpreted from images). The
seven evidence layers for our landslide susceptibility assessment were
selected based on their high contribution to landsliding, which was
also highlighted in previous studies. The present study validates the
importance of these layers. Although temporal sub-setting of landslide
inventories was attempted, susceptibility assessment using the inven-
tory map of a certain year, and calculation of prediction rate using the
inventory of the subsequent year would be worth doing in future. For
the estimation of temporal probability, daily maximum rainfall data
were used. It will be good if other rainfall variables such as several-
day antecedent rainfall can also be used. Although only two elements
at risk were considered in this study, it allowed us to evaluate landslide
risk in general. More realistic assessments of vulnerability based on the
details of previous damages will improve the quality of the landslide
risk curve.
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