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Abstract

Whole genome profiling and decreasing costs of gensequencing enable measuring
the activity of tens of thousands of genes which patentially be used for making

predictions about patients’ risk of relapse or ceme to a specific treatment. These
predictions are based on mathematical models tivabime the measurements from a
selected set of genes into either a continuouseseo@a binary outcome. In order to
build such models that can be used in clinical jigaavith real benefits for the patients,
a rigorous methodological approach must be folloaed the purpose of this chapter is
to briefly describe some theoretical consideratiand practical results in the field of

gene expression-based classifiers.
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1. Introduction

The clinical practice has shown that many canceatinents benefit only a small group of
patients who received them. Lacking precise meéaiteatifying the patients most likely to
respond to a given treatment results in many patieaing prescribed ineffective treatments,
which puts a serious burden on them and on thetthealre systems. Theersonalized
medicine addresses exactly this problem by trying to diagnand treat a disease using
information about patient’'s genes, proteins andrenment. At the core of the diagnostic
and treatment decisions are placed ttlassifiers, which are mathematical models
assembling all the information into a system pradgidinary or multi-valued decisions. In
this context, the new treatments are accompaniedidgnostic tests which are supposed to
identify the most likely responders.

The problem of companion diagnostic tests is evenenimportant in the case tdrgeted
therapies, which are “drugs or other substances that blbekgrowth and spread of cancer
by interfering with specific molecules involved tamor growth and progression” (NCI's
Facts Sheethttp://www.cancer.goy/ As these drugs target specific molecular proegss
such as cell growth signaling, angiogenesis, amiptor stimulate the immune response,
highly specific tests are needed to identify tlghtipatient population.

1.1. What is a classifier in the context of genomic data

There are various names under which the classifippgar in the literature related to gene
expression-based diagnostics and prognostics. Tagybe called “(multigene) expression
signature” or “(multigene) biomarkers” or simplyisk predictors/scores”. In general, we talk
about a classifier when we have in mind a modelctviproduces a crisp decision (be it



binary or multi-level). While a score can be conedrinto a decision (see further on in this
chapter), and so “score” and “classifier” terms Idobe used interchangeably in some
context, a gene expression signature is usuallyenotuigh to specify a classifier. A gene
expression signature refers more to the genestsdléz be specific to some phenotype, but
it normally does not specify the way these genesulshbe combined to predict the

phenotype in question. Also the term “biomarkerulcbbe misleading, since it may also

refer to some markers that can be mechanistidakedl to a disease activity. In conclusion,
we prefer the term “gene-based classifier” by whied mean a prediction model which

combines the gene expressions (and maybe otheables) in a model. This classifier may
have a score as an intermediate step towards diecisi

2. Classifiers

Without any loss of generality, we will consider the following the case obinary
classifiers, constructed on continuous variables and we wdlhale the two alternatives
(calledclasses) by “-1" and “+1”. Letf: R? — R be a real-valued function which will map a
vectorx € RP to a continuouscore. A scores = f(x) is converted into &inary class label

by h(s) = sign(s). Some classifiers will directly produce the bintalel (e.g. the basic Top
Scoring Pairs algorithm, described later in thiapatkr), while others will firstly produce a
score. As the labels are easily obtained from tloees and since using continuous functions
is more convenient for modeling, we will generdibcus on finding the functioif rather
than h. We can then state the problem of learning a ifleason rule to be the task of
finding a real-valued functiofi € F that maps each point of the input space (hereideresl

to beRP) to a score that, after thresholding, will prodackinary label which will not differ
in too many cases from the true label. This formioitais too vague to be of any practical
utility as long as we do not specify

» which is the function spac® in which we search for the solution;
« what we mean by ‘differ’, and

* how many misclassified cases is ‘too many’ forasslfier to be considered good.

The choice of the function spa@eis the first decision a data modeler has to taie &
most cases, it means defining a parametric forntherscore functiorf. Let the parameters
on which f depends be denoted byradimensional parameter vectar € Q € R". The
problem oftraining a classifier becomes an optimization problem inctvtone has to find
the optimal vectow™ such that thexpected risk of misclassification (expected prediction
error) is minimized:

w* = arg maxwa(y,f(x)) dP(x,y) ,

wherel is aloss function penalizing the discrepancies between the predietesl f (x) and
the true labed. The integral is taken with respect to the prolitgldensity functionP which

is generating the populatidiix, y)|x € RP, y = +1}. As the probability function is usually
not available, the risk is estimated from a firtiteining set (sample) given as a pair of sets
Xt ={x;,i=1,..,n} c RP and¥! = {y; = +1, i = 1, ...,n} of points draw independently
and identically distributed from the underlying patility. In this case, the prediction error
can only be estimated from the finite sample, tihgsestimation will become dependent on



the particular training set. This observation fiessi the introduction of various error
estimation techniques, some briefly described i ¢hapter.

The loss function is of central importance in diefinthe form of the classifier and several
ways of penalizing the errors have been proposéukifiterature (Hastie et al, 2009; Duda et
al, 2001). Here we will consider only the casemfared error |0ss,
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which is, by far, the most commonly used. In theecaf a risk of misclassification estimated
from a finite sample, we talk aboempirical risk (of misclassification) and we estimate it by
its mean value over the given sample:

n
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which for squared error loss is simply the usuahmsquared erroi,Zi(yi - f(xi))z.

Figure 1 depicts a possible scenario for a binkgsification problem in the case pf= 2,
with the solid line representing thobassification boundary (i.e. the separation between the
two classes), defined by the equatjtix) = 0. Let us analyze the three proposed solutions:
in the first panel, the classifier perfectly sepesathe two classes, while the other two
solutions are simpler (smoother) classificationctions, which misclassify some points. In
practice, it turns out that a function that petffecteparates the training set will usually
perform poorly on unseen data, i.e. the predictidth have high variance on different
samples drawn from the same underlying distribuffoais the training data. We say in this
case that the first functionverfits the training set. On the other hand, a too siriplis
explanation as the one given by the second classifil never be able to satisfactory fit the
training data, i.e. the model chosen has a ldigs. In this case we say that the model
underfits the training set. The central problem of machiearring is to find that right
tradeoff between underfitting and overfitting, thefll generate functionsf able to
generalize well, i.e. their performance remainsdgoa unseen data. We will further detalil
what we mean by good performance of a classifibis problem is also known as bias-
variance dilemma in classical statistics.

Figure 1. Three possible scenarios for a trained classififierent degrees afegularization
lead to different solutions, with various perforroas.




To conclude this introductory section, we note ttiet genomic applications of classifiers
face a specific problem of fitting models in vergi dimensional spaces (in genenaly

n). Because of the high number of degrees of freedbrthe learning problem, one can
always find a classifier that perfectly fits thaitring set, for any possible labeling. Or, to put
it in other terms, higher is the dimensionalitytbé space slower is the convergence of the
estimators (of the parameters) — phenomenon callezt of dimensionality. It follows that
one has either to use a very large learning sét oonstrain the form of the classifier such
that it fits only the most salient characteristifsthe two classes. The first solution is not
practically possible, so only the second approachains feasible. Luckily, the variables
(genes) are not all independent and a large priopoof them are usually not important for
the classification task. This explains why, despmifethe unfavorable settings, for many
applications one can find proper classifiers witasonable performance.

2.1. Bayesian decision theory

Let us consider for a moment the best case scemamdnich the classification problem is
completely specified by the probability functions:

e P(y=+41) and P(y = —1) are calledprior probabilities (priors) and give the
probability of either of the classes, when no othdormation is available. In
general, for a binary classification problem, oneclades the possibility of
observing any other class but one of the twoe({+1}), soP(y=1)=1-—

P(y = -1).

» class-conditional density functions, p(x|y = 1) andp(x|y = —1), for x € RP, the
probability density function af, given that its label is “+1” (or “-1").

Figure 2. Class conditional density functions for ESR1 gerpression as measured by one
probesetp(205225_at |y = "ER + ") andp(205225_at |y = "ER —"). The two classes are
estrogen-positive (ER+, red line) and estrogen-tegéER-, blue line).
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Using Bayes' rule, it is easy to obtain festerior probability



p(xly =+1) P(y = £1)

p(x) '
This shows that by observing the vectofcalled evidence) and using information about
priors and class conditional densities — calld@lihood — one can obtain the posterior
probability that the observed instance belongsr® aof the classes. It follows naturally that,
for minimizing the risk of misclassification one siuassignx to the class with maximum
posteriori probability Bayes decision rule):

_ -1, Py =—-1lx) > P(y = +1|x)
f@) = {+1, P(y=-1x) < P(y = +1|x)

P(y = +1|x) =

It is sometimes convenient to consider this ruleerms oflog-ratio: assignx to class “+1” if
Py = +1|x)

log———=>=0,
8P =-1Iv

and to class “-1" otherwise.

The Bayesian decision is optimal in the senseithminimizes the probability of error, but it
requires full information about priors and classditional densities to be available.
However, this is not the case in real applicatiary a plethora of approaches have been
proposed to deal with more realistic scenarios. ©Cae try, for example, to consider a
parametric model for the probabilities (e.g. linediscriminant analysis, naive Bayes
classifier, etc. etc.) or to use nonparametriavestiors of the densities.

2.2. Linear discriminants

Suppose that the class-conditional densities atévauiate Gaussians,
plly =1 = ;ue‘%(x—#iifzﬁ(x—um
@mP/2|5,, |

whereu,, are the mean vectors afig, are the covariance matrices of the two respective
classes|(- | is the determinant operator). If the two classsgehequal covariance matrices,
¥_; = I,, = I, the log-ratio of the posteriors becomes

P(y = +1|x Ply=+1 1
M = og% -3 (g + ) 27 gy — o) X727 gy — o).

The values for the class means and the covariamtexmhave to be estimated from the
training set, using the usual estimators. The prame estimated by the class frequencies,
P(y = +1) = nyy/n, andP(y = —1) = n_,/n, wheren,,_, are the number of elements in
each class. The above equation shows that thei@etisundary between classes is a linear
function ofx (for equal covariance matrices). By introducing tliscriminant functions

log

1
81100 = X2 gy — S THsy +log P(y = £1)

the decision ruley = argmax_4, 6;(x) iS equivalent to comparing the log-ratios of the
posteriors with 0. As a final remark, we note thifk, u) = (x — p)T2(x — 1) is called
Mahalanobis distance from x to u (which becomes Euclidean distance if the covaganc



matrix is the unit matrix) and that, under equavartances assumption, the decision rule
assign to the class whose centrojg) (is the closest in the sense of this metric.

The squared error loss function, mentioned in thiduction of this chapter, is intimately
linked to LDA classifier as this can be derivednfra linear regression model, where we fit a
linear model to the label variable, considered tinie a continuous variable.

2.3. Nearest neighbor and related classifiers

The intuition behind the nearest neighbor and eelahethods is that an observation should
be assigned to the class containing other similageovations. The nearest neighbor
classifiers employ &oting scheme for deciding the class membership of a sanxy#eRP?.
The predicted (estimated) label is

y = sign Z Vi

X{EN(x)

whereN, (x) is a neighborhood df closest points ta. In other words, the predicted lalgel
is the most common label among theoints in the neighborhood. # = 0 it means that the
point lies on the decision boundary and it has egumber of points from each class in its
neighborhood.

The notion of neighborhood implies the existence ahetric which, at its turn, is closely
related to the notion afimilarity, in the sense that more similar observations Ergec to
each other than observations less similar. In thage cof RP, the natural metric is the
Euclidean distance, but this is not necessarilybthst choice. For genomic applications, in
which the observations may be corrupted by highellewof noise, one may consider
alternative distances, for example

» correlation distance: d.,,(x,2) = 1 — p(x,2)

» cosinedistance: d.,s(x,z) =1 — % where(-,-) denotes the scalar product of two

vectors, and|-|| theL, norm, respectively.

The parametek > 1 has to be optimized for each problem, usually togs-validation (see
later on in this chapter). Smaller values will ldada better fit of the training set, but may
have an adverse effect on the generalization ptiepesf the classifier. Also, there is a direct
link between the parametkrand the smoothness of the decision boundary.

Instead of considering all the points in the dagis the decision rule, one may choose to
select only a few “representative” patterns froroheelass and to compute the distances only
to these points in order to classify a new obs@wmaf his is similar to LDA decision where,
as we have seen above, one computes the Mahalatistasce to the centers of the two
classes and uses this information to classify tbe pbservation. However, many other
strategies of choosing the “centers” of the clagéike averaging all class members, or
taking their median, for example) and distancesht&zse centers can be employed, each
leading to a slightly modified version of the algiom. This class ofnearest centroid
classifiers is commonly employed in genomic appies because, despite not being
necessarily the best in term of performance, itegally leads to simple classification rules
that are readily interpretable and have reasonabf®rmance.



2.4. Top scoring pairs

Top scoring pairs (TSPs) (Geman et al, 2004) amlsi two-genes binary classifiers, in
which the prediction of the class label is basetelgoon the relative ranking of the
expression levels of the two genes. The rank--baggmoach to classification ensures a
higher degree of robustness to technical variataors makes the rule easily portable across
platforms. Also, the direct comparison of the egpgien level of the genes is easily
interpretable in the clinical context, making th8Ps attractive for medical tests.

Let again x = [x;];-;, ., € RP be a vector of measurements (e.g. gene expression)
representing a sample and let the correspondirsg tdel bey = +1. Then, for all pairs of
variables andj, a score is computed,

Sij = P(xi < xj|y = 1) —P(xi < xj|y = —1), 1<ij<p

whereP are conditional probabilities and the correspogdigcision rule is: if; < x; then
predicty = 1, otherwisey = —1. The pair with the highest score or the kopairs are then
considered for the final model (Geman et al, 206G et al, 2005).

Remarkably, this method does not require the optitton of any parameter and does not
depend on any threshold. Figure 3 shows an exawifpke TSP predicting the estrogen
receptor status. The decision boundary (in gregvigys a line with a slope of 1.

Figure 3. Predicting estrogen receptor status: if GSTP1 RESthen the sample is
considered ER+ (red dots), otherwise ER- (blue)dots
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3. Performance parameters and performance estimation

In the context of clinical applications, a clagsifis seen as a test and its continuous value
f(x) is calledscore. This score is discretized into two (binary tesis)more categories by
using a number of thresholds (or cut-offs) and edjmtion about the patient is made based
on the predicted category. For example, a testeansed to predict if a patient has a given
disease (binary test), or to which of a number isk groups he/she belongs (e.g. low,
medium and high risk groups — categorical tests). @®nvention, we will say that an
individual which is predicted to have the diseasbd positive for the test.

Several categories of medical tests are more common



» diagnostic tests are designed to detect the ‘diseased’ dondit a patient;

e prognostics tests try to predict an outcome of interest, liklezurrence’ vs. ‘no-
recurrence’;

e predictive tests are used to detect which patients may/mayrespond to a
treatment; and

* screening tests are usually applied to a large populationnofmally healthy
individuals in which the disease has low prevalersoel are usually followed by
other confirmatory tests.

Each of these tests is designed to work in spesiitings. For example, we require a
screening test to detect all (or, say 99%) of médsed cases (must be sensitive), even if it
will produce a relatively high rate of false alarffslse positives). In contrast, a diagnostic
test must be sensitive and with low false positates. On the other hand, as we have seen
from the Bayes decision theory, the prior distidg influence the final decision. A
screening test is used in a population where thatipe cases have a low prevalence: for
example, in 2009 breast cancer in UK had an agelatdized incidence of 124.4 cases in
100 000 women, so we can set a pA@y = disease) = 0.125. A diagnostic test which is
applied to confirm a screening test will work op@pulation with a much higher incidence
of the disease, so a possible prior wouldA{gr = disease) = 0.75. The screening and
diagnostic tests could be the same, with the oiffgrdnce being the value of the threshold
for the score, above which we call a patient diséagnd this threshold is optimized based
on the prior probabilities.

In the following, we will briefly review some of ¢hperformance parameters that are used for
characterizing the classifiers. For a comprehenseament of the subject in the context of
clinical applications, see (Pepe, 2003).

3.1. Threshold-dependent performance parameters
We will use the following convention for callingdlelasses:
» truelabel (disease status) is denotedihy

D= {—1, if non-diseased
g if diseased

» predicted label is denoted by’:

y = {—1, if negative for the test
| 1, if positive for the test

A continuous scorg (x) is converted into a prediction bygn(f(x) —6), wheref is a
threshold.

For a given observatianone of the following 4 situation may arise:

e D =1,Y = 1: true positive — the prediction and the true label are both wtilig) a
diseased case

e« D=-1,Y =-1: true negative — the prediction and the true label are both
indicating a non-diseased (healthy) case

e D =1,Y = —1: false negative — the test fails to detect the disease status



« D =-1,Y = 1: false positive — the test predicts as diseased a healthy case

In assessing the performance of a classifier/test @ interested in estimating the
probabilities of each of the above four eventsdoun. The estimation is done based on the
respective frequencies in a test set. One usualhstoucts aconfusion matrix containing
counts of the observed occurrences (Table 1), fubioh the probabilities are estimated.

Table 1. The confusion matrix and the associated probaslit

True labels (gold standard)
. Marginal
Predicted labels D=-1 D=1 e
probabilities
True negatives False negatives
Y =-1 P(Y =-1)
PY=-1D=-1) P =-1|D=1)
False positives True positives
Yy=1 P(Y=1)
P(Y=1|D = -1) P(Y=1D=1)
i P(D=1
Marginal PO = -1) ( )
probabilities (priors) (prevalence)

The following performance parameters are some efrttost commonly used criteria for
judging a diagnostic test:

disease-centric measures the performance predicting the disease tiue
positive/negative fractions (TPF, FPF):
TPF = P(Y =1|D = 1),FPF = P(Y = 1|D = —1)

They are both needed to characterize the testhaydare dependent on the chosen
threshold. If one knows the disease prevale®{® (= 1)), then the probability of
error can be estimated by

P(Y # D) = P(D =1)(1 - TPF) + (1 — P(D = 1))FPF

A perfect test will havel'PF = 1 andFPF = 0. The TPF is also callesensitivity,
while 1 — FPF is calledspecificity. In the clinical testing literature, the two latte
terms are more common than the first ones.

predicted values are used to quantify the clinical value of a fgisé likelihood of
disease when the test is positive): Tesitive/negative predicted values (PPV,
NPV) are defined as

PPV =P(D =1|D =1),NPV = P(D = —1|Y = —1)

A perfect test will havePPV = NPV = 1, while one totally uninformativePPV =
P(D=1)andNPV=P(D=-1)=1-P(D =1).



There is a simple connection between the two grofipseasures and its derivation is left as
an exercise to the reader.

Since the estimators for the above measures agemanariables from a Bernoulli trial, one
can computeconfidence intervals (Cl), using any of the proposed methods (e.g. normal
approximation, Wilson score, Agresti-Coull, and esth (Newcombe, 1998)). Whatever
method is used, the confidence intervals (usuali9Cls) must be reported for a full
characterization of the test.

As a final remark, we note that the Cls obtaineseblaon binomial distribution refer to each
of the measures individually and do not providmifidence region for the joint distribution

of the pairs (TPF,FPF) or (PPV,NPV). To obtain sgohnfidence region, one can use the
following result:

Proposition. If (P, Byp) @andQ,,y, @up) arel — a” univariate confidence intervals for two
binomial random variable® and Q, then the rectangle{P,OW,Pup) X (Qrow, Qup) is @
(1 — a) confidence region fogP, Q), wherea = 1 — (1 — a*)2.

For example, from tw®5% univariate confidence intervals, one can consteu0.25%
confidence region for the joint variable.

3.2. Threshold-independent performance parameters

We have already noted that the performance measigssibed in the previous section
depend on the chosen value of the thresKoldnd therefore we call them point estimates.
However, these tests (classifiers) may need to wimr#tifferent contexts, where one may
want to select a different operating regimen (traffdbetween sensitivity and specificity, or
PPV and NPV). Moreover, when comparing two testh different operating regimens, it is
difficult to draw any conclusion. it is clear thae need a characterization of the test which is
independent of the threshold. Theceiver operating characteristic (ROC) curve serves
exactly this purpose.

Figure 4. Varying the thresholtiabove which a scorg(x) leads to a positive test, generates
a ROC curve in the (FPF, TPF) space.
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By letting the TPF and FPF varying with the thrddho
TPF(9) = P(f(x) = 0|D = -1)



FPF(8) = P(f(x) = 0|D = 1)
we obtain the definition of the ROC curve:
ROC = {(FPF(6),TPF(0)) | V6 € R}

It is easy to see that the ROC function is monotimeeeasing and that it is invariant to
strictly increasing transformation of the scorelse parametric form of the curve is given by

ROC = {(a,TPF(FPF—l(a))) [Va € (0,1)}

A summary of the ROC curve is obtained by takirgahea under the curve (AUC):
1
AUC = f ROC(6) db
0

AUC is lower-bounded by 0.5 (corresponding to altptuninformative test) and upper-
bounded by 1. It can also be seen as the Mann-Wihltvilcoxon U-statistic:AUC =
P(Yp—, > Yp-_1), i.e. the probability of correctly ordering a ramd pair of cases.

3.3. Performance estimation

Once a classifier is trained, one has to estimat@érformance on unseen data. Lacking
access to the full data collection on which thessiféer will be applied, one will have to rely
on statistical estimates of the performance. Theestestimate would be the one obtained
by applying the classifier on the same data usedrdining it (plug-in estimate). Except for
a few rare cases, this estimate will be optimifiigdaiased, i.e. will underestimate the error
rate. Furthermore, relying on the plug-in estimaié more often than not lead to overfitting
the training set, i.e. one will find the parametsush that the classifier will have minimum
error rate on the training set, but it will perfopnorly on new data. The morale is that the
estimation of performance has to be done on arpem#ent data set, completely different
than the one used for building the classifier.

One possible option would be to randomly split da¢a available into two disjoint subsets,
one used for building the model and one for estimgaits performance split sample
validation or holdout validation). While appealing, this method has at least twovbexks: it
does not use the available data in an optimal waitlae training set is reduced drastically in
comparison with the original sample size. Howewbe true validation of a classifier,
diagnostic test remains its long run applicatioruoeeen data.

In order to better use the training data, seveesdmpling methods have been proposed,

among which: the k-fold cross-validation, Monte ldaross-validation, leave one out cross-
validation, bootstrapping, etc. They all have irmooon the idea of repeatedly randomly
partitioning the available into a training set aadvalidation set. The training set thus
obtained is used for full model construction (irthg feature selection, meta-parameter
optimization, model selection, etc.), while the idation set is used for obtaining

intermediate estimates of the performance. At the ef the procedure, the intermediate
estimates are aggregated into a final value (usumdl averaging, but more sophisticated
estimates can be used — see for example the .GBRatwm below) and a measure of
variability of the estimate is also computed (vacie, standard error, confidence intervals).
These methods differ in the strategy they use fatitioning the data. We will briefly



describe some of them here, while for others tlzelee is referred to (Duda et al, 2001,
Hastie et al, 2009).

k-fold cross validation splits the data into k partitions and uses eadexih in turn

as validation set. Typical values for k are 5 a@ichthd the choice represents usually
a trade-off between a reasonable training setasizethe computational burden, as
the procedure is repeated k times. Note that amymedels built in this setting
share k-2 folds as training data. This means thatpredictions are not totally
independent so the variance of the estimates isllyswnderestimated. An
improved performance estimation is obtained by aépg the k-fold cross
validation on randomly shuffled versions of thegoral set (the so callebpeated
k-fold cross validation). The final estimate of the performance (e.g. remate,
sensitivity, specificity, etc.) is the average lod intermediate estimates.

Figure 5. A 3-fold cross-validation scheme: each of the $dklused once and only
once as validation set (the red block).

BTN

leave-one-out cross-validation is an extreme case of k-fold cross-validationtfa
case k=1. The training/testing steps are repaatiedes, where is the sample size.

Monte Carlo cross-validation: repeatedly splits randomly the data set intamniing
and validation set. For example, it retains 2/3tef data in training and 1/3 for
validation. The procedure is, in fact, a sequerfcgpbit-sample validations applied
on random permutations of the data. Because ofahdom split of the data, the
procedure does not ensure that all points are faserhining and validation.

bootstrapping, in contrast with the above methods, resampith replacement
from the original data set, generating new trairsats (bootstraps) of the same size
n. It means that the new training sets may contaiplidated training examples,
while other samples are not included. On averdue bbotstraps contain 0.632 of
the original set. The procedure is repeadimes.

The .632 estimator of the error rate (or othergrenince measure) is given by

B
R A 1w .
Esp = 0368 B, + O.6SZEZ B,

b=1

where E, is the plug-in error rate on the full training setd £, are the error rate
obtained at repetitioh by applying the classifier on the left out datheTempirical
distribution of £, can be used for estimating the confidence intsr(far example,
the 0.025 and 0.975 quantiles of this distributtma good estimates for the lower
and upper limits of the 95% confidence interval).



All these resampling procedures for performancienasion can be implemented to preserve
the proportions of the classes from the originaadzt. In this case, they are caldadhtified
since, indeed, the sampling takes place withirtas{avels) of the class label variable.

4. Guidelines for gene-based classifier development

Developing gene-based classifiers poses severdlifisp@roblems, in addition to the
“classical” issues that arise when building pradeimodels. Some of the specific issues are
methodological, while others relate to the utibityd relevance of the classifiers built.

4.1. Methodological issues

During the last decade thousands of new gene-bakesdifiers have been published,
covering a large palette of applications. The U®d-and Drug Administration, which is
responsible for approving new diagnostic testsnfi@dical applications, set up a series of
projects to investigate the reproducibility andiaiellity of decision models built on gene
expression data. These projects, gathered undectbaym of MAQC (MicroArray Quality
Control) have shown that the technology is matureugh to be used in clinical practice.
The second phase (MAQC-II) dealt specifically withssification models (Shi et al, 2010)
and put forward a number of recommendations, sdmahich are mentioned below.

As mentioned before, the data points lies in a hiighensional space where the number of
dimensions greatly outnumbers the data set caitinal «< p). This makes the problem to
be ill-posed, in the sense that, theoreticallyeast, there may be an infinite number of
solutions to a classification problem. This is whyilding a classifier requires a proper
feature (variable) selection before training thedelger se, but the methods for performing
feature selection are not discussed here. We oslgtion that the feature selection can be
done either independently or jointly with traininige classifier (may be embed into the
process of classifier training, as in the caseenfglized logistic regression, for example), but
in any case it is a mandatory step.

In the early phases of development of a new ciassibne usually tries many different
algorithms before narrowing the selection to a ééwhem. The initial set of classifiers to be
tried should be rich enough such that a suitabldahoan be found. MAQC-II has shown
that in most cases the simpler methods performelsas the more sophisticated ones on
gene expression data. In this project, more thgf0B0models have been assessed and the
conclusion was that the major factor impactingpgbegormance of the models is the problem
difficulty and not the complexity of the algorithrtisrown at it (Shi at al, 2010). Once the
initial exploratory phase completed, the list ofndmlate models should be short (2-3
models). These candidates should be evaluatedwnlai@ and the final model selected. The
final model can then be trained and its performastemated (either by resampling methods
or on other independent data). This approach reg@rfairly large amount of data but will
likely produce a robust model that will not be ditezd to the training data.

The performance estimation is usually the most @rtm methodological errors task in
building a classifier. In theoryll the steps performed from raw data to final model must be

included in the cross-validation (or whatever reglamy method) loop. However, this is not
always feasible: for example, microarray data ndimaton usually inspects the whole batch
of raw samples for producing the normalized datés Tneans that any input vector for the



classifier will be influenced by the informatiorom other vectors in the data set, so the data
normalization step has to be performed inside tlesszvalidation. On the other hand, the
normalization step can be quite computationally aeding and repeating it at each iteration
will slow down the process of model assessment.l&\this issue is not well studied in the
literature, the common consensus is that the pedoce estimates are marginally impacted
by the inclusion or not of the data normalizatitepsin the cross-validation. That is why the
overwhelming majority of studies leave the nornwtizn outside the cross-validation.
Nevertheless, apart from the normalization step,tte other processing steps must be
included in the cross-validation (ideally, even tmedel selection step — if a model is
selected at the end). Failing to obey this ruld \@dd to an optimistically biased estimation
of performance (Varma and Simon, 2006). By far,itte@rrect performance estimation for
prediction models is the most common error (Dupwsl,e2007).

Finally, a question that still lacks a definite wes refers to the samples size needed for
developing a gene-expression classifier. Sample s&imation can be done under some
parametric assumptions: for example (Dobbin and o8m2005) assume a normal
multivariate distribution of the classes and dervathematical formulae for computing the
sample size for classifier development and valiatAssumption-free approaches exist and
relies on simulations: (Popovici et al, 2010) shéwsr using the learning curves can be used
to estimate if increasing the sample size woulddrny benefit for classifier training and
what would be the required sample size to achiguedefined performance.

4.2. Clinical utility and relevance

The final goal of gene based classifiers is to amsavclinical or biology research need, so
they have to compete with the current predictivelet® used in the respective fields. Thus,
for the development and validation of clinicalljeeant genomic tests a number of key
stages must be successfully fulfilled (Simon, 2006)

» identify an important therapeutic decision whichulebneed improvement;

» the target patient population should be homogenenasagh and treatment uniform,
so that the results would be therapeutically raievaAlso, the economic
considerations should not be overlooked: the treatmoptions and costs of
misclassification should be such that the resultlagsifier/test would be likely to
be used in clinical practice (the test itself wouldur some costs as well);

» develop the classifier and perform internal valimiato assess whether the classifier
appears to be sufficiently accurate relative tmddad prognostic factors currently
used. This means that initial analysis should prthes superiority (performance
and/or costs at equal performance) of the newniglstrespect to current practice;

« translate the classifier to a platform likely to bged in practice. For example, a
classifier relying on the use of several (in thdesrof tens) genes, even though it
could be develop from microarray data, it is makely that it implementation on
gPCR would be more appealing to the cliniciansiaturies;

» demonstrate reproducibility of the results;

* independent validation of the complete test in peasive clinical trials.



5. Examples of gene-based classifiers

A simple search on PubMedw.pubmed.comportal for scientific literature lists hundreds

of papers proposing new gene expression classifisosnetimes called biomarkers),

reflecting the importance these tools gained inkieenedical research. It would be a futile
and inherently subjective attempt to list here “thest representative” results in the field.
Therefore we will limit ourselves to mention justréde such classifiers and some of their
applications, each of them having something pdgictihat makes them to stand out of the
crowd.

5.1. Golub’s ALL vs AML classifier

Golub’s classifier (Golub et al, 1999) represernis of the first classifiers built in the early
days of the microarrays. It was designed to disfisty between acute lymphoblastic
leukemia (ALL) and acute myeloid leukemia (AML),damvas addressing the need for a
standardized test to establish the diagnostic.rfrening set consisted of = 38 cases (27
ALL, 11 AML) profiled on an early Affymetrix chipy( = 6817 genes). They identified 50
genes correlated with the class distinction (bazedh signal-to-noise ratio measure) and
combined the genes into a score by “weighted vdgie. linear combination of genes’
expression values). And then they validated thesdjgctor on an independent collection of
34 samples. By today’s standards, this represewt®asy problem, nevertheless the merit of
this first system was to prove that building clisss on gene expression is not only feasible
but could solve important diagnostic problems. Tdet that their classifier relied on know
oncogenes (like c-MYB, HOXA9) strengthen the coafide in such decision systems.

5.2. Compound covariate predictor

In (Radmacher et al, 2002) a generalization of &slglassifier was proposed. Again, for a
specimeri a score is computed as a weighted sum of the ssiprevalues of a number of

genes,
S = z t] xij

J
where the weights; are the signed t-statistics measuring the associaf genej with the
class to be predicted. The sign is indicating & tfene is positively or negatively associated
with the class. The score is then compared to estimld computed as the average of the
mean scores of each class. Th@npound covariate predictor is prototypical for large
number of classifiers based on gene expressidraslthe appealing property of being easily
understandable as each gene contributes to the pooportional to its fold change between
the two classes.

5.3. Top scoring pairs

The final example of gene based classifier is ged by Geman’s Top Scoring Pairs
(TSP) classifier (Geman et al, 2004), describeddcation 2.4. The striking feature of this
classifier is its simplicity: for easier classifiman problems, it suffices to compare the
expression levels of only two variables (genes)téking a decision. However, as this is
seldom enough for most of the problems, extensidrnisis algorithm have been proposed in



which the top pairs are combined by majority volear( et al, 2005) or by weighted
combinations (Popovici et al, 2011). Despite itparent simplicity, the classifier performs
remarkably well on a large number of problems. Meer, as the decision is taken by
comparing the relative order of two genes, thesilies is extremely robust to noise and
translates well from one platform to another.

Recently, this classifier was used to build a et model for identifying the colorectal
cancer patients harboring a BRAF mutation (Popoeti@l, 2012). In this study, the authors
used the TSP to build a 64-gene-based classifiepédrs) to distinguish the BRAF mutant
patients from those BRAF wild type and KRAS wilgbéy The training set consisted in 431
cases (of which 47 were BRAF mutants). Despite highly imbalanced settings, the
classifier's estimated performance (using reped&ddld cross-validation) was extremely
good (sensitivity 95.8% and specificity 86.5%). Tireper use of cross-validation procedure
led to an accurate estimation of the performansdha independent validation has shown:
on three external data sets, the aggregated pexfmen was: sensitivity 96.0% and
specificity 86.24%. The classifier has demonstratsdgood robustness, as the external
validation sets were originating from different noiarray platforms than the training set.

While the original purpose of the classifier wagtedict the BRAF mutant patients, when
applied to KRAS mutant population (which was nottd the training set) it segregated it
into two subpopulations with clearly different gemxpression patterns (on selected
differentially expressed genes) — Figure 6.

Figure 6. Heatmap showing the different expression pattevithin the KRAS mutant
population, between BRAF-mutant-like patients (thpsedicted by the classifier, marked in
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The classifier had also strong prognostic valwe, it. predicted the high risk patients. For
examples, Figure 7 shows the Kaplan-Meier curveshi® two populations predicted by the
classifier (pred-BRAFm stands for “predicted BRAFutamt’, while pred-BRAFwt for
“predicted BRAF wild type”). This discovery is ofimical relevance, since it identifies a
larger population at risk than initially considereg the clinical practice. Also, it opens new
interventional avenues which would target spegifthways active only in this “BRAF-



mutant-like” population. Finally, it is of importaa also for the design of clinical trials since
it clearly shows that the KRAS mutant population rist homogeneous and extra
stratification factors should be taken into account

Figure 7. Survival after relapse: patients predicted to BRAF mutant” form a high risk
group, with a median survival time of about 12 nent

SAR

=== pred-BRAFwt
pred-BRAFm

P=4.22e-11
HR=3.04 (2.15,4.29)

Survival after relapse
(proportion)

Time (months)
#atrisk
pred-BRAFwt 139 109 74 45 22 3
pred-BRAFm 60 25 9 4 2 1

6. Some concluding remarks

In this chapter we tried to briefly present a numbtkey concepts for understanding the
classifiers in general and the specific issuesrgrifom their application in the context of
gene expression data. While for optimal applicatidnclassification algorithms intimate

knowledge of the theory underlying their developmisnneeded, for making good use of
them a more superficial understanding of the ppiles of rigorous classifier development is
enough. What remains extremely important is to wstded the risks resulting from

improper validation and performance estimation: tiassifiers will never perform as

expected.
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