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Abstract 

Identification of clinically relevant molecular subtypes became an important tool in 

elucidating tumor biology. Robustness of the analytical approach employed for this task 

and consequently the robustness of derived subtypes is of major concern, if further 

experiments are to be conducted to confirm derived hypotheses. Here, we discuss 

multiple novel techniques for the control of robustness in cluster analysis designed for 

analysis of high-density molecular data. 
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1. Introduction 

Subtyping based on high density molecular data, such as microarrays, aims at identifying 

groups of samples with similar molecular patterns. These can be for instance similar patterns 

of gene expression, microRNA expression or methylation. Finding molecular subtypes is 

very relevant mainly in medicine, especially in diseases that appear homogenous histo-

pathologically, yet give a very heterogeneous response in terms of treatment outcome or 

survival. Recently, a lot of effort is dedicated to molecular subtyping of different cancers. 

Breast cancer for instance, was the first one where gene expression subtyping was applied, 

revealing a set of groups, that serve until now a basis for treatment consideration (Perou et 

al., 2002). Molecular subtypes help to elucidate the underlying biological mechanisms 

responsible for heterogeneity in tumour behaviour and help to focus the research on the 

subtype specific drugs targets, with hope to optimize treatment and ensure better prognosis 

of the given cancer as a whole. In order to make molecular subtypes clinically relevant, many 

additional analyses elucidating the biological, clinical and prognostic inference of subtypes 

are needed. The analysis becomes a fairly complex process involving different data-mining 

and statistical tools, together with thorough bio-medical interpretation of results.  

Hereby, we will focus on the most important part of the subtyping procedure – robust 

clustering.  

 

2.  Example dataset 

Throughout this article, we will use two datasets: 

golub dataset -  a microarray derived gene expression dataset available in R package 

multtest  under the name golub , comprising 38 samples of three groups of acute 

leukaemia (AML – acute myeloid leukaemia, ALL-B – acute lymphoid leukaemia B cell 



type and ALL-T – acute lymphoid leukaemia T-cell type) and gene expression values of 

3051 genes. This was the first dataset used to demonstrate the use of gene expression data in 

cancer studies (Golub et al., 1999). 

random dataset - a matrix of 1000 features and 100 samples, randomly sampled from normal 

distribution with 0 mean value and standard deviation equal to 1. This dataset will serve an 

example of a dataset without particular inner structure.  

3. Robust clustering 

Clustering – or, so called usupervised learning - is the analytical approach used for subtype 

derivation. The main objective of clustering is to find distinct, preferably non-overlapping 

subpopulations within the large population of interest, members of which share similar 

pattern. Different basic clustering techniques exist and can be divided into model-based and 

distance-based methods. The model based methods use parametric assumptions on data 

distribution  and often provide probabilities of cluster assignment.  The distance-based 

methods are based on a similarity measure and can be further split into hierarchical and non-

hierarchical, according to the algorithm they apply in order to group the samples. The 

detailed description of these methods and discussion on the choice of metrics is beyond the 

scope of this article and can be found elsewhere (Budinska et al., 2009).  

In large genomic studies, hierarchical clustering is a particularly preferred method, because 

of its pattern visualization advantage. Often, not only clusters of samples, but also clusters of 

features – molecular entities - that underpin biological differences are of importance. 

Heatmap – a colored two dimensional plot with rows and columns  representing samples and 

genes, ordered according to the hierarchical clustering dendrogram is one of the most often 

published type of figure in the field of large-scale molecular data (with the exception of 

DNA sequencing). 

It is well known that the choice of clustering algorithm and metrics affects the final results, 

because clustering algorithms are biased towards partitions in accordance with their own 

clustering criterion. Moreover, clustering algorithms are designed to provide a data partition, 

even in non-existence of such a pattern, and the significance of these results must be assessed 

ad-hoc. While the clustering algorithms and corresponding metrics can be selected a-priori, 

based on the data type, our experience or published recommendations, two main issues are 

still to be addressed: i) the determination of the number of clusters and ii) the assessment of 

the confidence of the selection of number of clusters and cluster assignment for individual 

samples. Missing the external measure of class assignment (ground truth), the evaluation of 

clusters is based solely on internal validation measures, estimating the quality based on the 

intrinsic data values. 

These issues are of particular importance in the data analysis of high density molecular data, 

which suffer from the curse of dimensionality problem. The small number of samples (tens 

to hundreds) and relatively huge number of molecular features (thousands, tens of thousands) 

makes clustering techniques susceptible to over-fitting, due to the sensitivity to noise, which 

is in these data much more abundant. This highly affects the robustness of the clustering to 

the sampling variability. 

Resampling of the original dataset is away to simulate sampling variability. Although the 

idea of resampling in clustering is not new (Jain and Moreau, 1988), in the case of more 

noisy high-density molecular data, the preference is to avoid sampling with replacement, 

because replicated values can be artificially considered a separate cluster (Monti et al., 



2003). Multiple methods have been recently suggested to address these problems in the 

concept of microarray data analysis, mainly based on repeated resampling and consequent re-

clustering of the original dataset, in order to study the behavior of the results when data is 

disturbed. This approach is simulating possible differences between different datasets, 

presumably resulting in a more robust result (for a review, see e.g. Handl et al., 2005).  

For example a prediction-based resampling method Clest was designed (Dudoit and 

Fridlyand, 2002) in order to robustly estimate the number of clusters, showing the superiority 

of its performance in microarray data over six other methods, including more conventional 

such as Silhouette (Kaufman, Rousseeuw, 1990), or more recent such as gap (Tibshirani et 

al., 2001). However, this method does not solve the problem of the assessment of the 

confidence of cluster assignment for individual samples. A new method assessing both 

problems – consensus clustering (Monti et al., 2003) - was suggested and was successfully 

applied in different cancer subtyping analyses. In a comparative study (Giancarlo et al., 

2008) this method was also evaluated the best method in terms of performance and algorithm 

independency. We will dedicate the following subsection to the description of this method. 

 

3.1. Consensus clustering 

Is a resampling and re-clustering based method designed to represent the consensus across 

multiple runs of a clustering algorithm (Monti et al., 2003), in order to: 

• determine the number of clusters in the data and to assess the stability of the 

discovered clusters 

• represent the consensus over multiple runs of a clustering algorithm with random 

restart, so as to account for its sensitivity to the initial conditions. 

In addition, it serves a visualization tool for the evaluation cluster number, membership, and 

boundaries. 

The basic principle is to disturb the structure of the original N × P data matrix by random 

selection of a subset of samples and/or features. The new dataset is then consequently 

clustered, given the selected clustering algorithm, similarity measure and number of clusters 

or tree cut height. This resampling and clustering is repeated L times. In the l-th run, the 

cluster membership of samples is recorded and two N × N matrices are created: 

• connectivity matrix 
)(lC that stores for each pair of samples i,j the information 

whether they were clustered together, e.g. 1)( =l

ijC if sample i and j belong to the 

same cluster, 0 otherwise 

• indicator matrix 
)(lI  that stores for each pair i,j the information whether they were 

both selected in the resampling, e.g. 1)( =l

ijI if sample i and j were in the same 

selection, 0 otherwise 

After all l runs, the consensus matrix M is calculated by dividing the number of times two 

features were found together in the same cluster by the number of times that they have been 

selected together in the sampling subsets. A consensus matrix is therefore a N × N matrix 



that stores for each pair of items the weighted proportion of clustering runs in which the two 

items were clustered together: 
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The idea behind this approach is that samples that are frequently found in the same cluster 

represent more reliable cluster members than those who cluster together less frequently, 

being more sensible to the random noise and changes in feature selection. Each entry of the 

consensus matrix is a consensus index of a given pair of samples, with values from 0 (no 

consensus, samples were never members of the same cluster) to 1 (perfect consensus, 

clusters were members of the same cluster 100% times). Consensus matrix M represents a 

robust similarity measure and 1-M is a distance matrix, that can be used as an entry to 

hierarchical clustering in order to obtain a final robust clustering. Figure 1 demonstrates a 

result of hierarchical clustering applied on consensus matrix on our example data. While the 

consensus matrix of the random dataset is very unstructured, a very clear three-class 

structure is visible for the golub dataset.  

The consensus matrix between samples can be directly used to define statistics of  stability of 

clusters and cluster sample assignments. If Ik be a set of indices of samples belonging to 

cluster k, the consensus measure of a cluster k  - cluster consensus - can be defined as an 

average consensus index between all pairs of samples belonging to the same cluster: 
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Figure 1. Heatmap representation of the consensus matrix for the random dataset – left and 

the golub dataset – right, for three clusters. The colour ranges from white representing 0 

consensus to bright blue, representing the consensus of 1.  



 

The corresponding sample consensus for each sample is and cluster l can be defined as: 
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where { }ki Is ∈1 is the indicator function that equals 1 if { }ki Is ∈  is true, 0 otherwise. The 

sample consensus is the average consensus index of the sample to all members of the cluster. 

Both measures can be used to identify outliers – either clusters with relatively low consensus, 

suggesting remaining heterogeneity in the cluster, or samples, that could be considered 

outliers because of very small consensus to any other sample in the dataset.  

Consensus matrix can be also used to estimate the optimal number of clusters. For details, 

see section 2.2. 

3.1.1.  Other consensus clustering techniques 

Multiple variations of the consensus clustering method exist and are a natural extension of 

the original algorithm.  

Method called merged consensus clustering (Swift et al., 2004), in contrast to the method of 

Monti et al., creates the consensus matrix as a function of runs of consensus clustering with 

multiple different algorithms. This should eliminate the possible negative effect a single 

algorithm, which might not be suitable for the particular type of data.  

Weighted clustering (Deohdar and Ghosh, 2006) builds on the idea that the clusterings 

produced within a consensus clustering procedure are not necessarily of the same quality. If 

an external metrics of quality exists, one should be able to integrate this in order to weigh the 

contributions of each clustering to the final consensus matrix, which is then calculated as 
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where wk is weight of the particular clustering. This method also uses different clustering 

algorithms and different distance measures. 

For the comparison of different consensus clustering algorithms, see for example (Goder and 

Filkov, 2008). 

 

3.1.2.  R-packages for consensus clustering 

Two major packages are available in R for consensus clustering. The package 
ConsensusClusterPlus  (Wilkerson, 2011) provides all the algorithms and metrics as described 

in (Monti et al., 2003). It is a part of Bioconductor repository and can be installed directly from R 

console using command: 

>source(“http://bioconductor.org/biocLite.R”) 
>biocLite(“ConsensusClusterPlus”) 

Package clusterCons  implements the merged clustering of (Swift et al., 2004). It can be 

installed directly from R console by using the install.packages() command. 

3.2. Determining the number of subtypes 

In this section, two methods for determining the number of clusters are discussed. Both were 

developed specially for microarray data analysis and hierarchical clustering algorithm.  

3.2.1. Consensus measure 

Consensus matrix – as described in section 2 - can be also used to estimate the optimal 

number of clusters. If consensus clustering is run for different cluster number values k=1..K, 

the decision criteria can be based on the calculation of for example the average intra-cluster 

consensus for each k. (Monti et al., 2003) propose another measure - the empirical 

cumulative distribution (CDF) 
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 which compares the distribution of histograms of entries of consensus matrix M for each k. 

If clustering with k clusters represents a perfect partition, histogram of consensus matrix 

entries will consist of two bins over 0 (no consensus at all between samples from different 

clusters) and 1 (perfect consensus between clusters from different samples). The optimal 

number of clusters can then be decided by computing the area under CDF curve and by 

examining its relative change between different k (delta area). The CDF measure, however, 

is applicable mainly for hierarchical clustering, for which the method was designed. Figure 2 

shows examples of histograms for k=3 and k=6 and CDF and delta area for the golub data. 

While histogram of consensus measures for the three cluster structure (heatmap on Figure 1 

right) reveals indeed majority of values on 0 or 1, six cluster structure has a substantially 

decreased number of perfect consensus between samples and increased number of values 

between 0-1 suggesting instability of this number of clusters. The delta area plot shows that 

increasing number of clusters from 2 to 3, the area under CDF gains around 0.36, while 



further increasing the number of clusters to 5 has no real impact on the area under CDF 

change and therefore the estimated value of k would be 3 or 4 subtypes. 

Figure 2. Example of CDF derivation and selection of number of clusters on golub dataset. 

Consensus CDF and delta area plot are shown for k varying from 2 to 10. 
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3.2.2.  Dynamic Tree Cut 

As already mentioned, hierarchical clustering has its particular importance in genomic data 

analysis. In comparison to other clustering techniques, clusters are defined ad-hoc, by cutting 

the branches of the hierarchically structured similarity tree – dendrogram – the output of this 

clustering – on a fixed height. All the branches below this cut are preserved and represent 

final clusters. The major disadvantage of this static cut approach is that often, different 

clusters are present on different cut heights – naturally presenting more or less similar groups 

of samples, and cutting low in order to obtain a cluster with high internal similarity results in 

the loss of structure of clusters with relatively lower similarity. 

To address this problem, a set of novel dynamic branch cutting methods for detecting 

clusters in a dendrogram of hierarchical clustering was recently proposed (Langfelder et al, 

2007). In this approach, clusters are being defined depending on their shape. The huge 

advantage is that the system of cluster determination is flexible – a set of parameters can be 



used to control the resulting cut – such as for instance cut height, minimal cluster size or 

minimal intra cluster. First method called Dynamic Tree  - this is a flexible extension of the 

static cut, works solely with the structure of the dendrogram. The second method 

DynamicHybrid dynamically crawls the dendrogram in the bottom-up direction and after 

defining clusters offers a possibility of additional assignment of the unassigned samples to 

the closest core clusters defined in the first step, if the requirements on cluster internal 

similarity are met. The description of both algorithms is fairly complex and I do strongly 

recommend the reader to consult the original paper for more details. Dynamic Tree Cut 

methods are implemented in R package dynamicTreeCut . 

An example of comparison of a static and dynamic cut of dendrogram is demonstrated on the 

golub dataset in Figure 3. Both static cut and DynamicHybrid algorithm (represented by 

function cutreeHybrid ) were run with cut height of 1.2. Minimal cluster size selected for 

cutreeHybrid was 3 and 5. While the static cut on the selected height identifies 3 clusters, 

cutHybrid with minimal cluster size of 5 identifies four major clusters. Decreasing the cluster 

size to 3 identifies further, yet still consistent splits.    

Figure 3. Comparison of static and DynamicHybrid cut (as output by cutreeHybrid  

function of the R package dynamicTreeCut) on the dendrogram from hierarchical 

clustering with average linking algorithm and correlation-based distance between samples of 

golub data.   
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4. Other analytical challenges 

Robustness of findings is one of the most important aspects of the applied research, and is 

indispensable for the clinical relevance. In order to call the subtypes robust, it is vital that the 

patterns defining the groups we find are not specific for a particular dataset, but can be found 

in other similar populations. We say that subtypes must be validated. However, the 

validation in a de-novo developed subtyping system has somewhat different meaning and is a 

much less evident analytical task than in the construction of classifiers. This is because it is 

not obvious to validate a pattern without existing objective class label (the ground truth). 

Without the ground truth, the validation can be done only indirectly, by the assessment of 

subtype specific differences in population characteristics that were not used for their 



construction. Different survival experience or clinically relevant variables are examples of 

such characteristics. 

Often, a development of a subtype classifier is necessary in order to make the results 

applicable for the practice. Preferably, such a classifier will be accurate and robust to 

different technological platforms used to derive data and will be able to classify one sample 

only. This classifier can also serve to call subtypes in the validation set. However, in a 

complex analysis of subtyping, many decisions on types of methods and choice of 

parameters must be made. Although some can be subjected to sensitivity analysis exploring 

the effect of different choices on clustering results (such as similarity metrics or clustering 

algorithms), it is almost impossible to perform such an analysis for all considered parameters 

and algorithmic choices, due to the complexity of the problem. For this reason, simple 

application of the classifier on the validation set and consequent comparison of external 

characteristics of training vs. validation subtypes is not the optimal solution. Better solution 

would be to reproduce the subtyping on the validation set, using the same methods and 

parameters as selected for the training set.  

5. Concluding remarks 

We have seen a selection of state-of-the-art approaches for robust clustering in the molecular 

subtyping. However, the field is evolving very quickly and reader is strongly encouraged to 

search for the methodological improvements and critically review all the information 

provided with respect to the nature of the particular data analysed.  

Some concepts remain, though, the same. The robustness and reproducibility in clinical 

research is indispensable. One should never search for the final and unchangeable answer – 

which is almost impossible to achieve because of the nature of biology and technological 

limitations - but rather focus on the extraction of the most essential information from the data 

that are available. In this respect, application of consensus clustering base methods seems 

inevitable, although in case of hierarchical clustering, one might consider to use rather 

dynamic Tree Cut for cluster assignment, as it allows for identification of core samples, 

without forcing the less representative samples to be assigned a cluster membership.  
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