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Example: ER status prediction

Questions:

How to decide which patient
is ER+ and which is ER-?

What is the expected error?

What if I prefer to detect
most of ER+?
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Another example – multiclass problem

Digit recognition:
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Know your problem!

Remember
Good study←→ clear objectives.

Problems:

Class Comparison: find genes differentially expressed
between predefined classes;

Class Prediction: predict one of the predefined classes using
the gene expressions;

Class Discovery: cluster analysis – define new classes using
clusters of genes/specimens.
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Class prediction

Typical applications:

predict treatment response

predict patient relapse

predict the phenotype

toxico–genomics: predict which chemicals are toxic

. . .

Characteristics:

supervised learning: requires labelled training data

the goal is prediction accuracy

uses some measure of similarity

relies on feature selection

quite often incorrectly used
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Usage problems:
improper methodological approach:

well fitted model does not ensure good prediction (overfitted
model)
too many features used in the model (curse of dimensionality)
feature selection on the full dataset(!)

reproducibility:
improper/insufficient validation
batch effects unaccounted for
insufficiently documented

therapeutic relevance
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External validation

Data acquisition

Design decisions:

−feature selection method(s)

−classifier(s)

−performance criterion

Model construction:

Feature selection

Classifier design

Performance estimation

Model selection

Data acquisition: everything up to (and
including) normalization

Design decisions: should be taken
before real modeling

Model design: DO NOT USE ALL
DATA AT ONCE!!

External validation: other datasets;
clinical trials: phase II and III
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Statistical framework
Discriminant functions

Classification problem

Ingredients:
d measurements x = (x1, . . . , xd)T ∈ Rd

K classes: C1,C2, . . . ,CK

πk = p(Ck ) priors: proportion of cases from class Ck in the
population
p(x|Ck ) (class–conditional) pdf for class k

Goal: given a new object x, assign it to one of the K classes
(or reject it)
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Statistical framework
Discriminant functions

Let x be a (random) feature vector with corresponding class C

classifier: an allocation strategy

h : Rd → {C1,C2, . . . ,CK }

Note: in most cases, h(x) = h(y(x))

probability of misclassification

pmc(Ck ) = Pr{h(x) , Ck |C = Ck }

Popovici Advanced Microarray Data Analysis



Introduction
Building classification rules
Assessing the performance

Statistical framework
Discriminant functions

Measuring errors

0 − 1 loss function

L(Ck ,Cl) = I[Ck , Cl] =

1 if Ck , Cl ,

0 otherwise

risk function

R(h,Ck ) = E [L(Ck , h(x))|C = Ck ]

=
K∑

l=1

L(Ck ,Cl) Pr{h(x) = Cl |C = Ck }
0 − 1 loss

= pmc(Ck )

total risk: overall misclassification probability

R(h) = E [R(h,Ck )] =
K∑

k=1

πk R(h,Ck )
0 − 1 loss

=
K∑

k=1

πk pmc(Ck )
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Statistical framework
Discriminant functions

Quantities of interest

priors πk = p(Ck )

class–conditional density p(x|Ck )

posterior density p(Ck |x)

Bayes’ theorem

p(Ck |x) =
πk p(x|Ck )

p(x)
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Alternative approaches

model p(Ck |x) directly: parametric models that are optimized
on some training set

estimate πk and p(x|Ck ) to obtain the posterior

model the separation boundary directly
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Bayes optimal classifier

posterior probability

p(Ck |x) = Pr{C = Ck |x} =
πk p(x|Ck )∑K
l=1 πlp(x|Cl)

optimal classifier (Bayes rule; MAP rule)

h0(x) = arg max
k

p(Ck |x)

Bayes risk (under 0 − 1 loss):

R(h0) =
K∑

k=1

πk pmc(h0)
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Plug-in principle

Assume some parametric form for class densities:
p(x|Ck ) = p(x|Ck ; θ), with θ ∈ Θ being the parameters vector.
Then

p̂(Ck |x) =
πk p(x|Ck ; θ̂)∑K
l=1 πlp(x|Cl; θ̂)

.

and
ĥ = arg max

k
p̂(k |x).

Popovici Advanced Microarray Data Analysis



Introduction
Building classification rules
Assessing the performance

Statistical framework
Discriminant functions

Bayes classifier for known distributions

Let x ∈ Ck ∼ Nd(µk ,Σ) :

p(x) = ((2π)d |Σ|)−
1
2 exp

(
−

1
2

(x − µk )T Σ−1(x − µk )

)
x ∈ Rd

Bayes rule becomes: assign x to the "closest" class:

h0(x) = arg min
k

{
(x − µk )T Σ−1(x − µk ) − 2 ln πk

}
Mahalanobis distance:

δ(x, µ) =
√

(x − µ)T Σ−1(x − µ)
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Linear discriminant analysis (population version)

h0(x) = arg min
k

{
−2µT

k Σ−1x + µT
k Σ−1µk − 2 ln πk

}

For 2 classes (0 − 1 loss), π1 + π2 = 1:

pmc = π1Φ

(
−0.5δ +

1
δ

ln
π1

1 − π1

)
+ (1− π1)Φ

(
−0.5δ −

1
δ

ln
π1

1 − π1

)
where Φ(·) is the CDF for the standard normal and δ = δ(µ1, µ2).
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Statistical framework
Discriminant functions

LDA

optimal solution for N(µk ,Σ) class-conditional densities

similar solution can be obtained in a distribution–free
derivation

if Σ = λI one obtains the Diagonal LDA

if classes have different Σ, the boundary is quadratic
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Statistical framework
Discriminant functions

Learning from data

training set
{(xi , ti)|i = 1, . . . ,N} ⊂ Rd

t convenient encoding of the corresponding class C.
Examples:

3 classes, C1,C2,C3, x ∈ C2 a possible encoding: t = (0, 1, 0)T

2 classes: C1,C2, a possible encoding: t = I[x ∈ C1]

learn from data: estimate the parameters of the model such
that the expected risk of misclassification is minimized
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Statistical framework
Discriminant functions

Two classes, linear functions

Model:
y(x) = wT x + w0

Classification rule:

h(x) =

C1 if y(x) ≥ 0

C2 otherwise

Decision boundary: y(x) = 0 – a (d − 1)-dimensional hyperplane
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Statistical framework
Discriminant functions

Geometry of the decision surface

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1
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Statistical framework
Discriminant functions

Fisher’s linear discriminant

Idea

Find a direction w such that the projected data yk = wT xk can be
classified by applying the rule

f(yk ) =

C1 if yk ≥ −w0

C2 otherwise
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Statistical framework
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Fisher’s criterion: w∗ = arg maxw J(w) = arg maxw
wT SB w
wT SW w

SB = (m2 −m1)(m2 −m1)T

SW =
∑
i∈C1

(xi −m1)(xi −m1)T +
∑
i∈C2

(xi −m2)(xi −m2)T

=⇒ w∗ ∝ S−1
W (m2 −m1)
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Statistical framework
Discriminant functions

Note: w0 =?

under normality assumption, leads to a formula as before...

can be estimated from data
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Logistic regression

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a)

where

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
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Statistical framework
Discriminant functions

Assuming p(x|Ck ) = N(µk ,Σ), k = 1, 2 then

p(C1|x) = σ(wT x + w0)

where

w = Σ−1(µ1 − µ2)

w0 = −
1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)

p(C2)
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Statistical framework
Discriminant functions

Maximum likelihood estimates for µ,Σ:

µ1, µ2 are the usual mean estimates

Σ = N1
N S1 + N2

N S2

where

S1 =
1

N1

∑
i∈C1

(xi − µ1)(xi − µ1)T

S2 =
1

N2

∑
i∈C2

(xi − µ2)(xi − µ2)T

(Compare Σ with SW from Fisher’s discriminant.)
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Statistical framework
Discriminant functions

Maximum margin classifiers

Let the training set be {(xk , tk )|k = 1, . . . ,N}, with tk ∈ {±1}.
Consider the model

y(x) = wφ(x) + b

where φ : Rd → Rp is some fixed feature–space transformation.
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Statistical framework
Discriminant functions

Separable case:y(xk ) < 0, for tk = −1

y(xk ) ≥ 0, for tk = +1
⇐⇒ tk · y(xk ) ≥ 0

y = 1

y = 0

y = −1

m
ar
gin

Popovici Advanced Microarray Data Analysis



Introduction
Building classification rules
Assessing the performance

Statistical framework
Discriminant functions

Idea
(Computational learning theory:) Largest margin leads to smallest
generalization error.

arg max
w,b

{
1
‖w‖

min
n

[
tn(wTφ(xn) + b)

]}

⇔ arg min
w,b

1
2
‖w‖2

subject to

tn(wTφ(xn) + b) ≥ 1,∀n = 1, . . . ,N

y = 1

y = 0

y = −1

m
ar
gin
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Important
The quantity

tk · y(xk )

is called the (functional) margin of the point xk .
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By introducing the kernel function

k(x, x′) = φ(xn)Tφ(x′)

the model can be written as

y(x) =
N∑

n=1

antnk(x, xn) + b ,

where an are the solution of the dual optimization problem (not
discussed here).
Note: an , 0 correspond to support vectors.
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Statistical framework
Discriminant functions

Example (with Gaussian kernel):
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AdaBoost

Consider the exponential loss function with the corresponding
minimizing criterion:

J(y) = E [exp(−ty(x))] .

Lemma (Friedman, Hastie, Tibshirani)

J(y) is minimized at

y(x) =
1
2

ln
Pr(t = 1|x)

Pr(t = −1|x)
.
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Statistical framework
Discriminant functions

Consider the space of classifiers (functions) that can be built from
a training set: H = {hm : Rd → {−1, 1}} (ensemble of classifiers).
We search for an approximation of the solution in the form of

y(x) =
M∑

m=1

cmhm(x).

The classification is given by sign(y(x)).
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Statistical framework
Discriminant functions

AdaBoost algorithm (Freund and Schapire)
Require: training set {(tk , xk )|k = 1, . . . ,N} and number of

iterations M
Ensure: y(x) =

∑M
m=1 cmhm(x)

1: start with wi = 1/N, i = 1, . . . ,N
2: for m = 1, . . . ,M do
3: fit the classifier hm(x) ∈ ±1, using the weights wi on the

training data
4: compute errm = Ew [I[t , hm(x)]] , and let

cm = ln((1 − errm)/errm)
5: set wi ← wi exp(cmI[ti , hm(xi)]), i = 1, . . . ,N
6: renormalize: wi ← wi/

∑
k wk

7: end for
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Statistical framework
Discriminant functions

Example: AdaBoost with decision stumps.

m = 1

−1 0 1 2

−2

0

2 m = 2

−1 0 1 2

−2

0

2 m = 3

−1 0 1 2

−2

0

2

m = 6

−1 0 1 2

−2

0

2 m = 10

−1 0 1 2

−2

0

2 m = 150

−1 0 1 2

−2

0

2
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Statistical framework
Discriminant functions

Some properties of AdaBoost–like classifiers:

converges towards a large margin classifier

stagewise forward fitting procedure

very resistant to overfitting

can be seen as a voting scheme for combining classifiers

Popovici Advanced Microarray Data Analysis



Introduction
Building classification rules
Assessing the performance

Statistical framework
Discriminant functions

A word about loss functions

-2 -1 0 1 2

0
1

2
3

4

Loss functions

t y(x)

L
o
ss

0-1 loss
Square loss
Exponential loss
Log-likelihood loss
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Some references

1 Bishop, Pattern recognition and machine learning, Springer
2006

2 Kuncheva, Combining patter classifiers, Wiley 2005
3 Ripley, Pattern recognition and neural networks, CUP 2006
4 Hastie, Tibshirani, Friedman, The elements of statistical

learning, Springer 2001
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Context

classifier↔ test

a score y(X) is assigned to a vector of measurements X

the score can be categorical (e.g. binary), ordinal, or
continuous

a prediction is made based on the score

convention (for binary tests): positive test ≡ diseased
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Medical tests

diagnostic: detect the ’diseased’ condition in a patient

prognostic: predict a clinical outcome of interest (e.g.
’recurrence’ vs. ’no-recurrence’)

screening: a diagnostic test applied to a large population of
healthy individuals (low prevalence); it is followed by other
tests
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Medical application context
Measures of accuracy for binary tests
Measures of accuracy for continuous tests: ROC and AUC
Performance estimation

Elements to consider when designing a study

test result scale: binary, ordinal, continuous
sampling strategy:

case–control: a fixed number of cases (diseased) and control
(healthy) patients are selected;
cohort: a set of subjects is selected from the target population;
true disease status must be known by other means;
cohort with selection: ascertainment of true disease status is
conditioned by the test result.
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Elements to consider when designing a study

comparing tests:
paired design: the tests are applied to the same subjects
(correlations b/w test results; check that tests do not interfere);
unpaired design: each test unit is subject to a single test

integrity of the tests: knowledge of the true disease status
does not influence the assessment of the test (e.g. use
blinded design)
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Elements to consider when designing a study

Be aware of potential sources of bias:

verification bias: non–random selection of the test set;

errors in gold standard

spectrum bias: test set not representative for the population;
for screening tests:

lead-time bias: earlier detection might indicate errorneously
beneficial effects on the outcome;
length-bias: slowly progressing diseases are over–represented
in the population relatively to all cases;
overdiagnosis bias: sub–clinical cases may regress and never
become a clinical problem, but they are nevertheless detected
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Confusion matrix

Let

the true label (disease status):

D =

{
0 if non-diseased
1 if diseased

the predicted label:

Y =

{
0 if negative for non-diseased
1 if positive for disease

For continuous tests, Y = I[y(X) ≥ θ].
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Confusion matrix

Gold standard
D = 0 D = 1

Y = 0 true negative false negative

P[Y = 0|D = 0] P[Y = 0|D = 1] P[Y = 0]

Y = 1 false positive true positive

P[Y = 1|D = 0] P[Y = 1|D = 1] P[Y = 1]

P[D = 0] P[D = 1]
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Confusion matrix

Gold standard
D = 0 D = 1

Y = 0 true negative false negative
P[Y = 0|D = 0] P[Y = 0|D = 1] P[Y = 0]

Y = 1 false positive true positive
P[Y = 1|D = 0] P[Y = 1|D = 1] P[Y = 1]

P[D = 0] P[D = 1]

false positive fraction: FPF
(aka 1-Specificity)

true positive fraction: TPF
(aka Sensitivity)

PPV = Positive Predicted
Value

NPV = Negative Predicted
Value
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Confusion matrix

Gold standard
D = 0 D = 1

Y = 0 true negative false negative
P[Y = 0|D = 0] P[Y = 0|D = 1] P[Y = 0]

Y = 1 false positive true positive
P[Y = 1|D = 0] P[Y = 1|D = 1] P[Y = 1]

P[D = 0] P[D = 1]

Goal
Estimate conditional and marginal probabilities.
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Disease–centric measures

true/false positive fractions:

TPF = P[Y = 1|D = 1], FPF = P[Y = 1|D = 0]

alternatively, from a hypothesis testing perspective
(H0 : D = 0): FPF: significance and TPF: statistical power of
the test
let the prevalence be ρ = P[D = 1], then the probability of
error is

P[Y , D] = ρ(1 − TPF) + (1 − ρ) FPF

are both needed to characterize the performance
are independent of prevalence (but complete description of
the performance needs the prevalence – the marginal
P[D = 1])
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Predicted values

NPV = P[D = 0|Y = 0],PPV = P[D = 1|Y = 1]

quantify the clinical value of the test: likelihood of disease
when tested positive

perfect test: PPV = NPV = 1; totally uniformative test:
PPV = ρ,NPV = 1 − ρ

Also,

PPV =
ρTPF

ρTPF +(1 − ρ) FPF
NPV =

(1 − ρ)(1 − FPF)

(1 − ρ)(1 − FPF) + ρ(1 − TPF)
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Likelihood ratios

positive diagnostic likelihood ratio: DLR+ =
P[Y=1|D=1]
P[Y=1|D=0]

negative diagnostic likelihood ratio: DLR− =
P[Y=0|D=1]
P[Y=0|D=0]

quantify the increase in knowledge about the presence of the
disease that is gained through the diagnostic test:

pre–test odds (of having the disease): P[D=1]
P[D=0] = ρ

1−ρ

post–test odds: for Y = 1: pre–test odds ×DLR+; for Y = 0:
pre–test odds ×DLR−

DLR+ = TPF
FPF

DLR− = 1−TPF
1−FPF
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Notations

Sample: {(Di ,Yi) | i = 1, . . . , n}

Confusion matrix:

Gold standard
D = 0 D = 1

Y = 0 n−
D̄

n−D n−

Y = 1 n+
D̄

n+
D n+

nD̄ nD
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Cohort studies

Estimation and inference for (FPF,TPF) and (PPV,NPV):

the sample is randomly selected from the population, iid

→ the sample approximates the true proportions

ˆTPF =
n+

D

n+
D +n−D

, ˆFPF =
n+

D̄

n+
D̄

+n−
D̄

ˆPPV =
n+

D

n+
D +n+

D̄

, ˆNPV =
n−

D̄
n−

D̄
+n−D

these estimators are random variables from a Bernoulli trial

→ CIs can be obtained from binomial distribution
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(
Bernoulli trial: experiment with a random binary outcome
binomial distribution: discrete pdf of the number of successes
in n independent Bernoulli trials with success probability p
X ∼ B(n, p) :

P[X = k ] =

(
n
k

)
pk (1 − p)n−k

E[X ] = np

Var[X ] = np(1 − p)

as n → ∞,
X − np√
np(1 − p)

∼ N(0, 1)

)
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simplest CI: normal approximation

other formulas for CI: Wilson score intervals;
Clopper–Pearson interval; Agresti-Coull

Bayesian CIs

Warning

The normal approximation is poor for FPF or TPF close to 0 or 1.
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Example: a test for predicting pCR in breast cancer yields

pCR=0 pCR=1
predicted 0 61 5
predicted 1 24 10

ˆTPF = 0.67, ˆFPF = 0.28
ˆPPV = 0.29, ˆNPV = 0.92

95% confidence intervals: (Note: in R, use the package binom.)

normal approx.: ˆFPF ∈ (0.197, 0.391), ˆTPF ∈ (0.428, 0.905)

Wilson: ˆFPF ∈ (0.208, 0.398), ˆTPF ∈ (0.417, 0.848)

Bayesian: ˆFPF ∈ (0.205, 0.397), ˆTPF ∈ (0.416, 0.860)
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Joint confidence intervals
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what is the joint 100(1 − α)% confidence region for
(FPF,TPF)?
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Rectangular confidence regions

If (Plow ,Pup) and (Qlow ,Qup) are the 1 − α∗ univariate confidence
intervals for two binomial random variables P and Q , then the
rectangle

R ≡ (Plow ,Pup) × (Qlow ,Qup)

is a (1 − α) confidence region for (P,Q), where α = 1 − (1 − α∗)2.

Examples:

95% univariate CI lead to a 90.25% confidence region

for a 95% confidence region, 97.5% univariate CIs are needed
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Case–control studies

sampling is done based on the actual disease status

the sample does not necessarily reflect the true disease
prevalence

(FPF,TPF) and (DLR+,DLR−) are estimated as before
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Assuming that there is an estimate for
the prevalence ρ,

logit PPV = logit ρ + ln DLR+

logit NPV = logit
1
ρ

+ ln
1

DLR−
,

where logit(x) = ln x
1−x .
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Other performance measures

Accuracy = 1 − P[Y , D] =
n−

D̄
+n+

D
n = ρSe +(1 − ρ) Sp

Matthew’s correlation coefficient

MCC =
n+

D n−
D̄
− n+

D̄
n−D

[(n+
D + n+

D̄
)(n+

D + n−D)(n−
D̄

+ n+
D̄

)(n−
D̄

+ n−D)]0.5

MSE, κ, etc., etc.
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Outline

1 Introduction

2 Building classification rules
Statistical framework
Discriminant functions

3 Assessing the performance
Medical application context
Measures of accuracy for binary tests
Measures of accuracy for continuous tests: ROC and AUC
Performance estimation
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A motivating example

Using (FPF,TPF) or (DLR−,DLR+) for comparing tests:

0,0

0,1

1,0
T

P
F

, 
S

e
FPF, 1−Sp 0,0

0,1

1,0

T
P

F
, 
S

e

FPF, 1−Sp

DC

A A BB

DC

single point performance measure: partition the space in 4
regions

region A: better than current test

region D: worse than current test

regions B,C: less clear

note that regions B,C for DLRs are smaller
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Other issues with single point performance metrics:

difficulty in selecting the optimal threshold: different context
may need different operating regimes

additive batch effects may spoil the single–point performance
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ROC curves: Theory

Negative Positive

S(X)

0,0

0,1

1,0
FPF, 1−Sp

T
P

F
, 
S

e

t

continuous test score
Y = y(X)

FPF(t) = P[Y ≥ t |D = 0]

TPF(t) = P[Y ≥ t |D = 1]

ROC =
{(FPF(t),TPF(t))|∀t ∈ R}

limt→∞ FPF(t) =
limt→∞ TPF(t) = 0

limt→−∞ FPF(t) =
limt→−∞ TPF(t) = 1
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Properties of the ROC curves:
monotone increasing function

ROC curve is invariant to stricly increasing transformations of
the scores Y = y(X)

parametric model:

ROC =
{
(α,TPF(FPF−1(α)))|∀α ∈ (0, 1)

}
ROC(0) = 0, ROC(1) = 1, and

∂ROC(t)
∂t

=
fD(FPF−1(t))

fD̄(FPF−1(t))
,

where fD and fD̄ are the probability densities of the scores
within diseased and healthy populations, respectively.
the ROC curve describes the relationship between the two
distributions, and is independent of them
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Note that
∂ROC(t)

∂t
=

P[Y = t |D = 1]

P[Y = t |D = 0]
= LR(t)

→ the likelihood ratio at threshold t .

if LR is monotonically increasing, then the classification rule
of the form LR > t is optimal

the ROC curve based on LR is uniformly above all other
curves

the optimal ROC curve is concave;⇒ its slope is a monotone
decreasing function
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Summary indices

Area under the ROC curve (AUC):

AUC =

∫ 1

0
ROC(t)dt

Properties:

0.5 ≤ AUC ≤ 1

AUC = P[YD > YD̄ ]

→ the probability
of correctly ordering a random pair of
cases (Mann–Whitney–Wilcoxon
U–statistic)

AUC =
∫ 1

0 TPF(FPF−1(t))dt =

−
∫ ∞
−∞

TPF(t)d FPF(t)
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The binormal ROC curve

Assuming normal distributions for the scores:

YD ∼ N(µD , σ
2
D); YD̄ ∼ N(µD̄ , σ

2
D̄

),

ROC becomes:

ROC(t) = Φ

(
µD − µD̄

σD
+
σD̄

σD
Φ−1(t)

)

General form

ROC(t) = Φ(α + βΦ−1(t))

where α, β > 0 and Φ is the standard normal CDF.
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Properties:

AUC = Φ

(
α√

1+β2

)

binormal assumption: there exists some monotone strictly
increasing function h(·) which makes YD and YD̄ normally
distributed

if the ROC is binormal, ROC(t) = Φ(α + βΦ−1(t)), then
h(s) = −Φ−1(FPF(s)) transforms the scores YD and YD̄ into
normally distributed random variables.
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Empirical estimates of ROC

ˆROCe(t) = ˆTPF( ˆFPF
−1

(t)) :

ˆTPF(t) =
nD∑
i=1

I[YDi ≥ t ]

ˆFPF(t) =

nD̄∑
i=1

I[YD̄i ≥ t ]

Empirical estimate

False positive rate
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“ROC” for single threshold
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Empirical estimates of AUC

Mann–Whitney–Wilcoxon U–statistic:

ˆAUCe =
1

nDnD̄

nD∑
i=1

nD̄∑
j=1

(
I[YDi > YD̄j] + 0.5I[YDi = YD̄j]

)
Note: if only one point in the (FPF,TPF) space is given,

ˆAUC = 0.5(1 + TPF−FPF).

Popovici Advanced Microarray Data Analysis



Introduction
Building classification rules
Assessing the performance

Medical application context
Measures of accuracy for binary tests
Measures of accuracy for continuous tests: ROC and AUC
Performance estimation

AUC: sampling variability

Var( ˆAUCe) =
1

nDnD̄
[AUC(1 − AUC) + (nD − 1)(Q1 − AUC2)

+ (nD̄ − 1)(Q2 − AUC2)]

where

Q1 = P[YDi ≥ YD̄j ,YDk ≥ YD̄j]

Q2 = P[YDi ≥ YD̄j ,YDi ≥ YD̄k ].
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Semi–parametric models

Start from
ˆROC(t) = ˆTPF( ˆFPF

−1
(t |α̂)|β̂)

and assume some parametric form for TPF and FPF for which
estimate the parameters from data.
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Ex. of semi–parametric model:

YDi = µD + σDεi

YD̄i = µD̄ + σD̄εi

where ε have mean 0 and variance 1 and follow some distribution
function S.

Ŝ(t) =
1

nD + nD̄

∑
i

I

[
YDi − µ̂D

σ̂D
≥ t

]
+

∑
i

I

[
YD̄i − µ̂D̄

σ̂D̄
≥ t

]
which leads to

ˆROC(t) = Ŝ
(
(µ̂D̄ − µ̂D)/σ̂D + (σ̂D̄/σ̂D)S−1(t)

)
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Ex: empirical vs. semi-parametric estimation
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ˆAUCe ≈ 0.7475; ˆAUCsp ≈ 0.7418
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Why estimation?

finite training data

no formula for CI without distribution assumptions

often, a single data set is available for both model building and
performance measuring

performance estimated on the modeling data is optimistically
biased

Idea
Split (maybe repeatedly) the available data into a training and a
validation set, and assess the performance only on the data that
has not been used in building the model.
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Resampling methods

simple split–sample approach

k–fold cross–validation

Monte–Carlo cross-validation

repeated k–fold cross–validation

leave–one–out

bootstrapping

...
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k−fold cross–validation

separated train and test sets

randomly dived data into k
subsets (folds) – you may
also choose to enforce the
proportion of the classes
(stratified CV)

train on k − 1 folds and test
on the holdout fold

estimate the error as the
average error measured on
holdout folds

TRAIN SET TEST SET

usually k = 5 or k = 10

if k = n ⇒ leave–one–out
estimator

improved estimation:
repeated k−CV (e.g.
100 × (5 − CV))
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k−fold cross–validation

From k folds:

ε1, . . . , εk errors on the test folds

Êk−CV = 1
k
∑k

j=1 εj

estimated standard deviation

Confidence intervals (simple version – normal approximation):

E ≈ Ê ±

0.5
n

+ z

√
Ê(1 − Ê)

n


where n is the dataset size and z = Φ−1(1 − α/2), for a 1 − α
confidence interval (e.g. z = 1.96 for 95% conf. interval)
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0.5
n

+ z

√
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Êk−CV = 1
k
∑k

j=1 εj

estimated standard deviation

Confidence intervals (simple version – normal approximation):

E ≈ Ê ±
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Bootstrap error estimation

Performance estimation

(X,T)

(X1,T1) (XB,TB)

E1 E2 EB

...(X2,T2)

1 generate a new dataset (Xb ,Tb) by resampling with
replacement from the original dataset (X ,T)

2 train the classifier on (Xb ,Tb) and test on the left out data, to
obtain an error Êb .

3 repeat 1–2 for b = 1, . . . ,B and collect Êb .
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Bootstrap error estimation

estimate the error: for example, use the .632 estimator

Ê = 0.368E0 + 0.632
1
B

B∑
b=1

Êb

where E0 is the error rate on the full training set (X ,T).

use the empirical distribution of Êb to obtain confidence
intervals
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LPO bootstrap

Classification rule:

ĥ(x)
C1
≷
C2

θ

where ĥ is the estimated log-likelihood ratio and Ci are the class
labels.
Empirical AUC (conditioned on the training set) can be
approximated by:

ÂUC =
1

n1n2

n2∑
j=1

n1∑
i=1

ψ
(
ĥ(xi |C1), ĥ(xj |C2)

)
where ψ is the Mann-Whitney kernel,

ψ(a, b) =


1 a > b
1
2 a = b

0 a < b
Yousef et al., Estimating the uncertainty in the estimated mean area under the ROC curve of a classifier, PRL 2005
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Estimation of the expected AUC by LPO bootstrap:

ÂUC
LPO

=
1

n1n2

n2∑
j=1

n1∑
i=1

ÂUCi,j

ÂUCi,j =

∑B
b=1 Ibj Ibi ψ(ĥb(xi), ĥb(xj))∑B

b=1 Ibj IbI
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When 2 independent data sets are available, one can estimate:

the expected value of the conditional AUC: expectation over
the population of training sets of the same size;

variability of the performance estimate due to finite train set;

variability of the performance estimate due to finite validation
sets;

Yousef et al., Assessing classifiers from two independent data sets using ROC analysis: a nonparametric approach, PAMI

2006
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What we do learn from CV:

the expected performance of the modeling recipe;

the imprecision in estimating the performance;
we can have a look at:

what are the most stable features
what are the points always missclassified

What we do not learn from CV:

the best features

the best classifier

the best meta–parameters

We obtain these by training on
the full dataset (no CV).
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THE END
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