Confocal Microscopy and Living Cell Studies

Eva Bártová Institute of Biophysics Academy of Sciences of the Czech Republic

Table 7.1 Different Types of Llight Microscopy: A Comparison

Type of Microscopy

Light Micrographs of Human Cheek Epithelial Cells

Brightfield (unstained specimen). Passes light directly through specimen; unless cell is naturally pigmented or artificially stained, image has little contrast.

Brightfield (stained specimen). Staining with various dyes enhances contrast, but most staining procedures require that cells be fixed (preserved).

Fluorescence. Shows the locations of specific molecules in the cell. Fluorescent substances absorb shortwavelength, ultraviolet radiation and emit longer-wavelength, visible light. The fluorescing molecules may occur naturally in the specimen but more often are made by tagging the molecules of interest with fluorescent molecules.

Type of Microscopy

Phase-contrast. Enhances contrast in unstained cells by amplifying variations in density within specimen; especially useful for examining living, unpigmented cells.

Differential-interference-contrast (Nomarski). Like phase-contrast microscopy, it uses optical modifications to exaggerate differences in density.

Confocal. Uses lasers and special optics for "optical sectioning." Only those regions within a narrow depth of focus are imaged. Regions above and below the selected plane of view appear black rather than blurry. This microscope is typically used with fluorescently stained specimens, as in the example here.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Sir George Gabriel Stokes (1819 – 1903) a British physicist and mathematician

XXX. On the Change of Refrangibility of Light. By G. G. STOKES, M.A., F.R.S., Fellow of Pembroke College, and Lucasian Professor of Mathematics in the University of Cambridge.

463

Received May 11,-Read May 27, 1852.

http://rstl.royalsocietypublishing.org/content/142/463.full.pdf+html

Lakowicz et al., 2006

Ishikawa-Ankerhold et al., 2012

Perrin-Jablonski diagram (1935)

- ground state (singlet S₀)
- vibrational relaxation
- internal conversion (IC) \rightarrow the lowest singlet state (S₁)
- intersystem crossing (ISC) \rightarrow triplet state (T₁)

The Nobel Prize in Chemistry 2008 Osamu Shimomura, Martin Chalfie, Roger Y. Tsien

Share this:

The Nobel Prize in Chemistry 2008

Photo: U. Montan Osamu Shimomura Prize share: 1/3

Photo: U. Montan Martin Chalfie Prize share: 1/3

an Photo: U. Montan fie Roger Y. Tsien 8 Prize share: 1/3

The Nobel Prize in Chemistry 2008 was awarded jointly to Osamu Shimomura, Martin Chalfie and Roger Y. Tsien *"for the discovery and development of the green fluorescent protein, GFP"*.

Photos: Copyright © The Nobel Foundation

https://www.nobelprize.org/nobel prizes/chemistry/laureates/2008/

Aequorea victoria

http://photobiology.info/Zimmer.html

Fluorophores

- chemical compounds: re-emit light upon light excitation
- absorb light (a particular wavelength) → transiently excited → return to ground state
- contain several combined aromatic groups, or plane or cyclic molecules with several π groups
- not all energy is emitted as fluorescence, some is dissipated as heat or vibrational energy

Ishikawa-Ankerhold et al., 2012

Carl Zeiss Micro_Imaging GmbH

History of Microscopy:

Marvin L. Minsky (1927-2016)

Share this:

The Nobel Prize in Chemistry 2014

Photo: A. Mahmoud Eric Betzig Prize share: 1/3

Photo: A. Mahmoud Stefan W. Hell William E. Moerner Prize share: 1/3

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hell and William E. Moerner "for the development of super-resolved fluorescence microscopy".

Prize share: 1/3

www.sciencelearn.org.nz

Numerical Aperture (NA)

• ability to gather light and resolve fine specimen detail at a fixed object distance

- most oil immersion objectives \rightarrow a maximum numerical aperture of 1.4
- the most common numerical apertures ranging from 1.0 to 1.35

Numerical Aperture (NA)

The Abbe diffraction limit

http://zeiss-campus.magnet.fsu.edu/articles/basics/resolution.html

http://www2.optics.rochester.edu/workgroups/novotny/snom.html

The Abbe diffraction limit

http://www.kurzweilai.net/the-nobel-prize-in-chemistry-2014-beyond-the-diffraction-limit-in-microscopy

Confocal Microscopy

- basic concept of confocal microscopy (1950s)
- advances in computer and laser technology

Marvin L. Minsky (1927-2016)

http://fluoview.magnet.fsu.edu/theory/confocalintro.html

- **1. Laser Excitation Source**
- 2. Reflected through dichroic mirror
- 3. Into lens (Objective)
- 4. Focussed to the point in specimen
- 5. Emitted light (from specimen)
- 6. Into same lens
 - 7. Beam splitter
 - 8. Detector (Photomultiplier)

Confocal Microscope

Nipkow / Petráň Disk

Architecture

Mojmír Petráň (1923)

Confocal Microscope Scanning System Nipkow disk

Nipkow Disk

SIM (Structured Illumination Microscopy)

SIM (Structured Illumination Microscopy)

Advantages

- 2x increase in spatial resolution over wide-field microscopy \rightarrow lateral (in xy) ~100 nm
- 3D imaging at fast frame rate
- labelling using conventional fluorophores
- up to 3 simultaneous colour imaging (other super-resolution microscopy modalities are often limited to 2)

Disadvantages

- artefacts generated during image reconstruction
- sensitive to out-of-focus light and so difficult on thick or too densely labelled samples.

Stimulated emission depletion (STED) microscopy

- super-resolution microscopy
- overcomes the diffraction limit of light microscopy

The Nobel Prize in Chemistry 2014 Eric Betzig, Stefan W. Hell, William E. Moerner

Share this:

The Nobel Prize in Chemistry 2014

Photo: A. Mahmoud Stefan W. Hell Prize share: 1/3 Photo: A. Mahmoud William E. Moerner Prize share: 1/3

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hell and William E. Moerner *"for the development of super-resolved fluorescence microscopy"*.

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/

Stimulated emission depletion (STED) microscopy

- switching off the fluorescence by intense laser light \rightarrow in outer regions of diffraction limited excitation focus
- detected fluorescence in center excitation focus \rightarrow high resolution images

http://www.leica-microsystems.com/sciencelab/quick-guide-to-sted-sample-preparation/

Stimulated emission depletion (STED) microscopy

Applications

- ✤ Structural analysis → instead of Electron Microscopy (EM)
- ☆ Correlative methods → combining AFM + STED
- ✤ Multicolor
- ★ Live-cell (ONLY plasma membrane with organic dyes) → RECENTLY: multicolor live-cell STED (pulsed far-red laser)

Single-Molecule Localization Microscopy (SMLM)

Thorley et al., 2014

Deconvolution

https://svi.nl/Deconvolution

http://meyerinst.com/imaging-software/autoquant/index.htm

Electron Microscopes	Light Microscopes
Maximum resolution is 0.5nm	Maximum resolution is 200nm
Useful magnification is up to 250,000x in TEM, 100,000x in SEM	Useful magnification is around 1000x (1500x at best)
Wavelength is 1.0nm.	Wavelength is between 400-700nm.
Highly detailed images, and even 3D surface imaging.	See reasonable detail, with true colours.
Can see organelles of cells, bacteria and even viruses.	Good for small organisms, invertebrates and whole cells.

e⁻	TEM	SEM	
sample	Electron beam passes through thin sample.	Electron beam scans over surface of sample.	detector
detector	Specially prepared thin samples are supported on TEM grids.	Sample can be any thickness and is mounted on an aluminum stub.	sample
TEM			SEM
5,5 nm 🔶	Specimen stage halfway down column.	Specimen stage in the chamber at the bottom of the column.	NEXA
, / \	Image shown on fluorescent screen.	Image shown on TV monitor.	A BAR
	Image is a two dimensional projection of the sample.	Image is of the surface of the sample	

https://www.majordifferences.com/2016/08/difference-between-sem-and-tem.html

Laboratory of Cellular Biophysics (2009)

Leica TCS SP-5 X

Leica TCS SP-8 SMD

Laser Scanning Confocal Microscope

- cultivation chamber (5% CO₂ and temperature control, Live cell experiments)
- WLL (470-670 nm, Image acquisition)
- Argon laser (Fluorescence Recovery After • Photobleaching, FRAP)
- UV-lasers (355 nm and 405 nm, DNA repair
 UV-laser (405 nm, FLIM-FRET) studies)

- cultivation chamber (5% CO₂ and temperature control, Live cell experiments)
- WLL (470-670 nm, Image acquisition, FLIM-FRET)
- Argon laser (Fluorescence Recovery After Photobleaching, FRAP)
- **FLIM-FRET** •

Department of Molecular Cytology and Cytometry

Assoc. prof. Eva Bártová, Ph.D.

https://urtechtransfer.files.wordpress.com/2012/07/ctsi1.jpg

Eukaryotic cells (10 to 100 µm)

FISH:

- to form a diagnosis,
- to evaluate prognosis,
- or to evaluate remission of a disease, such as cancer

Examples of diseases:

- chronic myelogenous leukemia, t(9;22)(q34;q11)
- acute lymphoblastic leukemia, t(12;21)
- Down syndrome
- sperm cells: an abnormal somatic or meiotic karyotype
- does not require living cells
- quantified automatically (a computer counts)

2D and 3D FISH

3D reconstruction of CT

Weierich et al., (2003)

Down syndrome

Chromosome prepared using FISH technique

https://www.pinterest.co.uk/explore/in-situ-hybridization/

	2		4			7		9
10	11	12	9 . 13	. 	15	16		18
	10					Y	or	

http://swissperinatalinstitute.com/en/4_genetisch.html

Transfection

• transfer of non-viral genetic material into eucarytic cells

Goal: to express a particular gene in the host cell

Used: to study gene expression regulation, protein function, gene silencing or gene therapy

Transient Transfection

Transfectin Lipid reagent Plated cells Plated cells Plated cells Mix; add DNA-liposome complexes directly to cells (100 µl /24-well plate) Aspirate medium from the cells Complexes directly to cells (100 µl /24-well plate) Complexes directly to cells (100 µl /24-well plate) Complexes directly to cells (100 µl /24-well plate) Complexes directly to cells (100 µl /24-well plate)

http://www.biorad.com/webroot/web/images/lsr/ solutions/technologies/gene_expression/pcr/tec hnology_detail/gxt42_img1.jpg

Stable Transfection

Transient Transfection

a1 a2 • HP1α **HP1**β BMI1 е С d **RPA194** TRF1 UBF g f1 f2 H₂B H4 Ub

Stixová et al., 2011

Stable Transfection

Photoconversion

Dendra2: improved green to red photoswitchable fluorescent protein

- derived from octocoral *Dendronephthya* sp. (Gurskaya et al., 2006)
- low phototoxicity

Normalized excitation (thin lines) and emission (thick lines) spectra for non-activated (green lines) and activated (red lines) Dendra2.

Dendra2 spectra in Excel format can be downloaded at www.evrogen.com/ Dendra2.shtml.

Photoconversion

- monitoring selective cell fate
- real-time tracking protein dynamics (movement, degradation, etc.)

H4-Dendra2

Cvackova et al., 2009

Cvackova et al., 2009

Fluorescence Recovery After Photobleaching (FRAP)

Movement (exchange (un)bleached) of molecules

- Diffusion
- Active transport

Fluorescence Recovery After Photobleaching (FRAP)

- (Im)mobile fraction
- τ_D diffusion time
- F_i fluorescence before bleaching F₀ fluorescence just after bleaching
- F_∞ fluorescence in bleached region after full recovery
- Mobility = diffusion coeff. D \rightarrow related to τ_D diffusion time

FRAP in UV-damaged chromatin with HP1 β

Heterochromatin protein 1 (HP1)

- formation of transcriptionally inactive heterochromatin
- three HP1 protein family members in humans HP1α, HP1β and HP1γ,

Single particle tracking analysis

- Mean Square Displacement (MSD)
- Area of minimal enclosing ellipse (μm²)

	HP1β
Peripheral foci: control	0.22 ± 0.12 (n = 10)
Peripheral foci: TSA	0.13 ± 0.10 (n = 19)
Peripheral foci: actinomycin D	0.59 ± 0.48 (n = 4)
Peripheral foci: vorinostat	0.17 ± 0.10 (n = 23)
Central foci: control	0.15 ± 0.07 (n = 7)
Central foci: TSA	0.16 ± 0.09 (n = 16)
Central foci: actinomycin D	0.69 ± 0.46 (n = 6)
Central foci: vorinostat	0.21 ± 0.12 (n = 13)
Area mean: control	0.19 ± 0.11
Area mean: TSA	0.14 ± 0.09
Area mean: actinomycin D	0.65 ± 0.44
Area mean: vorinostat	0.18 ± 0.11

Stixová et al., 2011

Immunofluorescence

- fixed cells and tissues
- specifically labeling biological macromolecules → determine the localization and function of sub-cellular proteins, without affecting cell physiology

Example of staining of F-actin filaments (green) and nucleoli (red) in mouse fibroblasts (DNA blue) (G. Šustáčková)

The most common protocols:

Direct Immunofluorescence

Indirect Immunofluorescence

http://www.sinobiological.com/principle-of-immunofluorescence.html

Nuclear envelopathies:

 a group of rare genetic disorders caused by mutations in genes encoding proteins of the nuclear lamina

Huber and Gerace, 2007

SYNDROME	SYMPTOMS	MUTATION IN
Atypical Werner syndrome	Progeria with increased severity compared to normal Werner syndrome	Lamin A/C
Barraquer-Simons syndrome	Lipodystrophy	Lamin B
Buschke-Ollendorf syndrome	Skeletal dysplasia, skin lesions	LEM domain containing protein 3
Cardiomyopathy dilated with quadriceps myopathy	Cardiomyopathy	Lamin A/C
Charcot-Marie-Tooth disease	Neuropathy	Lamin A/C
Emery-Dreifuss muscular dystrophy	Skeletal and cardiac muscular dystrophy	Emerin, Lamin A/C
Hutchinson-Gilford progeria syndrome	Progeria	Lamin A/C
Pelizaeus-Merzbacher disease	Leukodystrophy	Lamin B
Broers et al., 2006		Sehnalova et a

DNA repair studies

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome.

1. an irreversible state of dormancy, known as senescence

2. cell suicide, also known as apoptosis (programmed cell death)

3. unregulated cell division, which can lead to the formation of a tumor that is cancerous

Share this:

The Nobel Prize in Chemistry 2015

Photo: A. Mahmoud Tomas Lindahl Prize share: 1/3

Photo: A. Mahmoud Paul Modrich Prize share: 1/3

Photo: A. Mahmoud Aziz Sancar Prize share: 1/3

The Nobel Prize in Chemistry 2015 was awarded jointly to Tomas Lindahl, Paul Modrich and Aziz Sancar *"for mechanistic studies of DNA repair"*.

Methods DNA repair studies

Single-strand damage

Base Excision Repair (BER)

repairs damage to a single base caused by oxidation, alkylation, hydrolysis, or deamination

Nucleotide Excision Repair (NER)

recognizes bulky, helix-distorting lesions such as pyrimidine dimers and 6,4 photoproducts

Mismatch Repair (MMR)

corrects errors of DNA replication and • recombination that result in mispaired (but undamaged) nucleotides

Hoeijmakers et al., 2001

Methods DNA repair studies

Hoeijmakers et al., 2001

Double-strand breaks

Non-Homologous End Joining (NHEJ)

Homologous Recombination (HR)

Microhomology-Mediated End Joining (MMEJ)

Methods DNA repair studies Irradiation experiment **Proteins** of interest BRCA1 **Microirradiation** Cell population **ROIs** Single cells **UVC** lamp ⁶⁰Co **UVA** lamp **UV-laser UV-laser** (355 nm) (405 nm) Leica TCS SP-5 X

DNA repair studies

- activation of DNA damage response (DDR) system
- Phosphorylation Ser-139 residue histone variant H2AX (γH2AX) = early cellular response to induction DSBs

Leica TCS SP-5 X

• cyclobutane pyrimidine dimers (CPDs)

DNA repair studies

- PCNA (Proliferating cell nuclear antigen)
 - = a DNA clamp
 - = processivity factor for DNA polymerase δ
 - = essential for replication
- **53BP1** (Tumor protein p53 binding protein 1)
 - = vital in promoting NHEJ pathway
 - = protecting broken DNA ends from extensive resection

Förster Resonance Energy Transfer (FRET)

Ishikawa-Ankerhold et al., 2012

Förster Resonance Energy Transfer (FRET)

 a distance-dependent physical process by which energy is transferred nonradiatively from an excited molecular fluorophore (the donor) to another fluorophore (the acceptor) by means of intermolecular long-range dipole-dipole coupling (Förster, 1965).

http://research.chem.psu.edu/txlgroup/RESEARCH.html

Förster Resonance Energy Transfer (FRET) Fluorophore properties

A good fluorophore

- Large extinction coefficient (~ 10⁵ cm⁻¹M⁻¹)
- High fluorescence quantum yield (> 0.8)
- Large shift of the fluorescence vs. absorption (Stokes shift > 40 nm)
- Low quantum yield of photobleaching (< 10⁻⁶)

Förster Resonance Energy Transfer (FRET)

Leica TCS SP5 X

protein-protein interactions

FRET Acceptor Bleaching

- donor "de-quenching" in presence of an acceptor
- comparing donor fluorescence intensity in the same sample before and after destroying the acceptor by photobleaching

$$FRET_{eff} = (D_{post} - D_{pre}) / D_{post}$$

Förster Resonance Energy Transfer (FRET)

Leica TCS SP5 X

protein-protein interactions

FRET Acceptor Bleaching

Förster Resonance Energy Transfer (FRET)

Disadvantages of FRET

- fluorescent probes + molecule of interest → creation of fusion proteins = mutation and/or chemical modification of the molecules under study
- speciment movement (during the bleaching procedure)
- photo-bleaching once in sample
- donor fluorophore emission bleed through \rightarrow acceptor emission channel

Fluorescence Lifetime Imaging (FLIM) - Förster Resonance Energy Transfer (FRET)

Fluorescence Lifetime (τ)

 average time a fluorophore remains in excited state before returning to the ground state by emitting photon

Dysli et al., 2017

- **1.** Start the clock \rightarrow laser pulse (picosecond frequency)
- 2. Stop the clock \rightarrow 1st photon that arrives at the detector
- 3. Reset the clock \rightarrow wait for start next signal

- Fluorescence lifetime histogram
 - Fit a exponencial decay \rightarrow get the fluorescence lifetime (in ns)

$$E = 1 - \frac{\tau_{FRET}}{\tau_{noFRET}}$$
$$E = 1 - \frac{I_{\text{DA}}}{I_{\text{D}}} = \frac{1}{1 + \left(\frac{r}{R_0}\right)^6} = 1 - \frac{\tau_{\text{DA}}}{\tau_{\text{D}}}$$

Fluorescence Lifetime Imaging (FLIM) - Förster Resonance Energy Transfer (FRET)

SymPhoTime 64 | PicoQuant

Leica TCS SP-8 SMD

Legartova and Suchankova et al., JoVE, 2017

Fluorescence Lifetime Imaging (FLIM) - Förster Resonance Energy Transfer (FRET)

Fluorescence Lifetime Imaging (FLIM) - Förster Resonance Energy Transfer (FRET)

Disadvantages of FLIM

- high repetition rate vs. long decay \rightarrow fluorescence decay in pulse period
- count rates pile-up problem \rightarrow "dead time" of electronics

SOLUTION: keep probability of detecting more than one photon per laser pulse low

Fluorescence Lifetime Imaging (FLIM) - Förster Resonance Energy Transfer (FRET)

The challenges of FLIM

- At every pixel there are contributions of several fluorescent species, each one could be multi-exponential.
- To make things worse, we can only collect light for a limited amount of time (100-200 microseconds per pixel) which result in about 500-1000 photons per pixel.
- This is barely enough to distinguish a double exponential from a single exponential decay.
- Resolving the decay at each pixel in multiple components involves fitting to a function, and is traditionally a complex computational task "for experts only".

A major problem is data analysis and interpretation

Enrico Gratton Professor of Biomedical Engineering and Physics Laboratory for Fluorescence Dynamics University of California, Irvine

- 2) FRET efficiencies follow a "quenching trajectory"
- Quantitative FRET efficiencies can be obtained from the position on the quenching trajectory

https://biocenterat-my.sharepoint.com/:p:/r/personal/lijuan_zhang_vbcf_ac_at/_layouts/15/Doc.aspx?sourcedoc=%7Bd0e7c7c8-a72e-42c6-8ff7-599b2235447f%7D&action=edit

SCIENCE STUDENT

How my friends see me

How my family sees me

How I see myself

How society sees me

How religious people see me

How it really is

Department of Molecular Cytology and Cytometry

Assoc. prof. Eva Bártová, Ph.D.

Jana Krejčí, Gabriela Šustáčková, Andrea Horáková, Lenka Stixová, Petra Řezníčková-Podloučková, Jana Suchánková, Alena Svobodová, Denisa Komůrková, Michal Franek, Jana Poláková, Veronika Janečková, Alžběta Kružicová, Jana Kůrová