3.1.1 Precarnbrian............... 89 Pre-Cadomian units............. 89 Cadomian units.............. 93 Moldanubicum.............. 93 Moravicum............... 96 Upper Proterozoic of the Barrandian........ 96 The Krušné hory region........... 100 The eastern part of the Bohemian Massif....... 101 The Krkonoše-Orlické hory region......... 102 3.1.2 Lower Palaeozoic.............. 104 Cambrian................ 104 Ordovician................ 108 Ordovician in the Barrandian.......... 108 Other occurrences of the Ordovician........ 109 Silurian................ 112 Silurian in the Barrandian........... 115 Other occurrences of the Silurian......... 115 Devonian........, .117 Devonian in the Barrandian.......... 117 Other Devonian occurrences in Bohemia....... 120 Devonian of the Moravo-Silesian region....... 121 3.1.3 Upper Palaeozoic and Triassic.......... 134 Lower Carboniferous............. 134 The Moravo-Silesian region . ......... 134 The Lower Silesian Basin........... 139 Upper Carboniferous (Silesian). Permian and Triassic..... 142 3.1.4 Jurassic and Cretaceous............ 149 The Jurassic in the Bohemian Massif......... 149 The Cretaceous in the Bohemian Massif........ 153 Lower Cretaceous — the Rudice Formation....... 153 The Bohemian Cretaceous Basin......... 153 The Cretaceous of the Osohlaha area........ 158 Cretaceous in the South Bohemian basins....... 158 3.1.5 Tertiary................ 161 Basins at the foot of the Krušné hory Mts........ 102 Tertiary of western Bohemia.......... 166 The Zitava basin............. 167 The Tertiary in the basins of southern Bohemia..... 168 Tertiary in Silesia............. 169 3.1.6 Quaternary........... . . . . 169 The Early Glacial (Donau, Biber, Prelegelen)....... 169 The Early Interglacial (Donau—Günz, Tegelen)...... 176 The First Glacial (Günz, Menap).......... 176 The First Interglacial (Günz—Mindel, Cromer)...... 177 The Second Glacial (Mindel, Elster)......... 178 The Second Interglacial (Mindel—Riss, Holstein, s.L) .... 179 The Third Glacial (Riss, Saale, s.I.)......... 179 The Third Interglacial (Riss—Würm, Eemian)...... 181 The Last Glacial (Würm, Weichsel, Vistulian glaciation) .... 181 Holocene................ 182 3.2 The stratigraphic development of the West Carpathian unit* la Moravia . . 18? 3.2.1 Triassic................ 182 3.2.2 Jurassic................ 183 3.2.3 Cretaceous................ 183 3.2.4 Palaeogene................ 189 3.2.5 Neogene................ 192 4. Sedimentary history at the Bohemian Massif (Z. Kukal)...... 201 4.1 Vertical variability of sedimentation........... 203 4.2 Sedimentary environment............. 207 4.3 Palaeoclimate............., > > 210 4.4 Tectofacies................. 212 4.5 The development of conglomerates, sandstones and clayey sediments . . 213 Conglomerates............... 213 Sandstones................ 216 Clayey sediments.............. 220 Black shales and red beds........... 224 5. Magmatic history (.!. Dudek, M. EVins)............ 229 5.1 Plutonic complexes............... 231 5.1.1 Melaplutonites of uncertain age.......... 232 5.1.2 Plutonitcs associated with Cadomian orogeny ....... 334 5.1.3 Hercynian plutonism and its relation to tectonics...... 237 5.1.4 Neoidic plutonites............. , 244 5.2 Volcanic complexes............... 245 5.2.1 Metavolcanites of uncertain age in the crystalline areas .... 245 5.2.2 Yolcanism connected with the Cadomian orogeny (Upper Proterozoic — Cambrian)............... 246 5.2.3 Volcanism related to the development of Lower Palaeozoic sedimentary areas................. 248 5.2.4 Hercynian late-orogenic volcanism......... 25*! 5.2.5 Neoidic volcanism associated with Saxonic tectonics..... 2'56 5.2.6 Neoidic volcanism in the Moravian part of the West Carpathians . . 3(51 6. Metamorphic history ('if. Suk).............. 263 6.1 Pre-Cadomian metamorphism............. 266 6.2 The Cadomian metamorphic stage........... 2438 6.3 Problem of the Caledonian metamorphism......... 278 6.4 The Hercynian metamorphic stage........... 2180 6.5 Alterations of the platform stage............ 287 7. Tectonic development (M. Malkovsky eel; M. Malkovsky, T. Buday, J. Dvorak, 0. Kodym, M. Suk) ............... 289 7.1 The development of the principal geotectonic units of the Bohemian Massif , 291 7.1.1 Pie Cumbrian basement of the Bohemian Massif...... 291 7.1.2 The Hercynian structural layer.......... 293 7.1.3 The Neoidic structural layer........... 300 7.2 Tectonic development of the West Carpathians on the Moravian territory . 305 7.2.1 The basement of the West Carpathians in Moravia..... 306 7.2.2 The Flysch Belt (Outer-Carpathian allochthon)...... 307 7.2.3 The Carpathian foredcep............ 310 7.2.4 The Vienna Basin.............. 3)1 8 9 7.3 Opinions on the global causes of the origin and differentiation of the tectonic units....... .........312 7.3.1 The gee-synclinal model............ 312 7.3.2 The subduetion model............. 315 7.3.3 The subftuence model............. 318 7.3.4 The block model.............. 320 8. Nenldlc geo morphological development (J. Tyracek, A. Zeman)..... 32,i 8.1.1 Cretaceous..............., 327 8.1.2 Tertiary................ 331 8.1.3 Quaternary............. . 340 References ................... 361 Preface The territory of the Czech Socialist Republic is a classical area of ancient prospecting and modern geological investigation. The history of these activities covers almost 5000 years, beginning at the lime of Celts and Slavs who had searched for and mined gold, graphite and iron, and continuing with the outstanding researches of G. Agricola and .1. Barrandc. Modern geological, geophysical and geoehemical studies contribute greatly to the raw-material aud energy hasis of the country and to international science. Tji« modern history <>l geology in Czechoslovakia may he divided into two Íperiods: the earlier period of classical geology represented by Ketluer's school culminating in the preparation of the 23rd Geological Congress in Prague. This opened a new stage introducing into geology exact geophysical and geoehemical "3Á data. This book is one of the first summarizing evaluations of the results m achieved in this period; it shows the direction and progress of Czechoslovak geology during the last twenty years and demonstrates that geological knowledge then increased at a greater rate than at any previous time. From llie volume il is apparent that the. direction of geological activity towards the cusurance of fuel-energy and raw-material resources made possible a more intensive development of the earth sciences, which thus could keep puce with progress in tin1 leading countries of the world. in tut' lirst part of this publication the team of authors generalize the results of regional, geophysical and geoehemical investigations, providing a picture of the regional and deep structure oi the region, its stratigraphy and geological history. Much attention is devoted to the origin of useful mineral accumulations during the magnialic. sedimentary and metamorphic processes. Tt is mainly in the study of these problems, and in the chapter on tlie deeper structure of the earth's crust that progress is most apparent, compared with the literature of the 1960's. The second part of the book contains an overview of promising mineral deposits in the territory of the Czech Socialist Republic. In this part I would attribute importance to the finding that the Hcrcynian deposits of Sn-W, poly-inetallic and gold deposits represent reactivated earlier, Precambrian accumulations of the elements. This could lead to the discovery of stratiform deposits poorer in metal content that are associated with older rock complexes. The prospects for oil and natural gas occurrences in Moravia and discoveries of coal-bearing formations in central and northern Bohemia (the areas around Mělník, Slaný and at the foot of the Krkonoše Mls.} and in piedmont of the J? Beskydy Mts. in Moravia arc also relevant. The appraisal of the future of industrial and unconvential mineral materials brings new possibilities and tasks ' for the Czech geological service. 10 11 The authors should be congratulated upon this scientific learn work, which is a summary of geological activity in the recent period ajid an important document contrihuting to the recognition of natural conditions of our country. As well as being highly instructive lo the experts, it will be readily understandable to a wide circle of readers. Prague. March 19, 1982 Dr. Josef Pravda 1. Introduction More than two decades have passed since the publication of the "Tectonic Development of Czechoslovakia" and the "Regional Geology of Czechoslovakia". These two books presented a summary of the results achieved in geological investigations, which were graphically expressed in a set of general geological maps. These depicted the ideas and opinions of geologists on the composition and structure of the Bohemian Massif and the Carpathian mountain system, as they were visualized in the sixties of this century. Knowledge of world and European geology, however, has advanced at a high rate during the last twenty years. It has brought a number of new theories and information which have assisted in refining existing hypotheses and in the solution of intricate structural problems. The coming generation of young geologists has accepted the new theories and findings developed abroad and applies them in detailed investigations. The regional-geological studies of the Bohemian Massif and the Carpathian mountain system combined with detailed geological mapping on a scale of 1 ; 25,000, and complemented with geophysical and geochemical research, detailed petrographical, palaeontological investigations and determination of radiometric ages of rocks, have brought many remarkable results. These complement and modify earlier opinions and contribute to a more objective recognition of the geological setting and structure of the country. The present publication dealing with the Bohemian Massif and the Moravian part of the Carpathians provides a brief summary of the new data concerning the age, composition and structure of the territory of the Czech Socialist Republic. The geological conditions of both the crystalline basement and platform cover are discussed and the stratigraphy of the sedimentary formations of the latter is defined with more precision. Compared with the Regional Geology and Tectonic Development of Czechoslovakia, the publication is somewhat differently divided. It has seven main chapters, the most interesting of which are the chapters on the deep structure, and the magmatic and metamorphic history. Comparison of the present state of knowledge of the geology and structure of the regions studied with opinions held some twenty years ago shows a definite progress and makes this publication worthy of the attention of experts both at home and abroad. Prague, March 19, 1982 Dr. J. Svoboda 12 13 2. Geological structure of the territory of the CSK 2.1 Position of the geological units in the structure of Europe On the territory of the Czech Socialist Republic three basic units of the geological structure of Europe are represented (Fig. 2.2): — the Bohemian Massif, which is the easternmost part of the European llercynides (Meso-Europc), huilds up Bohemia and the western half of Moravia; — Brunovistulicum (the Brno unit), which is a part of the Pre Cambrian basement of both the llercynides and Alpides (Palaeo-Europe) at the eastern margin of the Bohemian Massif and in the West Carpathians, forming the south-western margin of the Ukrainian Shield; — the West Carpathians, which belong to the Alpine-Carpathian orogenic belt (Nco-Europe). 2.1.1 The Bohemian Massif * The Bohemian Massif forms iu Central Europe a block of rhombic shape, which sends two projections towards .\W — the Harz and the Thüringer Wald. The surface delimitation of the Massif is in places well defined and unambiguously determinable, in places indistinct and placed more or less conventionally alon^ the Permian—Triassic boundary. In the NW the Bohemian Massif is hounded by the marginal fault of the Thüringer Wald and the Frauconiau, Keilberg and Danubtau faults. In the NE ihe fault of the middle Odra is regarded as the boundary of the Massif. In the N beyond Bohemia, on the territory of the German Democratic Republic (C»=D.R.) and Poland (P.L.R.), the Bohemian Massif submerges beneath the Triassic and younger platform sediments. In the S and SE, the limitation, unless formed by faults, is defined by the boundary with the Brunovistulicum and by the boundary of the continuous Miocene filling of the Alpine and Carpathian foredeeps. Miocene sediments penetrate beyond this limit far into the Bohemian Massif through ancient valleys, and tho Pliocene deposits mainly iu the transverse structure of the Upper Moravian . tectonic depression. The prc-platform complexes of the Bohemian Massif extend towards SW, NW and NF under the thick sedimentary cover of the West European Platform. The Bohemian Massif is the easternmost so far known part of the Variscan (more strictly L i g u r i a n — Mold a.-^ ' nuhia n) branch oft he European llercynides (PI. I). In all 2.1 Mil* HiU, C«W siUM Mu. Uueüe b*»* Photo by J. Svoboda classical concepts, from the scheme of Suess (1903) to thai of Auboum (1965), 17 v tfl n> Ol ÍN f ~* ~ 1 ir: o í IT^ A i £h Ol — s +*; i pí- g is. 3 3 i = F S = liš 13- - « « 'É ^ — Q. torj-j - ň : * ti = c =- -s — «*■ .5 c — ^« = .5 = j: ^ X aa it is considered to be the central part of the Mercynian orogen with one or two wings erf its divergent structure; in the mohilislic conceptions it is generally placed on the northern margin of line so-called South European continent separated from northern Europe by the ocean (Fig. 7.3). However, many interpretations of the position of the Bohemian Massif in the geological structure of Europe are based on mistaking the Ilercynian elements for the earlier, chiefly Cadomian erogenic elements. The belt of Cadomian orogeny which had consolidated the basement of the Bohemian Massif can be traced from Central Europe towards west and east (PI. I), ll extends westwards through the southern part of the Schwarzwald to the Vosges. the Massif Central francais, the Armorican Massif and farther into southern England. It is presumed that it continues across the Atlantic Ocean into New Brunswick (the Avalonian—Cadomian orogenic belt). This continuation is by some authors {e.g. Rast -Grant 1973) mistaken for the extension of the Hercynides which, according to predominating concepts, turn to the Iberian Peninsula (PI. I). In the European part Zoubek (1972) and Zoubek -Vyskočil (1971) differentiate two zones of the belt: the Moklanubian—Arvernian and the Barrandian—Brioveriau, which are separated by a system of Precambnan deep faults forming the Peri moklanubian lineament (Fig. 2.2). According to Zoubek and Vyskočil, this dividing line within the Bohemian Massif coincides with the Moldanubian/Proterozoic boundary (i.e. the Moravian line—Labe line-Central Bohemian suture). In the opinion of other writers it corresponds to the tectonically disrupted zone of S\V—NE segments, marked by doubled magnetic anomalies and anomalous development of magmatism and metallogeny (Bernard 1978). The continuation of the Cadomian orogenic belt towards E and NE is assumed by Pouba (1970) and Nečacv (1908). On the basis of the correlation of lilhofacies development of banded iron ores in the Precambrian of the Bohemian Massif and in the western part of the Fennosarinatian platform, Pouba postulates its extension up to Minsk; N e č a e v (op. cil.) correlates the lithostratigraphic units of the Bohemian Massif with the Vendian units of the northern margin of the Ukrainian Sbield. Irrespective of the effects of the Cadomian basement and the later tectonics, the following zones of the Ilercynian orogenic belts arc distinguished in the Bohemian Massif: the Moldanubian zone, which is regarded as the central one (Stille's Alemanian threshold extending into il) andth« S-a x-ot h u r i n g i a n zone. The R heno h ere y nian zo.ne and the zone of Ilercynian foredeeps are beyond the territory of the Czech Soc. Republic. Farther cast- and south-eastwards there are the M o r a v o - S i 1 e s i a n zone (Moravicum and Silesicum in the sense of Kossmat) and the Sudeticum. These zones probably form the basement 18 19 of the Alps (I. a u r e n t 1972, Wieseneder et al. 1976), where they crop out in places (e.g. in the Ilelveticum — von Raumer 1976). Close analogies between the eastern margin of the Bohemian Massif and the southern margin of the Massif Central francais in the Montague Noire are in accord with the above said (Suk - Weiss 1981). The Carboniferous sediments in the Alps also sliow the character of the southern Inner Molasse of the Vuriscan branch (Krebs -■Wachendorf 1973). The late stage of the Hercynian orogeny in the Bohemian Massif is characterized by disintegration into blocks of different development (formation of intra-montane depressions with terrestrial sediments, autonomous movement of blocks, different thermal character of blocks in the Permian etc.). The termination of the Hercynian development is placed in the Upper Carboniferous, in the Permian or Triassic. It is. however, indisputable that from the Late Permian (which is an important time-boundary for all European regions) the Bohemian Massif has been an Epihercynian platform rejuvenated in Saxonia« limes (Malkovskv 1979). 2.1.2 Brunovistulicum (the Brno unit) The crystalline basement at the eastern margin of the Bohemian Massif, east of the Mnravo-Silesian tectonic zone and beneath the Carpathian foredeep and (he Palaeozoic of Moravia, was formerly thought to be somewhat loosely connected with the Bohemian Massif (Zapletal 1926, Zoubek 1948), although different geological and tectonic features have been recognized. Only recently has the investigation of the deep structure (Dudek 1901, 1980, Tomšík 1972), geochronometric studies (Dudek - Mel ková 1975, Scharbert - Batik 1980) and interpretation of the deep structure iiie-ránek 1971, Roth 1977, Slelcl-Weiss 1978, Weiss 1977) shown that it is a separate geological unit, very likely belonging to the Fenno-Sarmatian Platform (Fig. 2,3). This connection has been corroborated by borings to the basement of the Upper Silesian basin both in Poland and Moravia, and evidence exists (Ro t h 1977) that the unit continues eastwards in the hasement of the West Carpathians and links directly on the northern part of the Ukrainian Shield. In this respect our definition of the Brno unit differs from the concept of Dudek (1980), who considers the Brunovistulicum to be the southwestern part of the Brno unit. A continuity of the crustal structural elements in this area lends support to this opinion. As the unit had not been reworked either by Hercynian or Alpine orogeny, it has preserved the original, late Prolcrozoic character. Some of its parts may have been incorporated into the Hercynian structure. Tomšík (1972), Tor example, noted certain analogies between the gneisses in the Brunovistulicum near Ostrava and those in the MAGDEBURG O 2.3 Interpretation of the Brno unit in terms of a projection "f the Ivisl European platform J — East European platform and Brno unit; 2 — Bohemian Massif; 3 — Alpine-Carpathian system; 4 — fault zones (.1. Weiss, orig.) Desna dome, and Jaros - M'tsaf (1974, 1975) an analogy of the Tisnov Brunides in the Svratka dome. D u d e k (1980) suggests that the Brno unit may continue beneath the Moravicum and Moldariubicum, which is also indicated by anomalous phenomena in the earth's crust along the eastern margin of the Bohemian Massif (S u k - W e i s s 1981). 2.1.3 The Moravian sector of the West Carpathians The West Carpathians extend to eastern Moravia with their westernmost marginal part. They comprise the Flysch Belt and the Foredeep, which forms the western part of the arc turning back from Poland to eastern Slovakia and linking on Lhe Alpine foredeep in Austria, at the southern boundary of the Bohemian Massif. The other part is the Tertiary Vienna basin, which sends its northern projection to southern Moravia. Many units of the Flysch Belt continue south-westwards into the Alpine region and north-eastwards into the Polish and Slovak parts of the Carpathian mountain arc. T li n Wuschberg sector o f l h o Zdániee-Subsilesian unit extends in a similar development into Austria. The Subsilesian development passes to Poland where il is known as far as the drainage basin of the river Wislu. The continuation of the Suhsilcsian unit in the North and East Carpathians is not yet clear. From the comparative studies it appears that the Subsilesian unit, as conceived by Polish geologists, corresponds to the outer-part of the Silesian unit in Moravia, which is situated in the foreland of the Baška development íKelč unit, seusu Eliáš 1981;. The Silesian unit, especially its Godula development, continues into the Carpathians of Poland. 1 he Kore-Magura unit persists to the E towards the Polish part «f the Carpathians. 20 21 The Magura Group is ihe most important unit of the Flysch Carpathians and continues north-eastwards into the Polish Carpathians. The Bača unit of the Magura Group links in SW on the Greifenstein nappe of the Wiener Wald and passes inlo the Polisii Flysch Carpathians in the NE. The Bystrica unit can be traced into the Polish Carpathians on the basis of ihe Middle Eocene solid marlstones called ''marls of Lacko" in Poland, Its southwestern extension into Austria is not yet clear. The Bílé Karpaty unit continues south-westwards across the basement of the Vienna basin into Austria, where it links on lbe Kahlenberg nappe and probably also the Laab nappe of the Wiener Waii'l. Its equivalent in lbe Orava area (NE of the Párnica sygmoid of lbe Klippen Belt! is the Orava-Magura-Krynica unit, which continues inlo Poland and llie eastern part of ihe Slovakian Carpathians. The Vienna basin and the Foredeep are ports of the Paratelhys. which in I he Oligocene and at the ousel of Neogene had separated when the northern part of the Tethys was disintegrating. They belong to the extensive system of basins, which is traceable from the Uhone-river valley to western Asia. The Foredeep is directly connected with analogous structures in Austria and, on the other side, continues into Poland. The greater part of the Vienna basin spreads 'o Austria. 2.2 Regional geological division of the units 2.2.1 The Bohemian Massif The regional-geological division of the Bohemian Massif is very non-uniform. The regional-geological and teclono-rnelamorphic units are loosely grouped to form units of a higher order, which are usually based on their position in the Hercynian orogen. For example, Stille (1951) in his classical work distinguished: the Moldanubicum {including ihe Barraudian and the Železné hory regions). Saxothuringicum. Lugicum, Moravo-Silesicum and Vistulicum (in the basement of the Upper Silesian basin). Zoubek and Maška (in Buday et al. 1960) divided the Bohemian Massif into a,) the area of the Bohemian intermontanc block, subdivided into the Moldanu- hian elevation (Moldanubicum), the Tepla-Barrandian region and the loosely attached Brunia block; bj ihe area of intensive Hercynian tectogenesis, comprising the Krušné hory- Thiiringen region, the Železné hory-West Sudetic region and the Moravo- Silesian zone. Svoboda et al. (196'6) laid great stress on regional and slratigrapbic division and have differentiated: a) the Crystalline of the Bohemian Massif which involves the Moldanubicum and the crystalline units of Kutna Hora, north-western Bohemia, the West Sudeten and or the Moravo-Silesian region (Silesicum, Moravicum and the Brno massif) b) Algonkian and Palaeozoic of ihe Bohemian Massif c) Permo-Carboniferous basins d) Mesozoic of the Bohemian Massif e) Tertiary of the Bohemian -Massif and f) Quaternary of the Bohemian Massif. A division based implicitly on the position of the units in the Hercynian orogen, which is decisive for the Bohemian Massif, would require to distinguish: — the Precambrian basement (viz. units affected by Cadomian or earlier tectouo-inetamorpbic processes). — the Palaeozoic, disturbed by Palaeozoic tectono-melamorphic processes, — the units formed in the period of inversed tectonic regime (Upper Carboniferous, Lower Permian in the Bohemian Massif), — the platform units (Jurassic, Upper Cretaceous and Tertiary), — the Quaternary of the Bohemian Massif. This division according to structural layers, however, poses a number of unsolved problems. In particular, there are difficulties in discriminating between the Precambrian and the Lower Palaeozoic in metamorphic units, and between the individual Cadomian and Hercynian units in the basement of platform sediments, as well as a lack of criteria for distinguishing between the Cadomian and pre-Cadomian units, and the impossibility to establish a uniform time limit between the Hercynian and platform units. For these reasons, we use the regional division proposed by the Commission of the Czechoslovak Academy of Sciences (C h 1 u p a e et al. 1976}, modified according to the latest investigation results and the principles given above. It is as follows: 1. Crystalline and Palaeozoic affected by Hercynian orogeny 2. Units of the period of inversed tectonic regime, i.e. the Devonian and Lower Carhoniferotis of Moravia. Carboniferous. Lower Permian of the Bohemian Massif 3. Platform unils, viz Lower Permian. Triassic. Jurassic and Lower Cretaceous. Upper Cretaceous and Tertiary of the Bohemian Massif 4. Quaternary of the Bohemian Massif, The Crystalline and Palaeozoic affected by Hercyiran orogeny This group involves the units consisting of metamorphosed Precambrian and Lower Palaeozoic rock complexes with Cadomian and Hercynian plutonites (Fig. 2.4.): 22 23 j.'i <'ief ifiilr.il 11< >l ii-in • < 1 — Boundary of the platform rover: '.' — lliirrnmlinn P.ilm-o/oit ■; 3 — Palaeozoic mul l.'pper Pmlrro/oir in the "IsleN /.our"; 4 — Upper Protrrozoir in the It.irnimluiii (T — Teplii Crystalline. Do — Domažlice Crystalline); .5 — NIoMaiiul.n inn; 6 — rei oiiMriuloil boundary of the \|..1.1.111111<:. um 7 — Central Bohemian Pluton; 8 — magmiilitek oi the Barninilian; .'/ — nu-tiiinorpliir tnuiMlii.ii* (M. >uk orig.) I III' M > • I • I : i 11 11 I ■ l i' 11 111 a) Tlíc M o I 1111......■ uiacmaliles <',i-ii|rraphic»lly. H includes the Cesk........av- -k;i vrchovina Highland, southern Bohemia, the Šumava unii Český les Mountains and, heyond Bohemian houudaries. the Bayeriseher Wald and the areas of Waldvicrtcl and Mulilviertcl in Austria. In I lie E the Moldanuhietim borders on the Moraviruin. in the S it submerges hi'iiealh the sediments of tin- Alpine I'oretieep, in the N it eontnets the Cryslal-liiu- of Kutná Hora. and its western contact with llie B.n randian hasin is huried by the Central Bohemian Pluton. Geographically, the unit is subdivided into Mohlanuhieum of Ce.skv les, of Bayeriseher Wald (Bavaricuml. of Suinnvu and Miililviertel. of Bohemia. Stružek and Moravia, and of WaliK ierlel. 2.5 Folded nilliinanilc-biulite guciss. Varied group of Moldanubicum. BfaMfcy quarry MU Tábor Phcito by II. Vriíalová The following large plutons belong to the Moldanubicum: b) the M i> I d a ii u b i a n Pluto n in the central part of the Českomoravská vrchovina Highland, in Waldviertel and in the Sumava Mts., where it occurs as isolated massifs. It is thought to form the basement of a considerable pari of Moldanubian melamorphic complexes c) the Central Bohemian Pluton is a complex of plulonic magma-tiles situated S of Prague, between Pribram, ÍAlčany, Tábor, Horažďovice and Klatovy, at the boundary between the Moldanubian and Teplá-Bar-randian regions. T h e T e p I á It a i randian r e g i o n It Occupies the central and south-western Bohemia built up of the Palaeozoic and Proterozoic rocks of |lie Barrandian basin. In the Crystalline of Domažlice and Teplá and iu the "Islet /.one" the higher-melumorphosed units appear. In 'he M; ill,, iiojcin extends into the basement of the Bohemian Cretaceous Basin. 24 25 a) The Barrandian basin is formed of uninctamorphosed or low-uietnmorphoscd Proterozoic and Lower Palaeozoic rocks (Cambrian lo Devonian I; it was denoted l>y Barrande as the "systéme silurieu du centre de lu Bohéme". The Proterozoic occupies a predominant |>arl of I In- basin hetwreii Kralupy nad Vltavou ami Slaňkov. On the hasis of lilhology the Dobříš. Královice. Kralupy. Hlovice. Klenec and Tachov sectors have been distinguished, as well as several volcanic bells, the most important of which are those of Kralo-cice—Bakovnik. Svnjšíu, Stříbro—Plasy and Davie—Jílové. The Palaeozoic sediments and volcanics of the Cambrian, Ordovician. Silurian ami Devonian age are divided into lower regional-geological units such as the Přibram-.lince basin lbe Brdy Cambrian, the Skryjc-Týřovice Cambrian and the (trdovician — Devonian sequence — the Prague basin. In The Central Bohemian "islet Zone" consists of denudation relics of the Proterozoic and Lower Palaeozoic mantle of the Central Bohemian Pluton. It includes the Tehov. Voděrady —Zvánovice, Cerřany, Zbořený Kostelec, \it\ořice—Neveklov. Sedlčany—Krásná Horu, Mirovice, Kasejovice and Rož-mii.ii ..islets" and the Jílové zone. c The Crystalline of Doma/lice extends from lbe Kdyně massif near Domažlice to Bor near Tachov, lu the W it is separated from the Molda-nubieum by the Bohemian Ouaiiz Lode and in lbe I it passes into the lowcr-metamorpho>ed zones of the Barrandian I'rotero/.oic. d) The Crystalline of Teplá is analogous to the Domažlice Crystalline in the north-western part and is connected with the Barrandian Proterozoic by meiamorphic transitions. The Teplá block forms its eastern part and the Slavkov block and the Mariánské Lá/.ue body occupy its western part, ei The West Bohemian pinion is represented by discontinuous, predominantly bidden granitoid bodies in western Bohemia, which crop out at tin- surface in mi.....rous isolated massifs, as e.g. the Louny, Tis. Čistá. Kladruby, Stanovíce, Bor and Stod massifs. The Sedmihoří, IloŠlice and Babylon massif, have a more separate position. T h e Krušné 11 o r y - T h ii r i n g e n region It is made up of the crystalline units of western and north-western Bohemia: a) The S in r č i n y Crystalline is a ptirt of the Saxony-Yogtland zone; the Cheb crystalline schists, the Svatava block and Dyleii miea-schisls belong to it. b) The Krušné hory Crystalline is bounded in the S by the Krušné hory fault, in the W by the Eibenstock massif and in the N by the Saxon depression and the Elbe Schiefergebirge. It includes the entire Krušné hory 27 2.7 < I......nuk uartz Lode. Filling of a RE— SW trending fault in the Bohemian pari <•! the Moldnmibicum Photo by J. Svnbndn aiilicliimrium and isolated occurrences, e.g. in the Opárenské valley, along the river < Mire and in the České slřcdohoří Mls. c) The Krušné hory pluton is a complex of Hercynian intrusive rocks of granitoid composition, which penetrate the crystalline bodies of the Krušin'- hor\ and Sinniny Mts. They form a number of domes, the highest of which are exposed at the present-day denudation level as separate massifs (e.g. Karliny Var>. Xejdek. Smreiny, Cfnovec, Krupka and Fláje massifs. The Teplili- porphyry occupies a somewhat separata position. 28 2.9 Anliľl iiľ in Ihr LelnA Fonniiliiiii (I Irdoviriiin ul the liiirniiiilinii). ľWiil-ľtitling nrnr III.' Zlir.ii.ln«. liinl-r smith i.( I'riignp Pliiiln li> I. SviiImhIh 30 1 EUROPE! N AWA -'.II Slu,.i|.ý l,„;lr|/......•„,,k|.,1i„.ri,ip (!..,«..,• Itrw.ni;,.,.^ It......I,.,-, .............rt|„.,„ „|, ,. lulu-mi"'''"''' 'r ''n"- klHs '*""■'■- Scllŕimv-KräMiii Ilun, "Ul.-t" in ..-ntral I'linlit by .1. SvhIhhIii / — Aipr1- ~ R',enolnur'I1*'lin' ,v — Zone of Hercynia: ú It ic ;c t- te e- ixt e-li ;i-ii- ■k ie ie re ie et lit ie .8. 32 The Kultiá Ilora-Železnc hory region It comprises the Precambrian units with the relics of the Palaeozoic mantle, which rim the Moldanubicum in the N and NE and extend beneath the sediments of the Bohemian Cretaceous Basin. a) The Kutná Hora Crystalline (s.l.): crystalline complexes (with a predominance of orthogneiss and migmatite) at the northern margin of the Moldanubicuni. It is divided into lower, geographically defined subunits, e.g. the Čáslav. Cheb or Podbořany crystalline complexes; the Ransko massif is an additional part of this unit. b) The Chrudim 1' a 1 a e o z o í c : a complex of Palaeozoic rocks in the Železné hory Hills and north of them (in the area of Přelouč, Hermanův Městec and Chrudim). The Přelouč and Vápenný Podol synclines have been differentiated in it. c) The Hlinsko zone : a complex of low-grade metamorphics of Late Proterozoic and Palaeozoic age forming a NiNE—SSW trending belt at the Železné hory/Českomoravská vrchovina boundary. d) The Svratka Crystalline: Proterozoic rocks metamorphosed in the medium to highest grade, at the NE boundary of the Moldanubicum, between the Hlinsko zone in the XW, the Moravicum in the SE and the Zábřeh Crystalline hi the NI5. e) The Železné hory p 1 u t o n : a complex body of plutonic magina-tites in the Železné hory Hills. It consists of the Kasavrky massif (between Vápenný Podol, Skuteč and Hlinsko) and the Chvaletice massif. The L u s a t i a n region (L u g i c u m ) This crystalline unit built up of metamorphosed Proterozoic and Palaeozoic rock complexes forms the northern margin of the Bohemian Massif east of the Labe valley as far as the Ramzová tectonic line. In the S it continues into the basement of the Bohemian Cretaceous Basin. The principal constituent parts are as follows: a) The Krkonoše-Jizerské hory Crystalline: crystalline complexes cropping out at the surface from the Rýchory to the Ještědský hřbet R-idge, and in isolated occurrences in Zvičina, near Maršovice, etc. The unit extends into the basement of the Krkonoše-piedmont basin and of the northern part of the Bohemian Cretaceous. b) The Orlické hory-Klodzko Crystalline: crystalline complexes in the eastern part of the Lusatian region in the Orlické hory Mls. Hp to the Ramzová tectonic line. 33 2.12 Jeseníky Mlt. View frmn Kouty n. Děsnou Plnil

y fl. I.andisiii c) The Zábřeh Crystalline: metamorphosed rock complexes forming the southern margin of the Lusatian region in northern Moravia, It embraces met an i ni'i hie occurrences separated only at the surface by younger sediments, as for example, in the areas of Lelovice, Polička and Kladky. d) The Lusatian pluton: a complex of plulontc magmatiles between Dresden and Gorlttz, limited in the S and SW by tlie Lusatian fault and in the W by the West Lusatian reverse fault. The complex is inhomogeneous and the Jizerské hory and Krkonoše orihogucisses, the Zawidów granodiorite, the Nisa _r mil''. Urirn'ky granite and others are genetically related to il. e) The KrkonoŠe-Jizerské hory pluton: a uniform body of Hercynian granitoids making up the predominant part of the Jizerské hory Mls. and lbe Krkonoše Mts. between Liberec and Jelenia Córa in Poland. 2.13 Lipová cave*. MctamorpboMnl Devonian (?), Hrubý Jeseník Mts. Photo by B. Lundiíoh 34 T he M o r a v o -S i 1 e s i a n region The complexes of pre-IIercynian and Hercynian metamorphic and igneous rocks jointly with metamorphosed Devonian and Lower Carboniferous rocks in Moravia and Silesia make up two units: a) t h e M o r a v i c u m : a belt of metamorphics bordering the eastern margin of the Moldanubicum in western Moravia, in the Dyje and Svratka Domes b) the Silesicum: Proterozoic to evidently Devonian units-of- metamorphics in the Hrubý Jeseník Mts. The units ol the invcrsed tectonic regime The Moravian Devonian The area of the unmetamorphosed or low-melamorphosed Devonian and Lower Carboniferous of Moravia forms a separate geological unit overlying Precambrian of the Bohemian Massif and the Brunovistulicum; the occurrence of the Silurian near Slinava in the Drahanská vrchovina Upland is also annexed to it. It. is divided into two large regional units: the Drahanská vrchovina Upland with the Devonian of the Moravian Karsl, Devonian of the Upper Morava depression, of the Němřiee and Konice-Mladeč bells, and the Nízký Jeseník Hills (the Stern-berk-IIorní Benešov belt, Malenik block). The Devonian of southern Moravia comprises the Devonian occurrences near Krhovice in the Boskovice Furrow a:id in the basement of ihe Carpathian forcdeep. The Moravo-Silesian Carboniferous links on the Devonian. A part of the Moravian Devonian and Lower Carboniferous is buried by the sediments of the Carpathian foredecp and by the nappes of the Outer Carpathians. The occurrences of the Lower Carboniferous are confined to the sedimentary areas of the Devonian, in which they gradually developed in places. They are discussed in the paragraph on the Devonian. In the eastern part Upper Viscan sediments are trausgressive on the Frasnian limestones; they were deposited after a rather long hiatus. The region of the Moravo-Silesian Upper Carboniferous At the external margin of the Hercynian orogen there is the Upper Silesian Basin, which is the only Czechoslovak hasin where the paralic iVamurian developed gradually from the marine Lower Carboniferous. The Upper Silesian Basin is situated on the territory of Czechoslovakia and Poland, between the cities Ostrava, Krakow and Tarnowskie Gory. Sedimentation developed in three stages. In the early Namurian an intermontane «°LIB€REC OBEROUN PRAHA o —<' o HRADEC, KRÁLOVÉ PLZEŇ f íl I Xllb Q 50km T I 1 i ■ I TABOR °t ° ČESKÉ BUDĚJOVICE OBRNO 4.-—" 5—-" 6^-' 2.14 Carboniferous and Permian in the Bohemian. Massif (nomenclative scheme of basins) 1 — paralic basins; 2 — transitional basins; 3 — continental sedimentation; 4 — established boun.laries of Permo-O-rboniferous; 5 — inferred boundaries of Pernio-Carboniferous; 6 — major faults, determined; 7 — inferred faults; S — principal strikes of basin axes; 9 — principal strikes of structural elevations; 10 — boundaries of basins. Basins: 1 — Plzeň basin. II - Manitin basin. Ill — Zihle basin, IV — Rakovník basin, V — Kladno basin. VI — Ruudnice basin, VII — Česká Kamenice depression, VIII — Mšeno basin, IX — Mnichovo Hradiště basin, X — KrkonoŠe-piedmont basin. XI — Bohemian part of the Lower Silesinn basin; XII — Blanioe Furrow. XJIa — northern part (area of Český Brod and Kostelec na(>cr I iinmiiiii sumlslonet. Prachovské skály. Nořili linliemia rimio by J. Svoboda éCCUfrenew in ■ 1 ■«- Bohemian Cretaceous basin, in northern Moravia near Oso-blaha ■ ad in I lit- S milí Bohemian basins. T li c B o h e ni i a n Cretaceous basi ii forms n uniform sedimentary area willi ihe Sa\on region. I'rnm the viewpoint of palaengeography. in the early Lale Crclaceous it was a sea connecting I In- Tclhys and I hr Iton-al Sea. On Ihe basis of faeies variety C. Zahálka 18!».'! and U. Zahálka [liil'i differentiated in the Bohemian Crelaceous Basin the following regions: a1 Liisalian region (predominantly sandy development b) Jizera region (predominantly calcareous saudslones či Labe region dominanlly marly-clayey sediments d I lejš ivina region predominantly sarulsloues) e ByslHce region 'pri'valently clayey sandstones f Orlice-Zdár region převalenil\ calcareous sandstones) g Kolfn region Ijiartly littoral reef limestones1 h Vltava-Berniiiika region prcdnminaiitlv marly-sandy sediments i Ohře region ' inarlv-elav ev development . During the Lciiouiaiiian and late Ttironiau the Boreal sea also ingessed the a-ea of iiorllieru Moravia. The occurrence of Tamilian — Cciinmaniau sediments has been proved in ihe ((molilalia area near Slczskě Pavlovice (Skácel 1970), but the extent of I lie Crelaceous beds beneath the lower Badeniaii in the Osoblaha area is not known. In southern Bohemia I lie ('.relacemi* sediments fill the major pari of lbe České Budějovice basin and ihe southern pari of I h e Třeboň basin. They are also preserved in denudation relics near .Nová \ es. Stráž nad Ne'.arkoii. Kardašova fteěice and Tlirovec. Trrl iíirv of the II o h Massif I lie Tertiary of lbe Bohemian Massif is represented by Palaeogene sediments and Neogene sedimentary and ncnvnlcanic rocks. a) Tertiary of north-western Bohemia. At the foot of the Krušně hory Mls. lliere are three \eogene limine basins differing in stratigraphy and lilhology: — The Cheb basin in the extreme west is separated from the Sokolov basin by a crystalline ridge near Chlum nad Obří. The occurrences in the bed. Rep. of Germany are linked on it; — The Sokolov basin extends from this crystalline ridge up to the neovolcanics of the Doiipovské bory Mls.: — The .North Bo he mi an basin is located between lbe Krušně hory, Donpovské hory and Ceskě středohori mountain ranges. 48 49 i nag mot ism. This relationship was interpreted by changes in the thickness of the earth's crust in the axial part of the European Mercy nides, i.e. the increase in the crust (hickness in this (Moldanubiau) zone from the Vosges and Schwarz- Odra 2,M Thicknesses of the earth's crust ia Central Europe (A, Zatopek-B. Beranek 19S0). Numerals give the thickness of the earth's crust in km wald (22—25 km) into the Moldanubicum in the Bohemian Massif (40 km). The anomalous thickness of the crust might be alternatively explained as due to the subduction of the adjacent units beneath the Moldanubicum, for example, of the Brujiovistultcum beneath Moravieum, as presumed by V u c h s (1976). The geological situation also indicates that during the 1 lercynian orogeny the Moldanubicum might have collided with the ancient Bnniovislulicuui crystalline complex, which possibility was already admitted by S t i 11 e (1951). The uplift of the Mohlanubicuin and subsidence of the Brimovislulicum towards the end of the 1 lercynian orogeny (Dvorak 1980) is in agreement with this assumption, as well as the overthrust arid repeated compression of Precambrian rocks in the Moravo-Silesian /one (M í s a ř 196.3; and termination of the Ilercynian orogenic zones in this area. 68 . c v 2.35 Heat flow in the territory of the Czech Soc. Rep. (according to V. Čermák 11)80-, modified and simplified), numerals give tlif vnlmrs of he;il flow in mWm-2 21—23 mWm"2 (which correspond to temperatures of 500—600 °C at the M-discoiitinuity), in the tiorlhern pari 27 m\Vm"2, and 30 m\Vm-2 at the eastern margin of the Bohemian Massif. In the surficial parts the lowest heat-flow values are in NE Bohemia (Bohemian Crelaceous Basin, the Jeseníky Mls. about 22 mWm-2), in lbe Moldanuhiciim and the Banandian (about 50 mWm"2;. increased values have been established in the easlerii pari id the Krušné hory Mts. and in the Teplice area (as high as 160 m\V?n~2.i and around Ostrava (aboul 100 m\Vm~2). These anomalies are obviously associated with the processes in the earth's crust. 69 2. 3.2 Characteristics of the earth's crust structure in the Bohemian Massif The dala on llie Jeep structure of the earth's crust in I lie Bohemian Massif are derived from the deep seismic sounding (Beránek - Dudek 1980, Beránek - Suk - Weiss 1980), Irmu the interpretation of gravimelrie data {Budily el al. 1969, Adam et al. 1979), I hrma jer 1978, li líž kov-s ký et al. 1981 j and some results of airborne magnetic mapping (M an 1966). In the gravity field of the Bohemian Massif the elements of SW—NE direction are most prominent. (Ib r m a j c r 1978). these zones alternate within the whole Bohemian Alassif, having the NK—SW trend and widths oľ several lens to one hundred km t Fig- 2..16). The zones with posíl i ve anomalies, as were delimited by B u day et a), (1969, correspond geologically to the Saxolliuria-gieum, Prolerozoic, Barrandian and the E. part of the Moldanubieum with the Nízký Jeseník Jlills. The zones with negative anomálie comprise the Krušné hory Mts.. the western part of llie Moldanubieum, the basement, of llie central part of the llohemian Cretaceous, and the Orlické hory Mts. The differences in the gravity pattern are explained either by different thicknesses of the volcano-sedimentary formations (Bud ay et al. 1969), by differences in the thickness of the basalt layer (Rohlieh - í fit v í ŕ k o v á 1968}. or by lbe absence of the granite layer in the positively anomalous zones (Zoubek 1967). In aav ease, llie type of these zones is associated mainly with the structure of the cnist and tiol with its thickness (i.e. with the course of M-diseonlinuity), because the correlation between t lie thickness of the earth's crust and the regional gravity anomalies cannot be sought for in the subdivision of the Bohemian Massif (I) e -ranek - I b r m a j c r 1976, Vyskočil P. 1972). These heterogeneities seem to be explained most appropriately by the structure of the granite layer, as is also evidenced by seismic data, particularly by I he distribution of the velocities of seismic waves. The thicknesses of that part of the crust in which the wave velocities do not exeed 6 km s"1 are 16 km in the western part of the Moldanubieum. 8 km in the Krušné hory Mls., ■Jí—"> kin in the positively anomalous zones at the eastern margin of the Bohemian Massif (Moravian block aľl.er Weiss 1977;. and n—6 km in the Teplá-Barraudian zone. Negative gravity anomalies thus correspond to greater thicknesses of metamorphosed, migmatized and granitized roeks in the western part of the Moldanubieum and the Krušné hory region, for which the low wave velocities are characteristic. In contrast, in the Teplá-Barrandiau zone predominate metamorphosed volcano-sedimentary formations distinguished by higher densities and velocities of seismic waves. The on n figura) io n of the regional gravity anomalies is also controlled by the thickness of the basalt layer or, in general, by the occurrence of zones with wave 70 71 velocities (if above 7.5 km.s"; in I lie deeper pans of (be earth's crust. The configuration of the gravity field in the Bohemian Massif, however, is too diversified for I lie effects of individual /ones In be distinguished. This influence is doubtless involved at the eastern margin of the Moldanubicum and in the Moraviouin. where llie basalt layer approaches to the earth's surface. The occurrence of numerous bodies of basic and ultrabasic rocks at I he eastern margin of the Moldanubieiun provides additional evidence. The situation in tins area is analogous to that in the Ivrea zone (Weiss 1977) and corresponds to the siibdnclioii of the Brunovisl ulieuin beneath the Moldaimlucu'in. J he changes in the thickness of the basalt layer are also demonstrable in the Sinuava region in the SW of the Bohemian Massif. The uplift of the basalt layer towards the earth's surface was in this pari connected with the general upheaval of the southern part of the Bohemian Massif during the Jlereyniun orogeny and I he inclinaliou of the block ní ifie Bohemian Massif l<> the \ iNNKi. which is substantiated geologically (D udek - Suk 1965). The increasing deptli character towards the S is demonstrable in the whole southern and western pails of iho Bohemian Massif despite the departures caused by fault tectonics. It is particularly marked in the Barrandian. at the boundary with Domažlice crystalline complex, where it is manifested by the increase in melarnorphic grade and a gradual approaching of heavier rocks inwards I he surface along lbe seismic profile in lbe Krušné hory Mls., and in the Central Bohemian and Moldantibian Piulous. From the dips of linealion. the geometry of the distribution of the relics of cover deposits, and the changes m the breadth of /ones of metnmorphisni and mígmali/ation, the depth difference between I he northern and southern margins of the Moldanubicum can be estimated at ca. 15 kin. This value agrees fairly well with the data on the uplifi of lbe basalt layer. Also in this case the uplift was associated with the origin of major tectonic lines (Jáchymov /one. /.one of liie Bavarian Quartz Lode) and with the concentration of nllrahnsite occurrences in the Soulh Bohemian granulite /one. We assume liiat the fundamental properties of the crust in the area of the Bohemian Massif formed as early as in Precatnbrian times. The concentration ol melavnlcaiucs, and basic and ullrabasic igneous rocks (zones of grannlites. antphfboliles, ultrahasites and orthogtieisses in southern Bohemia) really indicates the existence of ;l Precumbiian rift /one in this area (Z eman J . 1979;, which only during Jlercynnm orogeny and uplift oí the southern pari was separalcd from its basement. According to B u d a y el al. (1909) and Ibrmajer (1978). there are four characlericlic regions in the gravity pattern of the Bohemian Massif, the foundations of which lie in the deep structure of lbe earth's crust. In the map of regional anomalies (Kig. 2.'Mil the regions are arranged bom W lo E as follows: Extensive gravity low passing along the N\Y frontier of Bohemia, which corresponds to lbe Krušné hory and Krkonose-Jizerské hory blocks; Positive anomalous zone, which extends from the Český les Mls. across the Tepelská vysočina l.pkmd and the Barrandian synclinorium into lbe area of the Bohemian Cretaceous and the crystalline complex at the foot of the Krkonoše Mls., and Further eastwards into the Inner Sudclic basin, 'lliis gravitv elevation is for llie most part occupied by the Teplá-Barrandian block; The region of negative gravity values covering the area built up of the Moldanubicum. llie Central Bohemian Pluton and Central Moldainibian massif, lbe Svratka anticline, the Orlické hnry-Ktodzko Dome and the western part of the Hrubý Jeseník Mts. A distinctive feature of this region is an intricate relationship between the upper and deep geological structure; 4. The eastern part ol llie Bohemian Massif is the region of positive gravity values. It comprises ihe eastern purl of the Moldanubicum. the Moravieum, the Brno massif, the Drahanská vrchovina Upland, the Nízký Jeseník Hills and part of the massif in the basement of the Carpathian fnredeep and of the flysch nappes oi the Wesl Carpathians. Extensive negative gravity zones geologically represent elevations originated towards the end of the Proterozoic. Palaeozoic complexes occur here to a very limited cxteal and are for the most part affecled by llereyniuu regional mcta-morphism. Posilive anomalous gravity zones are distinctive of the depression areas (Saxothuringieiim. the Proterozoic of the Barrandian. and the eastern part of the Moldanubicum with the Nízký Jeseník Hills). In these areas the Palaeozoic is mostly uumetamorphosed and a preponderant part of volcanic formations is concentrated in them or along their boundaries, from inagtnnliles metamorphosed in the Preearnbrian eryslaMiue complexes I o lbe yotmgesl Tertiary and Quaternary neovolcanies. K I o m í n s k ý - Dudek (197Sjand Bernard (197Sj have proved t !iai the areas oT these two types differ in plulonism and minerahzalion. In the positive anomalous gravity /ones there is an absolute majority of occurrences of tonalitic rocks, of live-element mineralization, sulphides of gold and antimony and most of lbe mercury occurrences. In the negative anomalous zones granite with Au mineralization in quartz veins predominate, and the occurrences of tungsten, tin and Pb+Zn and Ag+Cu ores as well. The granite pinions in these zones are. of large extent also in the basement of crystalline schists (the Krušné hory Mts. and the western pari of ihe Moldanubiciunj. The boundaries of the zones ol a different geological and gravity pattern are usually interpreted as the limitation of blocks. This, however, is not identical with the fault boundaries at the surface, which are very often considered erroneously lo be principal indication of a deeper block structure of the crust (e.g. the Přibyslav' zone, Blaníce Rirrowi. Thus, for example, in the zone of ihe Central Bohemian Suture 72 73 lln* gravity boundary between the negative anomalous block of the western Moldanubicum and positive anomalous Barrandian is not identical either with the Klatovy fault and its extension to Mníšek pod Brdy. or with the western margin of the Central Bohemian Pluton between fticaiiy and Rožmitál pod Ti-em-šíneiu. hut runs in the mantle of the Pluton between Písek and the river Sázava (i.e. is broadly identical with the "zone of intrusive tectonics" of Z e 1 e n k a 1929, initiated in the Precambriaiu. Also the boundary between the positive anomalous l'epla-Barraiidian zone and the Krušné hory gravity low is not defined by the Ohre fault zone. An analogous discord is observable at the Bohemian Massif/ Carpathian boundary. The region ol' negative anomalies of the Krušné bory Mls. and the KrkonoŠe-.Jizerské hory massif is hounded by an expressive gravity gradient and is divided into four isolated lows (l;ig. 2,'Hii. li udav el al. (19691 explain these gravity depressions as due to light granitoid massifs, which crop out at the surface or come near to the surface. The most striking is the anomaly in the area of Karlovy Vary, which is produced by a body of leucocralie granitoids, whose thickness is estimated al. 10 km al least. Two partial depressions issue from this anomaly towards W and S\Y, respectively. On introducing corrections for gravitational effects id the .Xeogene sediments of the Cheb and Sokolov basins (B 1 í ž k o v s k ý et al. 1981] ii became evident that these local depressions are closely connected with the large gravity low near Karlovy Vary. The gravity depression in the map of Bouguer anomalies with the centre near Durheov appears substantially less pronouncedly in a si ripped gravity map, which permits hi presume the influence of a deeper lying volcano-plutonic centre. The negative gravity anomaly in the area of Stráž pod Halskem is a very distinct structure. Blízko v sky et al. (1981.) interpreted it quantitatively using a model of rotation ellipsoid, and ihey assume thai beneath the Cretaceous sediments there is a body of light granitic rocks with the gravity point at a depth of about (i km. which might be connected with the Krkonoše-Jizerské lio-y plutou. Kast of the Lusatian fault, the Krkonoše-Jizcrské hory massif represents a gravity low. With regard lo the circumstance thai in the western part of the massif, the gravity' field is less marked in the map of residual anomalies than in the E. the conception of a slabby form of lbe pinion and of its root zone located in the eastern part appears more reasonable. The gravity field in the positive anomalous zones of the Teplá-Burrandian block and at the foot of the Krkonoše Mls. is diversified, showing a discrete zonal structure. At the western end, in the area of the Mariánské Lázně metabasite complex there is a marked gravity high. A sharp gradient in the northern and northwestern parts indicates a density boundary between the granitoid complex in the N\V and the metamorphosed Ipper Prolerozoie complexes containing layers of basic magmalitcs. in the SL. The idea that ibis gravity structure reflects the effects coming from a greater depth is supported by the opinion of Cháb (197'5) that an opliiolite complex with relics of the oceanic crust exists in this area. In the north-eastern continuation of this gravity elevation the isolines bend distinctly' towards the E. evidently due to the effect of the Jáchymov fault. Major accumulations of basic bodies are also indicated by gravity anomalies in the central part of the Doupovské bory Mls, and XE of Zatee. The extension of this positive gravity zone trends VY—K within the area covered with Cretaceous sediments. The idea put forward by Bud ay et al. (PJb'9) that i.l may be accounted for by Proteroznic rocks with strongly developed spiltte-keratophyre volcanism. was supported by a detailed analysis of the basement of the Cretaceous sequences (C b a 1 o u p s k ý 1973). Gravity elevations associated witJi basic volcanism also occur in the Perino-Carboniferous area at the fool of the Krkonoše Mls. and in the Broumov projection. Another parallel zone ol positive gravity anomalies extends from the basic Kdyně complex through Plzeň and Kralupy nad Vltavou to the basement of the Cretaceous jV of Benátky nad Jizerou. It is linked up with the Prolerozoie spilite belt, in which there arc large accumulations of basic volcanil.es and the presence of subvolcanites should he postulated. A prominent positive anomaly between Domažlice. Slod, Přeštice and Xýrsko is produced by the Kdyue basic e:miplex. The local gravity elevation XYY of this massif corresponds lo the Poběžovice basic massif. The analysis of the gravity pattern and of the radiometric data has revealed that the Wosl Bohemian Plutou is divisible into two parts (1 brmajer 1978). JJie more basic part of Prolerozoie age occupies the areas of positive anomalies (Kdyně. Poběžovice and Stod massif and some minor stocks! and the more acid lle;cyiuau part is (vunieeled with negative gravity anomalies (Babylon. Kladruby-. Bor and Stčuovice massifs). The isolated anomaly near Slaný and the western part of the gravity elevation near Kralupy can be accounted for by the presence of extensive complexes of spilite-kerat.ophyre volcanism. In the eastern part basic intrusive rocks of the Neratovice massif in the basement of lbe Permo-Carboniferous are thought to contribute lo lbe gravity effect i.B I í ž k o v s k ý el al. 1981). The third belt of a positive anomalous zone, extending approx, along the line connecting Příbram with the lower course of the river Sázava, is explained by B u d a y - I) it d e k - I b r ni a j e r (I9(i9) as due I o the influence of the meta-basiles of lbe ,líhne Zone and Hie adjacent .Notvořice-Neveklov inietamorphic 'islet*. Besides metabasiles, the effects of numerous gabbroid bodies enclosed ni the plutou and the presence of another source at depth are emphasized km: [he upper prism reaches to 0..'i."> km below lite surface. The positive gravity anomaly, associated with the basic zone of the Brno massif (B u d a y el al. 1909), links up on the Svitavy elevation after an interruption within the area of the Boskovice Furrow. Its continuation of SE direction was emphasized by introducing gravity corrections for sediments of the foredeep. B I í ž k o v s k y et al. (.1.981) explain the anomaly as due to the effect of a disturbing body with a difference density +0.13 g em-3 relative to the adjacent rocks. The base of the body is estimated at a depth of 12 kin. and the upper edge approaches to the surface. The Moldanubian part of the area of positive anomaly shows a configuration of tin; gravity field broadly corresponding to the homogeneous pelrographic character of the rocks. Light granitoid plutoniles are not represented in this area even in the deeper parts of lbe crust and therefore the total gravity effect is here induced obviously by an elevation of the upper mantle and a reduced thickness of the crust flbrmajer 1978). The relatively negative gravity anomalies are caused by the rocks oi the Mora victim as in the Svratka and Dyje Domes so in the protrusion of the Dyje massif. To the north-east of the Svitavy and Brno gravity elevations, in the residual map there is an extensive positive anomaly above the relatively heavier Palaeozoic rocks of the Drahanská vysočina Highland and the Nízký Jeseník Hills and the rock complex o[ the eastern part of the Silesicum. The area of the Upper Morava depression remained in the stripped gravity map a depression {Blíž-k o v s k ý et al. 1981) also after corrections for the effects of Tertiary sediments. The contacts between the Palaeozoic and its basement show themselves as a broad belt of gravity gradients SW and NE of the depression axis; this is obviously connected with its tectonic limitation, i.e. a NW—-SF trending fault zone, which is traceable from the Bohemian part of the Lower Silesian basin to the Central Carpathians. The gravity depression zone in the Carpathian foredeep indicates light granitic rocks in the basement of the Neogene. because the thickness of sediments in ibis area is not great enough to produce a negative anomaly. The course of anomalies of the magnetic field in the Bohemian Massif agrees to a certain extent with the gravity picture; there is considerable agreement between the segments positively and negatively disturbed with analogous gravity undulations (Fig. 2,37). On the territory of the Czech Socialist, llepuhlic the magnetic field is distinguished by the following prominent leatures: a) zone of positive anomalies which borders the Litoměřice fault in the south and continues eastwards bending arcualcly across the area al the foot of the Krkonoše Mls. into the Orlické hory Mls. This zone illustrates the course of lbe 78 79 Ilercynian orogeuic bell. Il is probably produced by Precambrian magmalic i-ocks (Pouba 1970). which reach to great depth of the geological structure (.\ I asi n I960); b) /one of prominent doubled anomalies (the westerly negative, the more easterly positive) can be followed in sectors interrupted by transverse faults i.Kdyně—Plzeň, Blatná--Sázava, Golěův Jeníkov—Vysoké Mýto and Zábřeh— Jeseník) across the Bohemian Massif, from its south-eastern pari. These belts indicate the shifting of the more northerly lilocks eastwards along the Jáchymov, Sázava and babe lineaments and the faults of ihe Upper Morava depression (Fig. 7.7). The zone of doubled anomalies is traceable both north-easlwards to Poland (P o u b a 1970) and south-westwards from Augsburg to the Schwarzwaid. in the basement of the Jurassic (A n g e n li e i s t e r 197/)i. It indicates I he course of the zone of basic and associated acid inagmalites (in the Precambrian of the Bohemian Massif it comprises lbe Kdyně massif and Zinkový spililc belt, the Jílové and Kozí hory zones, basiles ol the Železné hory Hills, in the western part of the Moravian zone and in the Silcsicum). and its extension in the European Variscides into the Massif Central fraircais and into the basement of the Russian Platform. It is a zone of specific volcanisin (J a k e Š 1978:, which originated during the formation of the Cadomiau goosynclinc and persisted unlil the Palaeozoic (geanticline of the Brdy iiills. Havlíček V. 197.11: c) buried bodies of basic, rocks caused the development of the marked positive \—S trending zone between Lstí nad Orlicí, Svitavy (so-called Svitavy anomaly), Urno and Židlochovice. Its southern part was induced by the basic zone of the Brno massif and its northern continuation, running obliquely to the geological structure, has not yet been satisfactorily cleared up; d) elongated positive-anomaly zones iu the crystalline units, c. g. in the Moldaiiiibicuui between Tábor and Paeov and between Červená Hečice and 1 lavlíckuv Brod, are controlled by the primary composition of the rocks and by the conditions of the metamorphic formation of magnetite (Zemánek 19íi7. Salanský 1907). Zoubek (1975) inferred from their absence in the low-metamorphosed Upper Proterozoic of the Barrandian the principal difference between the Proterozoic and Moldanubicum. The cause of ibis phenomenon, however, is only the metamorphic grade, when under oxidation conditions secondary magnetite is formed in Ke-rích rocks, in cordierile gneisses, hut also in skarns and erlans (Suk 190/0 and lower-metamorphosed units oi the Kaplice unit (Salanský 1907). In some cases the zones may be indicators of the lava flows and help in discriminating between the amphibolites derived from lavas (with magnetite) and from tuffs and luffites (with Fe-sul-phides — V e j n a r 1971), In the Českomoravská vrchovina Highland and in southern Bohemia the Varied Group contains layers of magnetite-bearing quartzile and itabirite. The coursi1 of the primary stratification in these high-metamorphosed units can be JBF followed along these layers. Similar rocks are described by Pouba (1970) Wi: from the Desna Dome. According to Pouba. the Ke accumulations form in the 'W; Precambrian of the Bohemian Massif a belt, winch can be followed in the It; proximity of the above zone of basic volcauilcs across the Massif up to the ft- southern branch oi the Karehdes, where such rocks appear in the progressively W" older units. If: Very marked anomalies of a small areal extent indicate the stocks of neo-H volcaniles iu the Nízký Jeseník fiills. part of which is not yet uncovered by $ denudation (Grunt o rád 1977;. or serpenlinized ultrabasites (e.g. iu the Moldanubicum in llio Tábor :irea:. i" t 2.3.3 Geological structure of the buried parts of the Bohemian Massif % About one third of the Bohemian Massif is covered with sediments of the platform cover and of the western marginal part id the Carpathians. The most important and largest segment is covered with the Bohemian Cretaceous sediments. According to V a c h I I (1905! and M a 1 k o v s k ý et al. (197/i) the basement, of the Cretaceous consists prevalently of the Precambrian units: in the west and north it is the low-metamorphosed Upper Proterozoic of the Barrandian, whose metamorphic zones are linked up with the crystalline complexes of the Krušné hory, Krkonoše and Orlické hory Mts, In the east the basement is formed of the Proterozoic ol Zábřeh and Svratka, affected by medium-grade melamorphism. In the Proterozoic there are the following pinions of large extent: — lbe Louny plutou situated between Čislá, Rakovník and Louny in the valley of the river Ohre; it is elongated in the NE—SW direction, parallel to the structure of the Proterozoic; — the Neratovice plutou, elongated in the ENE—WSW direction; — the Lusation pluton extends to the south as far as the Lusatian fault, a prominent WMV-lrending line, which also forms the southern boundary of the Krkonoše pinion; — along the southern limit, of the Krušné hory crystalline complex there aro minor occurrences of diorite, gabbro, hornblendile and pyroxenite; — the Nasaviky pluton extends in the basement of the Cretaceous far to the north, into the area to the east of Hradec Králové; — near Svitavy, crushed ultrabasites form the continuation of the Letovicc crystalline complex in the basement of the Cretaceous. The Lower Palaeozoic is preserved in discontinuous relics, which arc remnants of a vast a sedimenlarv basin. The Lower Palaeozoic of the Barrandian (chiefly 80 81 77) * Unmetamorphosed folded rucks; 2 — rucks affected by very low metamorphism; 3 — rocks of greenschisl facies, tlonim.mtly of qu art z-albilc-ch tori te subiacies; 4 — rocks of green-Schist f.viui, ni liiily of (piartí-alluď-epidulc-hioiiie (to nlmrruline! sai lifai'Lcs: ~> ~ metanior-Pnisin of garnet and stanrolilc /ones; fi — metnmorphism of garnet to sillhnanite zone; 7 — granulite to gramililic gneiss; S — Prec.imbrian; 0 - Early Palaeozoic; 10 — granite to luariz diorite; 11 — Hiorite. gabbro; 12 — ultrabasites; 13 — quartz porphyry; 14 — regions of ulJ.ti/iition. fenili/.alioji. ociur;eiiees of stnurolite and sillimanite 82 83 granulite near I lohni and Nová Včelnice, the Sevětín granodiorile with the Klenov massif and that the Lholiee Permo-Carboiiiferoiis is an isolated occurrence. The negative gravity anomaly in the h a s e m e n t of the Lower-Palaeozoic in the B a r r a n d i a n was explained by the presence of a granite body (Buday el al. 1969). However, a detail analysis (Tomek 50km N WIEN ■ X 7/ iy ! 3.-'' -u^ 2.39 Distribution of tin; Bnmovistnlicum ill Moravia, modified according lo a. Dudoic, lasa 1 — Brunovistnhram; 2 — marginal parls of the Bohemian Massif; 3 — boundary of the <.;i:-;>:'iiiiuji le I: 4 — ..k;'ii i luumcr^s: u — vo-Silesian lineament, b — Pi-ibvslav zone, c — Udra lineament, d — marginal Sudelic fault, e — Haaa fault zone: 5 — other fault*; 0 — Lusalian fault: 7 — Onler Klipjicn bell P)78,i and seismic survey have shown thai rather the effect of the thickness of Lower Palaeozoic sediments is here involved; in the axis o[ the Barrandian basin the thickness attains 0000 in. Seismic data demonstrated a very stable structure ol the Upper Proterozoic with a marked rising of wave velocity- (i.e. of deusitv mid nielainoiphic grade: from the Barrandian to the Doinazlioe crystalline complex. The structure is disturbed only in the area of the Jachymuv zone. In the geophysical pattern a striking discordance appears between the Lower Palaeozoic basin with E.\F-lrendhig axis and the Upper Proterozoic structure showing NE trend in general. The eastern margin of the Bohemian Massif in Moravia is covered with I Vrmo-Curbonifcrous sediments of the eastern margin of the European llcrcynides and with deposits of the Alpine-Carpathian foredeep. The thickness of the Palaeozoic attains up lo 200(1 m and that of the foredr sediments in the oast is as much as 8000 m. 3£ loreueep The crystalline basement is formed by the Brunu vistu I icuin (the Brno unit). According to D udek (.1980) the Bruiiovislulicum is limited in the NE by ř the Odra lineanient, in the SW by buried faults south of the line Wien—Krems, and in lbe SE by the deep fault against the West Carpathian block. The western margin of the unit extends up to the Sumperk-Jeseník zone and the Boskovice Furrow, and on the basis of geophysical indication its extension to the west can be postulated in the basement of the Moldanubieu'm. The crystalline complex of the Bruiiovislulicum is built up of plulonic rocks (Brno pluton s.l.) and crystalline schists of Cadomian age (550—650 Ma). Dudek divides the Bruiiovislulicum into ihe North Moravian, Central Moravian and South Moravian blocks, bounded prevalently by NW—SE trending faults (Fig. 2.39). Slelcl -Weiss (1978; and Beránek - Weiss (1979) assume consistently with Roth (1978) that the Bninnvislulicuiii extends to the basement of the Carpathians through a continuous succession of zones of rising intensity of meta-morphisin. Palaeozoic sedimentation in this area began in the Silurian (an isolated occurrence near Stmava provides evidence of the migration of sedimentation into this area). The major transgression, however, is of Devonian and Early Carboniferous age. The Devonian in the basement of the Carboniferous of the Nízký Jeseník Hills and the Drahanská vrchovina Upland displays a highly varied development. In the western part of the Nízký Jeseník and in the centre of the Drahanská vrchovina Upland (around Konice) it is predominantly pelitic, and accompanied by initial volcanism, but limestone sedimentation concentrated to volcanic elevations is here also developed. The uppermost member of this sequence reaches to the Lower Carboniferous and is characterized by an abundance ol" radiolarites. In contrast, the marginal parls of the basin flooded by the sea only during the Middle Devonian are distinguished by up to 1200 m thick carbonate sediments (Dvorak 1980). The lower part (up to 1000 m thick) consists of a reef complex s.l. The terrestrial facies of violet colour ("Old Red' ), which SSE of Brno attains a thickness oT 1500 m. is its time equivalent (Skoček 1980). The reef limestones were deposited during a slow transgression, which proceeded to all directions, chiefly south- and eastwards, where it covered a large area with sediments of a great thickness. The sea began to retreat from the region already in the late Frasnian but mainly during the Fatnennian and Tournaisian, and sequences of impure nodulai limestone and dark bioclaslic limestone were laid down. In other places, particularly in the south (in the Brno area), the transgression still persisted at that time and pure reef limestones sedimented in the sea (Z u k a 1 o v á 197G). In the latest Devonian flysch sedimentation started in the ''Zwischengebirge" (median mass) and gradually pushed out other formations from the basin towards the east and south. This process came to an end during the late 84 85 Viséan. At llvt time early marine mnlasse was deposited in the environs of Brno. It is a more tlian .'WOO m thick cmnplex of coarse-grained conglomerates, which grade laterally inlo groywackes and laminated shales similar to varvites. The development, of the basement of the Mesozoic and Tertiary SE of Brno (Dvořák 1973b, 1978, Adámek et al. 1980} was more complicated. The thicknesses and facies of sediments were strongly influenced by differing subsidence of the blocks along ancient faults of NW—SE strike. The basin closed brachysynclinally in the south. The thick complex of terrestrial clastic sediments of the ':01d Red" facies was flooded by the sea during the Givetian, and at the south-eastern margin at ahout the Givetian—I'rasnian boundary. The lower, dark-coloured and partly dolomitic part of llie reef complex reaches high inlo the Frasnian, and the light-coloured pari of the reef limestones up lo the Famenniau. The reef-forming organisms disappear during the Famenuian (Adámek et al. 1.980). In the Tournaisian and early and middle Viséan the sedimentation was for the most part interrupted. When the sea re-invaded the area, dark-grey bioclastic limestones with foraminifers, coTals and brachiopods of the group Gig auto pro ductus sedimented. During the latest Viséan a complex of conglomerates accumulated in the syn-sedimentarily sinking Nesvačilka block in lbe west. The conglomerates above 1000 m in thickness pass eastwards into greywackes and shales. South of the Nesvačilka block the thickness of the upper Viséan does not exceed a few tens of metres. In the eastern part of the Nesvačilka trough (and in the mure southerly blocks} a more than 1000 m thick Namurian A complex of terrestrial coal-hearing molassc was deposited. The molasse complex closes here the Palaeozoic sedimentation. lpí \ isénn. At lh"i time early marine moliisse was deposited in the environs of BrnO. It is a more than 3000 in thick complex of coarse-grained conglomerates, which grade laterally into greywackes and laminated shales similar to varviles. The development of the basement of the Meso/oic and Tertiary SE of Urno (Dvořák 1973b. 1978, Adámek et al. 1980) was more complicated. The thicknesses and facies of sediments were strongly influenced by differing subsidence of the blocks along ancient faults of .MY — SE strike. The basin closed brachysynclin.'illy in the south. The thick complex of terrestrial clastic sediments of the "(>|vačilka block in the west. The conglomerates above 1000 in in thickness pass eastwards into greywackes and shales. South of the Ncsvai'ilka block the thickness of the upper Viséan does not exceed a few tens of metres. In the eastern part of the Nesvačilka trough fand in the more southerly blocks a more than 1000 m thick .Nainurian A complex of terrestrial coal-bearing molasse was deposited. The molasse complex closes here the Palaeozoic sedimentation. 3. Stratigraphic development of the units 86 -•'.;;.i\ť.'>v. ;í ^T^-fííV^Í 'f"^^:^. OV''^: . - "■jí- ; J- : 7':'-5 d 4J c/5 (ind. Group í 5 9. "Matin Davie s1^ , Q. e Series") Group a "S : Btovice 2 ™> 1 u o; Monotonous (Blovice- a **" j ZOI Brio Group Teplá) g j Group ' O 900 Ma Flysch tí (Kaplice) w Group H —i 'RO 13 ■b group Varied (Český 1900 Ma 1 o wer ir tr v Q. d t/1 C j3 d c -p.) (lower part of R ranná series') I Y rbno Group (p.p.) Staré Mesto Group Kepru i k and Desná Gneiss 92 Cadomian units í M o 1 d íl tl 11 1) i (■ u Jti In recent years, llie evidence given for the presence of Lower Palaeozoic rocks in the Moldatiuhicuin is steadily increasing i T li i e 1 e 1971. Andrusuv -. Černá 1978. Puchová 1980, Konzulova 1980;, which is also supported by interpretation of most geochrononietric data (e.g. Losert et al. 1977, C o r o c li o v et al. 1977,!, < )n the other hand, the opinions on the Early Proterozoic lo Archean age of this unit arc also strongly defended (Zoubek 1974, 1976, C h a I o u p s k ý 1977, 1978). They are based chiefly on palaeogeo-graphic considerations (e.g. assumed arcuate arrangement of 1 he Proterozoic about the Moldanubiau nucleus) or tectonic conditions. Some authors l\ e j u a r 1968, 1971. Sttk 197/i. Losert I9li7 derive their theory on the Cndomian age of the predominant part of the Moldatmbicum from the analogies of lithology and the transitions of (lie Moldanubiau rocks into Upper Proterozoic sequences which, however, are not proved conclusively. Correspondingly, the assignment of the units of Moldanubiau type in the West European llercynides. e.g. in the Schwarz wa Id, \ osges. Massif Cent ra] franca is and the Arinnriean Massif, als:> varies. There are two principal stratigraphic units in the Moldamihicmn (Table .'i.'J.. The Monotonous 7. e I i v G r o u p is regarded as older ami I li e Varied Český Krumlov (I roup generally lies in the upper part of the sequence, bul il is questionable whether it consists of one or more horizons (marked Hlhofaeies differences are e.g. between the Sušice—Votice and Krumlov belts). Another disputable question is the slraCgraphie position of the rocks differing in metamorphic grade. Although a transition of the layers of the Varied Group into the Kaphcc and Cliýnnv Mica-schists and rordiďilc mk'inatites can be demonstrated :Z i k m u n d 1971. P I e t á n e k - S u k 1970'. ' Ne in'-a-schists arc considered to he a younger (flyschoid) unit, Thielc i 1970) and B 1 ti ni e I - Schreyer i 1970; (late lliein even ;is Karly Palaeozoic and the cordierile gneiss to be older (A r a p o v et al. 1965). The alternation of schistose and greywaekeous layers, on which the lithological interpretation of the Kapiích Mica-schists as a younger "flyschoid"' unit is based, has also been found in some parts of the zones of siilimanite-binl ilo gneiss and cordierile migmatite (P I e t á u c k ■ Suk 1970:. The circumstances are still more complicated by the possibility thai some parts of the Moldanubleum arc technically reworked ii such a degree that the differences between the Varied and Monotonous Groups-have been effaced (V rána 19//). Usually, however, the fundamental structure Can be well recognized according lo the course of inLerlayers: Kodym (in Svobodil et al. 1900) even believes the continuous course of lbe Varied Group to be evidence of its straligrapbic homogeneity. 93 T able '!.'> l.ilhoslratisrraphic division of the Moldanubiciim (V. Zoubek 1980', simplified) Cm 3 s ^ ^ ^ miea-sehists villi 11dmli>niinnutiy abundant ipiartzite layers crystalline limestones, calc-siliťiUe rooks, graphitic beds metabasites and scarce u 1 Irabasi tes ultrabasites pyroxene granuliles amphihnliles lighl-n>loured leptynites gui'isfies with more frequent melabasite and quarl/ite layers gneisses with rare intercalations of other rocks S2£ 1 ^ ill S The position of granuliles ami leptynites is likewise controversial. They are pegarded cither as a separate slratigraphic horizon at the boundary between the Varied and Monotonous Groups (J e n c e k - V a j n e r 1968, L o s e r t 1967) SE * cordierite • ísograde 94 3.2 Relationship between tlie Moldan uhian lilhoslratifirapliir noils and inetauiorpliic isograds in the mantle of the pluton near Jindriehiiv Hradec (.1. /.iiibek - M. Suk l!)71j 1 — Dyke rocks: 2 — Moldan ubiun pluton; i'j — si'dimentojreiiic in it-beds in paragne'ss of the Varied Group; 4 — granulite and grunulilic gneiss; 5 — leucoLialH' jjneiss: li — nil] > 11 i Ijo-lite and serpentinile; 7 — porphyroblaslic bioiile paragneiss; A! — liiolite- ;in:l sillimnnite-biotile paragnciss of lbe Monotonous (Iroup; !) — migniati/.ed en '.Iierile-biotill' paiajrnuiss or as a component of the Varied (voleanogenic) Group (Zoubek J951, Veselá 1967. Pic lánek - Suk 1976). In other conceptions, these horizons are indications cither of volcanic zones (M í s a ř ct al. 1974}, of palaeosutures (B e h r 1978) or ancient lineaments (Z e ni a n J. 1979). The granuliles and ulrabasiles associated with them are often thought to be allogenic elements derived directly from the deeper zones of the primordial crust, or in-folded parts of older units i/.wart 19(59, Thiele 1971). Zoubek (1.971. 1980) and Chaloupský (1977, 1978) apply the term Moldanubicuru to denote all Preeambrian units of higher-grade metamorpbtsm and with granuliles as typical rocks; they date them as Middle Proterozoie. ft is rather a compromising concept trying lo put into harmony the interpretation of the Moldanubicum as a unit predating the Barrandian Proterozoie with the fact that some litJiologically well-defined bells are traceable from the Moldanubicum into the adjacent units. 95 Similarly as in I ho Barrandian Proterozoic, the Moldanubian mclaeonglomeratcs contain pebbles id rhyolile and rai'c basic magmatit.es indicating the supply from the differentiate I sialic crust iXeiuee 1079. Vrána 19S2:. Mo r a v i c u m in lbe Mnruvicitm, lbe Proleio/.oic age is ascribed to the varied units — the \ r a n o v - U I e š n i c e G r o u p (Outer phyllilcs;, the Bílý potok Group (Inner phylliles) and lbe \'i atěnín Group — and I. b c in o -ti o 1. o li o u s i* o d h r a d s k á Gruu p and X e d v e d i c e Group (previously called the Mica-schists /one and placed in the Moldanubieuin). The Xedvědiec Group is at many places connected by transitions with lbe Vranov-Olosnice Group and is related with it 'more closely than with the Mohlanubieuni. The varied units are allegedly of the same age but their slraligraphic assignment is not uniform; they arc regarded as Prolero/.oic mainly by the Czech authors who correlate them with the Proterozoic ol lbe Kutná 1 Lira Crystalline. This opinion has been supported by a high radiometric age 189(1 Mai of the Bit.'5 Gneiss, which penetrates them iS c li a r b e r I 197/L The re-local ion of the newly define;! Vialenin and Podhradí Groups from the Mnldanubicn n into tlu -\ ioruvieum i.l e n č e k - I) u d e k 1971; was substantiated by the higher content and smaller thickness of iutcrlayers, by the nielamorphie grade and the character of orlhogneisses more similar to those of the Moravicum. The Austrian authors, however, regard them still as retrograde inelaniorphosed .Moldanubieuin. Of the same age is probably also lbe upper part of the slraligraphic succession in the Silesicum. where a sequence of mica-schists to gneisses with graphite. lime-done, umphibolite and quarlzile develops gradually from the underlying monotonous inicascbisl-pin Mites to gneisses. The varied interlayers had been cumulated in the \ elké Vrbno Dome, where K v ě I. o ň (1901; distinguished the lower clastic complex the graphitic complex and the upper elastic complex; consisl.enl.ly with llie views then aceepled. he placed I lie lasl one in the Ordovieian In Silurian. 1 p p or P r o t e r o z o i c of l h e Barraiuliun I he Barrauilian Preonnibiian is placed unanimously in the Upper Proterozoic on the basis ol rather scarce biostratigraphic records (e.g. K o n z a 1 o v ä 1978) and radiomi'lHc data (analogy with the Brioverian of the West European 1 !erc\ indes). Microfossils in its latest part indicate a relationship to the Cambrian. A break in sedimentation, which is known to have occurred in tli^ Zelezne liory area, has not been assessed in the Barrandian basin. The Proterozoic sediments are of the eugeosyriclinal lype, attaining a thickness of about 8000 in. Recent investigations of Rohlich - Sf oviukova (1908) and .lakes et al. (1979) indicate that the Proterozoic sediments for the most part set on the oceanic crust. According to llolubec (1966) sedimentation was of a cyclic character and the sequence involves the following principal rock types: 1. claslic, broadly homogeneous rocks (greywackes, shales, siltslones), 2. rocks showing rhythmic sedimentation. The rhythms of mm-order compose cycles of ca. 100 m thickness. The amount of siltstones varies between 10 and oO per cent, '). roeks with pseudogalls, inlraformational breccia and conglomerate. They were produced by turbid sedimentation and redeposition, subaqueous slumping and the like, and are often in association with the products of basic vnleanism. Conglomerates, occurring chiefly in ihe southern limb of the Barrandian are intraformational and contain pebbles of allogenic material, 4. produelss of submarine basic volcanism. and the genetically indirectly associated lydiles, silieified rocks, graphitoid shales+pyritic and calcified rocks to impure limestones. Graphitoid shales were formed by quiescent sapro-pelitie sedimentation, often before the onset of younger cycles. 3.3 Schematic section through the Upper Proterozoic in tlie Zolrmi: liory 11 ills, according to J. Svobodn, 1965 Pre-ore division: 1 — argillaceous shales and greywackes; 2 — graphitic shales and pynle-bearing quartzites. Ore division: 3 — a layer of Mn and Fe ores with Mn carbonates. I'ost-ore division: 4 — graphitic shales with a layer ol quartzitic shales 96 97 Tabic 3.3 Survey of straligrapbic schemes for the Upper Prolerozoic Kettner - Kodym 1919 Svoboda - Fiala 1955 Maška - Zoubek 1961 n-ir i lnľi Holubec 1966 1965 (approx. paralel- . lization) Post-spilitic stage Post-spilitic complex Complex with silieites b 2 Spilitic stage b Post-ore Formation Complex with spili teg b 1 Pre-spililic stage Královice area Ore Formation Pre-ore Formation Monotonous Formation Leč ice Hed s Zbiroh Fin. (with silieites) Kamenec Fm. (with graph, quartzite and carbonates) Hromnice Fm. (py rile-bearing clay slates) Pre-spilitic complex Železné horv Plzeň area Královice area Štěchovice series Davie series Upper Nižhor series Lower N i žbor series Z víko vec series Bio vice series Vltava-river valley Upper Rabitejn Lower Rab s tej n series P ben area Královice Table 3.3 of the Barrandian (M. Suk, original) Zoubek V. 1976 Chaloupský 1978 Ch:ih 1978 Mašek - Zoubek J. 1930 upper Brio veria n series Bs Post-ore Formation Br £ Ore Formation a Bi° .2 £ Pre-ore ,S Formation B Bla I rhyl limit es with shales a> -j-greywackes E upper handed phyllíles -a phyllites with graph, shales+calc-silicate rocks ^ spihtes slates and jjrcvwaekes Dobříš Group (Scries) Lcrice Member Davie Group ("Series") Blovicc-Teplá Group ("Series") Vltava-river valley. Královice area Štěchovice Group Kralupy-Zbraslav Group Vltava-river valley. Královice, Bio v ice I Within the whole area, Holubec (I.e.) established seven megacycles, which differ in both the average composition and the thickness of the individual Ia\ers, Volcanic effusions recurred and their material is present in most of the cycles (see Table 3.3). Holubec (1966) also discriminated two sedimentary developments: the West Bohemian, corresponding to a shallower sedimentary area with sediments less differentiated in facies development, and containing a highe proportion of greywackes. and the Central Bohemian, with more varied sediments deposited iu agitated environment. The boundary between the two developments runs approximately along a deep fault. C h á h - P e 1 c (1973), C li á b (1978) and Mašek - Zouhek (1980) and other authors deny the possibility of delimiting the extent of the megacycles in space and propose a simple stratigraphic division of the Barrandian Upper Proterozoic (Table 3.3). In any case, however, the younger unit with rhylhmiles of the flysch type (Štěchovice Group) corresponding to the previous "Posl-spilitic Group" (possibly in Foeambrian of Svoboda et al. 1966i is unanimously separated from the st.ralal sequence formed by cyclic sedimentation. In the "Islets Zone'7 only fragments of metamorphosed Proterozoic have been preserved: they correspond stratigraphically to the rocks of the southern limb of the Barrandian. Sonic occurrences with lenses of limestone, which may be of Palaeozoic age, have been grouped with them. A met a conglomerate found E of Ondřejov (V r á n a - C li á b 1981) contains pebbles derived from the near metatonaiite. In case the assumption of the Proterozoic age of this conglomerate were correct, the basement of the Upper Proterozoic sediments would be verified here. In the Železné hory Hills the slralal sequence is known in greater detail, in The Železné hory crystalline area, in particular (Table 3.3). An unconformity is there proved beneath the uppermost Proterozoic and Subcambrian. According to Svoboda - Fiala í)957). this division contains glaci'omarine and glaciolhivial deposits and is not necessarily equivalent to the youngest part id I he Barrandian Proterozoic. The Vitanov Formation in the southern part of the Hlinsko zone (V a c h 11 19/1) is formed of metapelites and quartzites. and in the upper part there are basic and less abundant acid volcauites. It corresponds most likely to the Upper Proterozoic. I he Krušné hory region The opinions on the age of the units of the Krušné hory region are also not imirorm. The oldest part of the slralal sequence, so called "the Lower monotonous complex" (Lorenz - Holh 196'.) is often correlated with the Spilitic Group of the Barrandian. Sk vo r (1975) pointed out the differences in the lilhology of the two units (deficiency of volcanites and the predominantly greywackeous character of the rocks of the Krušné hory area), and considered that the older units might be lacking and the entire Krušné hory crystalline complex might be correlated with the Poslspilitic Group of the Barrandian. The upper metagrcywacke complex (Přísečnice Group) is usually regarded as equivalent to the Poslspilitic Group on account of the content of conglomerates. However, it resembles rather the Spilitic Group in the overall development, and especially in containing basic volcanites. These units are often thought to be separated by an unconformity associated with folding and met.amorphism. which would correspond to the Železné hory phase. The unconformity, however, has not been substantiated structurally; the differences in melamorphism can be explained as due to a high resistance oi greywackes to kneading and thus also to metamorphism. The conglomerates contain only non-metamorphesed pebbles of granitoids, greywacke, guarlzite, porphyrias and basalt. The overlying varied sequence including the Jáchymov, Klínovec and Arzberg Groups is usually placed in the Cambrian but some authors dated it as Proterozoic (Stel tne r 1974). The presence of an unconformity at the base of this unit is questionable. The eastern part of the Bohemian Massif The Proterozoic rocks in the eastern part of the Bohemian Massif arc a continuation of the Barrandian Proterozoic on the one side and of the Proterozoic units of the Moravicum on the other side. Exceptional are the migmatized gneisses and orthogneissic rocks of the Desna and Keprnik Domes which, according to some authors may correspond even to earlier structural Stages. In the Upper Proterozoic of their mantle Misar (1963) distinguished a schistose facies, which he regarded as earlier. This occupies an extensive area, cropping out at the surface mainly in high-grade metamorphosed units of the Uugicum (Velká Cpa Group in the Krkonoše Mts.) (Table 3.1), Stronie Group in the Orlické hory-Ktodzko Dome, and a greater part of the Svratka anticline). Crystalline limestones in various stratigraphic positions, intcrlayers of other rocks and varying proportion of metavolcanites occur sporadically. Granulites that are also present probably correspond stratigraphically to those of the Moldanubicum. The greywackc facies, which is thought to be younger, develops gradually from the schistose facies, and builds up the Zábřeh unit and its equivalents (Polička and Letovicc crystalline complexes). It contains basic volcanic rocks. The varied neritic facies with limestones, graphite and amphibolitcs is of a substantially lesser extent, being developed chiefly in the south-eastern pari /4 fkrk of the Lugiciim, in the Mornvicum and Silesicuin. It originated only under appropriate sedimentary conditions and is coeval rather with the greywacke faeies (Misaf 1963). Similarly as in the Moravicum, the mantle of the Proterozoic is formed of palaeo otologic ally evidenced Lower Palaeozoic — the Devonian. Its extent, however, cannot he determined precisely because of metamorphic alterations. The Krkonoše-Orli. cké hory region The stratigraphic classification of the KrkonoŠe-Oriieké hory crystalline complex is far from being uniform. The Proterozoic units are particularly difficult to distinguish from those of Early Palaeozoic age. Chaloupský (1979, 1981) proposed the following stratigraphic units to be established in the crystalline complex of this region r — the Velká Upa Group — a monotonous sequence oi mica-schists and phylliles, enclosing a more varied complex of mica-schists with inter-layers of calc-silicate rocks, amphibolite, quartzite and graphitic schists. It is dated as Middle Proterozoic (equivalent to the Varied Group of the Molda-nubian complex), and developed typically in the Krkonoše Mts., e.g. in the valley of the river Opa. between Obří důl and Velká Úpa; — the Machnín Group is a monotonous sequence of metagreywackes and phylliles with layers of metadiabase. It corresponds to the Upper Proterozoic of the Barrandian and is developed typically in the northern part of the Jested area; — the Radcice Group in the Železný Brod area (.1. Chaloupský also assigns to it the železný Brod volcanic complex) is a varied sequence of phyllites with interlayers of melalydile, green-schists and metadiabase layers. It has been correlated with rock complexes within the range of Upper Proterozoic —Lower Ordovieian; in Iithofacies it shows relations to the Upper Proterozoic of the Barrandian and the Železné hory Hills. A typical development of this unit is near Železný Brod. fn addition. J. Chaloupský defined in the Krkonose-Jizcrské hory crystalline complex also Lowrcr Palaeozoic Poniklá Group (inferred Ordovieian and palaeontologically evidenced Silurian) and the Jitrava Group (Late Devonian age evideuved Koliha 1929, C h 1 u p á v 1979). 3.4 Stratigraphk scheme of the Cambrian in llie Bohemian Massif (I. Chlupac, orig.) 1 — polymictic greyish-green conglomerates; 2 — polymictic reddish conglomerates; 3 — greyish-green and Ted conglomerates with tuffaceous admixture; 4 — whitish-grey quartzose conglomerates; 5 — greywackes and sandstones; 6 — clayey and silty shales; 7 — porphyries; 8 — metamorphosed roeks; 9 — rocks affected by subsurface alterations in the Orlické hory .Mls. I herc are the S l r o n i e and Nové Město Croups, which Opletal places in the Middle or Upper Proterozoic (Table 3.U and Fajst (f070) in the Middle Proterozoie; the latter author assumes the Pale Proterozoic age for the Zábřeh Group s . 1 . (i.e. the Zábřeh, Slaré Město and Nové Město Croups - Table 3.Í) and its separation from the above nulls by I lie "Orlice" unconformity. 3.1,2 Lower Palaeozoic Cambrian The principal occurrences of (he Cambrian are in the Rarrandian and palaconto-logically evidenced Cambrian is also known from the Železné hory; the remaining occurrences are ranged to the Cambrian with reservation, chiefly on the basis of lilhological analogies and correlation with other areas. In the Barrandian, lbe principal Cambrian sedimentary area (the Příbram-Jin-cc basin, Havlíček V. 1081) was situated south of and eccentrically !o the sedimentary area of the younger systems. The Cambrian deposits crop oul at the surface in the extensive Brdy area and the Skryje-Týřovice area of a smaller extent. In both of them the Cambrian lies on the Proterozoic complexes wild a clear-cut angular unconformity. The Brdy Cambrian, whose lower part is classed with the Lower Cambrian is formed of thick accumulations of clastic sediments {combination of conglomerate and sandstone fades, higher up with a portion of volcanic material,1. As a whole, the sequence consists predominantly of continental sediments (Kukal 1971a). A prominent member is lbe Zil.ec Conglomerate, the pebble material of which contains Proterozoic rocks, granitoids and subordinate mcta-morphites (metaquartziles, mica-schist, rare orthogneiss, etc.). Organic remains have been found in the Lower Cambrian only in the shale intcrlayers of lbe Mořice Sandstone, which yielded remains of the merosloms (arthropod Kodi/mirus vagans, which is the oldest faunal fossil found in Czechoslovakia, its biotope being doubtless a limnic or lagoonal environment;. The Middle Cambrian represented by the Jince Formation is richly fossiliferous; the marine, predominantly trilobite faunas permit a zonal division and correlation with other areas as well. They provide evidence for the palaco-zoogeograptric assignment of the unit to the Mediterranean subprovince. The gradual decrease in faunal content in the upper part of the Jince Formation documents a proceeding freshening of the basin, which preceded the retreat of the sea (Upper Cambrian is no more evidenced palaeontologically). In the Skryje-Týřovice area the marine transgression over the Proterozoic basement is dated as early Middle Cambrian; the Skryje Shales 104 a .li Kmtymirui vaflím i hliif«' et lUvlftak. mm m tluttuln artlin>|«>H Imfh lh* lj|**-ř Cam lift nu *.l Uŕiív OlnrrnmliqQj, ||m> >ílde»l m*rr"f.>«il «if (;«rrlic»lt>vaii|, llr-i uritiruiiiKii, iLulun] liir I'lmtn nn'kivr I ' i. i'l-nli.-. J.7 t>ll»ll ltd- Inu'f KoriiiJiiiiiii Tni -iiiiitiiiii i/iiiľ iľ|iiirl« nu On- Cumbrian *rr (I n vltŕ r k V, 11*71, Kukni 1971»). In llie inTi.nl ní t lir t |i|Hv (Jimliriiiii the Harrain! inn »tt* i he »ile "í iiili«ii*in" viitrmiir Hili\il%. ji- i* alleged b> ihiek eľflniitlu. o! undi'Mlr*. flnrilr. i-liynlili-'«hil «ulxiriliiinU- hii-ull. iii'i'i nii|iLkiiii<n-lii-tir dr|xi*iU I Ii «• K ŕ i \ n-kli I ■ 11 m k wiiny und Stroiicc c n m p I c x * *). Rrtdiumelrir ngr data "n ilnmi' volrnniiťA .í7'i±"> Mu, V * «I a I e( 4l. Ií*7ô. |>n>lMh1y indu-Hr- ,< l..nj liiHľ intervnl of vnlmnic activity. Iii tl Ml Ždotnŕ kurv area tbc nfmtifl wdimeiii« iiri- jilnrcd in itir l/mer Cambrinn, ImL only Middle \ idrno-d |iulaeon|iilu^ic;ilh. »hnn-ing bkatml relalioni uilli the Ski^-jr-TýhiviťT (Jiinbriint II n v I i v r k V.-Snnjdr 1051). 'Ilic (jihilinnn nu k« «riv iiíforU'il U<. n Inw-uradi? iiu>lniiinrphi»Mi. NW SE Chrbínct Dubovú strm Bubcvice 'i.íl denlogiral section of the north-eastern part of the Barrandia.il (V. Havlíček 1981) 1*1 — IVoteroznie, Cs — Sádek Member. Ch — JTolsín Conglomerate, Cho — Hořice Sandstones, lít — Třenice and Milin Formations, Oar — Klaba va Formation, Ol v — Šárka Formation. 10 — basalt tuffs. Od — blaik shales of Klabava Formation, qO — quartzose sandstones of Hcknovec Hlásná Třeboň Skalka Dobrotivá and l.ibeň Formatiuns, Obí — blaek shales of Liheň Formation, Ob2 — Letná Form., Obó — Vinice Form., SI — Liteň Form., Sk — Kopanina Form,, OM — Zahořany Form.. Ob5 — Bobdalec Form,. Okv — Králův Dvůr Form., Oks — K-»sov- Form., Sp — Přfdoli Form., Dl — Locbkov Form., Dt — Třebotov Form.. Ds — Srbsko Form. Silurian basalts — in bitiek The presence of the Cambrian is also assumed in the "Islets zone", in the Tehov "islet 7 (contact hornfels. rptartzite, etc., Vajner 1963), tite Scdleany-Krásná Hora "islel" (Havlíček V . - S n a j d r 1955), and in the basement of the Bohemian Cretaceous Basin (boreholes in the areas of Trutnov, Poděbrady and elsewhere). The Cambrian is probably also represented in the meta-moi'phic rocks oT the Krušné hory Mts. (the Arzberg Group and the lower part of the Klínovec Group) but its presence is only based on the correlation with the Saxon-Thuringen region, where it is evidenced palaeonto-logieally. In the Bohemian part of the Lusation region the Cambrian 'may occur in the Krkonoše-,1 izerské hory crystalline complex, e.g. some older sequences with carbonates, but there is no evidence available as yet. Ordovician The Ordovician is best known in the Barrandian but is also evidenced palaeonto-logically in the basement of the Bohemian Cretaceous Basin and in the Zelezne hory Hills, As concerns the metamorphosed units, it is represented in the "Islcls zone" and in the Krusne hory and Lusatian regions. Ordovici a n i u t h e B a r r a n d lit ihe Barrandian the Ordovician sedimentation was concentrated in the tccto-uically founded basin, elongated in NE—SW direction and showing the maximum subsidence in the axial part (Prague basin in the sense of H a v I i c e k V . 1981). The Lower Ordovician lies iransgressively on the Proterozoic or Cambrian; sedimentation began in the Tremadocian and continued until the deposition of the boundary Ordovician—Silurian beds. The facies development is distinguished by combined shallow-water sandy and deeper-water shaly facies. In the Arenig and lower Berounian there are frequent basaltoid volcanics (mainly the Komárov complex), and in the near-shore lagoonal environment favourable conditions for sedimentation of oolitic Ke-ores existed locally. Bich faunas with a predominance of bent-hie forms (esp. trilobiles and brachiopodsj belong to the cnol-water Ordovician Mediterranean Province, and they make possible a detaile;! biostratigraphic classification. The stages of the Upper Ordovician as proposed b> Havlíček V. - Marek (1973) can he applied to the entire Mediterranean region. Kor the summary reports on the Barrandian Ordovician see Havlíček V. (1981,19X2). Havlíček - V a n é k (1966. biostratigraphy), Kuli a ] 1063 (lilhology) and Fiala 1971b (vulcanites). Other occurrences of the Ordovician The Ordovician sediments extend from the Barrandian eastwards into the basement of the Bohemian Cretaceous Basin (they have been proved by boring in the vicinity nf Poděbrady, Pardubice and west of Hradec Králové — Klein 1978). They crop out at the surface in the northern part of the Železné hory area, where the Tremadocian and Berounian were evidenced palaeontnlogically (Pranfl - Růžička 1.941. Havlíček V.-Snajdr 1951). In these occurrences the Ordovician displays a monotonous shale development with a sole, rather conspicuous quartzíte member. In the "Islets zone" the sequences of prevailingly chiastolite and eordierite slates with one major layer of metaquartzite are ranged to the Ordovician on the basis of superposition (Svoboda 1933, Vajner 1963). The correlation Králův Dvůr 3 e -ounicn formal i a jy rniu^ Dvui* Frr. J&hdcnei Fif. 7orioror,y f-rr □ Obr ů: i vG I " re mu -[ d oc"a n A, A A A A-^^=--"" A A A A A--. ... .A A A /-—in. A A A A — — - " - AAA/ C'O'O ■ O' O' o ■ Kru arte hory - area o - O' - 0.' . ■ a- quurtziles j: "i-fr 3.10 Stratigranhic scheme of the Ordovician in. the Cznuh Soe. Rep. (I. Chluva'a". ar'ig.) * ■ 1 ' — '-• -es; 2 — cherts; '•> — siltstonos and clayslimrs; 1 — volcanic — quart/iles: U — greywunki-s and alternation of silts tmics and sand■■■ ..... ~ siltstones; S — I'e-oics; !) — stratigraphic lireaks; 10 — metamorphosed rniks: affected hy subMirfare allenilions with the Barrandian is also facilitated hy the chiefly shale development of the Ordovician in the Hožmitál area, where Arenigian and Berotmian have been established on palaeontological evidence (Havlíček V . 1977). In ttie metamorphic complex of the Krušné hory Mls. the rocks of the so-called "P h y 11 i t c Group" in the areas of Aš and Kraslice are thought to be of Ordovician age. The complex comprises quartzitic rocks and the overlying phylliles and mica-schists, which may be the metamorphosed equivalents of the F r a u e n b a c h , P h y c o d e s and G r a f e n I h a 1 Fur in a l i o n s of the Saxo-Thiiriogen region (ft k v o r 197,>). In the Lusalian region the determination of Ordovician deposits is questionable because of an absolute lack of fossils. According to Kodvm 0. sen. and Svoboda (1948), in the Krkonose-Jizerske hory crystalline complex the sequences of sericite phyllitcs with metaquartziles and possibly also the roofing slates from Zelezny Brod can be classed as Ordovician. Worthy of attention are metaconglomerales from Rokytnice nad Jizerou, which contain pebbles of granitoids and older metamorphosed rocks (Chaloupsky 1963). In the Jested crystalline complex Chaloupsky (1966) allocated to the Ordovician the sequence of quartzitic phyllites, in the upper layers mainly sericite phyllites with subordinate interlayers of limestone and melaconglomerate, overlain by quaxtzites. According to the new stratigraphic classification proposed by C h a - 9041 III 1 • -n. rťiii-n* (rum th« $ňrLa Forrnntinn wilh l-i... Iniip.xl ľ.u'thiima msraK mini" Hnvlirrk (- ,i-.i;jinil ď i». -uiipíT pml i»l il»> llmli'ifľ u n -I ľ n n i k t á 11 t <■ n p * . "•ihirian ľln- umní lanfiill^ -[uiliiij nul ficlu-fii in |i.iľu"iiii)lH>frii:ul lindi i» Lhe Silurům ■ ií tlii- riarr.-tiiiliiiii. Olht-r p.ilatNintiilngiĽalh evidriired omirmnťtra m-p in tlie /■■l>/nc |j.ir\ itrni, ílu "|s|i»| #". |hc Hliník" /nm- mul in ihľ \titrn\"-xi IjMMM nud Lutiitúiu region s The prcswnrc of the Silurinn ni»y {»■> nifrm .1 m somr iitlirr mcliiinnrphosed utiits. il t- Mr>ti|traphir »ihrmr nf lite Siluriau iu lbe Cmb 5w. Hep. I — »haUa (in pmrnl. , » - ihoJm anlh miťTtw-ryttalhnr uliata: 3 — eajrammt *h«l» wiih limniiiDc ľKUľrvtkulu; «f — u Íle mali na bim k .hatei anrl omnuli clayaUMlM; S — iitlfnirmi* thaWt, ti — bu>eÍBjlie hnvr«i»rk** (hkuaparilaa. bwniirnln); 7 — aucrilie luuratnnr* iiml liinritfinra in grnenl; íl — volcanic rocki; 5 — • lrali|rr«|ib>r hrt-uka. M — nvrtanKtr-lihiiMxl ««•«.». II — rnrkí effertml by lurnurfare alleratioeu 1 U S, J sw J' / ., ,,,..... , '"'"'I'"""- Fur,.,,,,,,,, (upr*, ,,......, \E-MV »nh w£t hnM*t"tt" reafca!^! I„1„l in the I pper Silurian gradually replaced by lime*lunc facie*. Sedimentation wns strongly affected h> luhmiuiiie basic vnlcinisui culiuilintiug in the Upper Wrnlockinn and lower Ludlovinn. Accumulations of vulcanite*, mainly in the north-western limb, gave rite tu volcanic elevation* surrounded by vanou* shallow-water organogenic nnn «li»» rimimiled. and conodonts. trilobite* and other groups permit other detailed flivi*i->n<.. Tin- development Lnuwi reflecting llu- gradual inrn'ii-.e in P'lnpv-riiiur<- during llu- Sibinriri period weni <>n without interferences oIm) in the lnte>t Silurian. It i* the uppermost Silurian in iuelf which makes the Barrandiaa a dasticnl r«'gi"ii »n world scale nud the f'rdMiau >t,u:c is of international validity. For sumimirv infonnation on the Silurian see Horný (1902), Bo flee k (I953.L Kin In (I97ÍI - vrtlcaniícíy. Kffí el si Hf)83). Oth rr lire ii trances u f the Silurian In the Lhmdiin l'»laeu/.uir <»f the Železné bory area the Silurian is known only from the central part of lbe Vápenný f'odol syueline. The phyllitic gruplolite •tales with fauna of Llandovery and Wctilockuui age nre overlain by graphitic liiufslones and ihales with Vu/zmn ri>u>rt. which undoubtedly represenl the PH-lUdian (J din 1898, Goldbncbova-Svobcidn 1930), In the Hlinsko zone the Silurian is rrpnrsented by the M nikotin Formation: Uaudovcriuu ;w-inetainorpho»ed graptolite *lt»tes with silicite* (Horný 1956), The stratigrapbic position of the higher layer* 'mainly lt>rhmhurk Grcywarke»f is questionable, although their Palaeo-toic nge ha* been demonstrated reliably by nueropalauontulogical finds K u a ■ ulnvt. Vacbtl 1976). In tin- "Uleis aoiie", tbu grupiiitic chia^tuUtic slate* and the overlying erlnti* hod ilnrk liineslones, developed chiefly in the Sedlčany-Krásná Hora "islet" are Placed i.. the Silurian (Svoboda 193:1, 1956. C h 1 u p i 6 I981aj. Their dating i* I.uvd «n new finds of graptolttes ( It I u p n . in pre**. The opinion on lb.- di-iribiition <>/jnitúl enviniiis, 3.15 Trilobita fVwnui tmu-nwřiři (Barrnndc) (mm il>t Kupn-nuM Formátom of lh* Bohemian >iKiniLii Zadní Kopanin*. Bor ntlulliui X3 Pli.Mr. by V. Tit rok 3.10 Crown of crinoitt Seui>hoeriniirt thraiii (/, n kar) from Um PfMoU Form-alioo of Üw Bohvniiaa Si lurian. Bamiutian. K.rl-♦laj»; natura) aisa I'holo by II. Vrtialov. h Im li In* nt-arer In (lie niel.mmrpbic "bleti" than to the Itnrrnndimn Silurian |ir<>|MT llnvlirt-k 1977 and l>y Uie grnplolile-beiirinii Klalr* at Belaci' in Mirovice i«lcl (S torch el «1., in prvui. In I ho l.iiMitiuii ri'Kiiin. the Silurian linn been a»«e*«i>d in the peripheral prirt •>l iIn' Krkniittfe-Jixcrtk^ hory <*ry»tnUini* enmpfpx around Železný Brod and in the .leitrihtkv hrbet range. It is rcpr< *«ni«ii<- of llu- Sjixmt-Thuriu*-rn region 'they serv lik»'l\ contain Srypho-. unit- fnun t In- Ji šb-d ridge. I li I u p áé 1ÍW3Í. Tin- only «x-currenre tif the Silurian in the Muruvo-Silesian region it ut Slinní. i m i (n- hr.iliui^ki'i vn-ltovinn Upland In a ti'clouirnlly isolated Murk. dighlJy altered t:rnpli>lil>- duilen of Unndnverian and Wenlockinn age pa*a upwards into oil..in.....> .Ii-|. - with limestone intrrlnycr*; dieir age ranges from the Ludlovinn pmi*.ibly up la Nip I'HHolinn (Kotlner - H r m e i lÄti. Bo u ŕ e k I93ľi). The pn-vun- ní lite Slumm in iillicr meliini'rphofed unit* w purely hypothetical . g. in the Sile»irum or Moravicum . t>eviuij«ti ill priiiuirs luliTiiHtiomit tigruíňuriri- is ih< IVvoni-n. in ihr Ban.-uidiui ba»itl, hut llu I Jev Finnin of I In- Moras ■>■"•ih-mii rvrfiou i* of ci much larger un-al extent. MiltOi oeeurrenca aw known in Ihr 'Uletí zone", in lim Železné hory Hill* and in llu- I .mail if in region. 11 •- v u n i a n in ihr Hnrnmniiii Tlie 11- >. nu.m hrnie- ihr nutní |>,iii ..I ihr Burrntiiliiiti eyticliiiorium hotweeu Prague und /.ílu. m.ikuiĽ up tin mi of «ht* It.iln-iniiin Kuril It re*ls eon-fori mi hl y on the Silurian and lbe greater part of the sequence cotutuU of linn*.|one faciev Very cJiaraei eristic arc the combination* of shallow-waler Im 'i In (tic 'in (In* Pmginn also wf faciei wiili the deeper-water facte* of fine* gr.oiinl iiimiiIii hiiu'stiini-s. winch were depn*ited in a substantially more tpiiewnt envimnmnil. Shah- facie* art* tuhordinair and tandy faciei are H'ii(ii.'>l in llu- up[MTiriii*t member of the *«|uence — the Kohlin Mcml>er l.niluiti lín- I.ist to be ilrposih-d b«'inr«- the n»gi-r«*ion of the sea from cenlrnl Bohrinia. Tlie Ui-viiiiiJin m lbe Barraiuliitii i* a cU**ical accurren« of the world-Male. It *.ml.uns pi-biiriľ oni I n-vf finiriiri very rich in inecie* of ihe Mi-ralle*! Bohnninn IMm-; ihi-\ on- ih.ir.u teiislic rrpr»-*riilalive« of th" a«socinticms of the wtirni 3.1* IVUil »■! ih» txfunnrr <>f Situnnn—Dvvoixnn thiuntU ir brd nn. .1.17 I'liutiv !■> II MrtimilKiivit mill, Jrrn^t,1,,"J(*1"'r',r''P;',.,,hc S,,u™—D^vonUn _ Kl.nl WIm- Ph..... t>y H. Malu-ilknvA climatic /line in An environment uul of reach of a direct influence of the continent (t^, the famoui fauna of the Knneprusy reef complex ts on© of ill*? richest Devonian association* in the world'. Tin* aliuinhtiit occnrrrtirr of /omit fossils, chiefly tentaculite*. conodonlv tnlobites. graptulilctt. and of itmiimilo Iwrjrinnintf ivilh the Zlichnvian. niakn |H>**ibli tt hiphtt detnih-d bioslrriti-Krjifiliic suitdivisinn. L'niiitcrrti|>l4>d rarlionjde M-dniit-tilnliofi nod devclup-inenl of faunas from llie Silurinn to th«- lj»wer Devonian witf thi* reason why the world ilratotype of the Silurian Devonian litnin- i f o 119 d a r y has been chosen in the Barrandian (Klonk near Su-chomasty, see Chlupac et al. 1972, McLaren 1977), and the units established in the Barrandian became a basis for the stage subdivision of llie Lower Devonian in pelagic development on the world scale (Locbkovian, Pra-gian, Zlichovian etc., see Chlupac 1976). Recently, the international para-stralotype of the Lower/Middle Devonian boundary has also been chosen in the Barrandian (Chlupac 1982). For summary information see Chlupac (1968, 1981b, et al. 1979). H Chynice Brdnzovy ^Loděnice0 Stydlé vod^ Svatý Jon p.Skalou * BEROUN PRAHA Nová Ves, :r^Pod0[{ Řeporyjgo * •/Barardov , -~ ~-a Přídolr' . .■ Zadní Koaanina\ . : \s topolu ---"■i.-- "Radotúr Tetin Kosov , -o Koukolová hora ^Čertovy schody Ldjškov==r.Klon(<- ~> ^oVŠeradíce 3.19 I.ithofacies map of Silurian—Devonian boundary beds in the Barrandian il 0>r ('region in >W |uirt ' ílu-UnmQilian transitiun from the nd kji4 blocluUc davdnpaieat lo micrHi* lkinecloa«« (nmmtinf la I, I hlupáf , um (KnDŕpru>y) limnlanre; ? — rrrf orpiu»rt«>tic Mivcqee I — light-mlmim) rrrf urgo: -mil Vmaŕi.r l.MImlnriii i - li.n L l-ml.lni \ <■ IHm .(..liri J - mllll-ll ItiíenlIC fÍB|K» ryje l.tmr4loa«i ď — jwy mirritic t>vnrf»-Prikúp IjnwtUiftw 3.33 Slrttolype «1 Uir boundary ol Lower IV VDoinn ilage* Lnrhkuviun ~ Prafinn in the gorge Cern» rukle mu Kuint in tin lUrrawliin T}i«t lmiiiiif.tr-. lie* «1 the Irvel ul ihr lower end ul fainimcr Phnto by B Malouth.^ • í .'j K.ii>i ] nnr.l.Mir (Itri.ni.n on tuitlhern *|i>jm »1 Koly* near Kon>-p»>ii <. I.lrpbmiľ* Hnifl Uurmndian. wetl of Pn>ir». pi,„|0 fty j 'ZLATÉ HORY ■bVRBNOv ^-'.p. PRADĚDEM horní benešov^V-^ .... ° 5'opava X:". „moravskv beroun 1 "ostrava* OCHABÍCOV \ OLOMOUC o -KONICE "°STINAVA HR°ANIce o BRNO ( 1 [ 3 __*'..„ 50 km __f 3.26 Lithofacies map of the Moravo-Silesian Devonian in the Pragian stage (V. Zukalova -1, Chhi- pa£ 1962) 1 — clastic sediments, sandstones and conglomerates; 2 — shales (pelites and siltstones) of the Stinava Formation; 3 — pre-Devonian rocks o\.27 Lithofacies map of ihe Moravo-Silesian Devonian in the Dalejan to Eifelian (V. Zukalova -1. Chlupac 1982) 1 — clastic sediments (conglomerates and sandstones); 2 — shales (pelites and siltstones) with volcanile bodies, Chaliicov Member; 3 — carbonates; 4 — pre-Devonian rocks ŕ* / ~. ZLATE HORY v '^^--p.PRADĚDEM v a VI I y /^Ť^HORNÍ BENEŠOV \ =.-_.. - ■ oOPAVA W'-i^r- - : M~RAv$KV BEROUN % i ------ r, o £ OSTRAVA % . "v- •" --——— OCHABIČOV 7 v .- +.------—--- j_ >=1=F5", - - OLOMOUC ■ / L-UDM|R0V=°:— ■ ' STINAVAřr= ^ + /. . ■'■ ■/'OPETROVICE^ í- ? + V;-.t + v „_.■ '■ o HRA NICE VoBRN0:' /•■■■■■■i »1 50( — prc-Devonian rocks elastic, micritic and pelitic facies were deposited, included in the Líšeň Formation. This development called after its typical area the development of the Moravian Karst, is widespread particularly in the foredecp and basement of the Carpathians from northern to southern Moravia (from tbe area of Ceskv Těšín to 3JW Two fiirniRronl innilt of Ilbeniirt drrrliipiirrnt nl ihr r..»rr !><■ «unmll (Prakov QuArtnlc in northern Murani, limby JueiilL): d — l.rľirhmjHMj Aetotpirifrr prinwďui fjtainioftr}, — ubuUle n»rul Pírur*-dictjjm proMematiftini CntrlľuiL Start Rpjvli, X2 l......hy M VrJf«<..v* lít \n ľX.iniitU' f( l'h-il prr»r.vidmu Iii ;i,'lni.|w»U ImvjiIvc»! im iui>l«nHir)>hn*o] qnartnlr uf ihr (hKifI luftu m.jrphir ťnír Vrtinn Uroup, Dobil ľUoll n^ar Zbi ŕ Hary in II» kwmkv Mu Vjiiir.il by A. ffiMMÖM 131 3-32 Strnnutnportiid«« Atíinvttrnnw rialh'aSitm NichuLujo Sectios* of Sto-ťhyixť-t »p. LrmntJn-» *l ihm Upper left, ihm Mrtinn Wrnfa-l hnwhiiiV depth "IT- 142 m F1 lUnmoio of Moravia. Citrlian Ptiulo archive PCG Pmlin .1.1! .tili f ilii («Ji-ii riiiiu Lcattnule. .IrpijrFnpi-rii Jiui/irrhwmu Ij-vnimpc thiu •action. MéqfH-1 ImrrrKile. deplli 52-67 rn. Pabnuoir of Mura via, Frauitan X-' Photo arehiv* t I (.. l'r.Jua 3.34 Trufwfuirrorn* iff. fnuífrtí Lowmptr, itilrorhiut fvilemt, thin wtiun. howl»f>lr dapta ó233-á'J3í m. Fnuin. X2 Ph-I« archive (TO. früh« -! i't-irifriior-rinrM/iiiuun ip. (m lite upjwr pari uf ftff,, Acujtuifrunia tp (ixntrr, i faunui of shallow-water carbonate fades of ihe Middle Devonian mad Fmanton (with n predominance of corals and tlmmatoporet) show n MtCAOfMHUM character t.f n wnrm climatic rone. The I iiiMt'Miiuiii Faunas are strikingly different, reflecting differetitirtud environment* and a change in climate (cooling) in ihe InleM Devonian iChlupuc el al. 1968, Zukulovi-Skocck 1979). Tbo Drnhany development and the development of Moravian Kurst pa<* inln each olhur Inlurally. In this "transitional development" ■ >( \Ur Devonian ib<< shale facte* common in ihe Drabm^ .| .n!+■<,i i h ... ^ i j,, ,, % n i i, ., hiiov and Ponikev Formation t! predominate in tie hn*n| mid t.>(. part* of the sequence, and carbonates comparable with the Moravian Kar-rt development (Mncocha Fo r m a t i o nj in the Civilian—Frauuan part. This development it typical uf the central part of tbo Konice-Mlodcc bolt dJ It I u • p*c-Svoboda I9G3J and in the Nemctce belt nortlt of the Moravian K.irci. For summitry reports on the Uritligruphy and palaeogrography of ike Mi-ravian Devonian ■** Dvorak (19S8L. 1973b). Chtuple tiaViJ, /UU-lovi-Chhipae (1982), Bnrlh (on volcaniwn 1963.1984) and Skacel (deposits of Fe-ore* 1966). X I. '< I jt|ifr Paliit-itzoie mid Tria^ic Lower Carboniferous The Lower Carboniferous deposits arc of the largr*t extent in the Moravo-Silesinn region, and minor occurrence* are known from the Jcsted-ke potmfi Mts. and from the basement of lite younger formations lo the east nf Jfntdec Krnlove. In the Early Carbonifcrnu* the filling of the Lower Silesinn bn»in w« initiated. The Moruvo-S i I e*iun region In the Mumvo-Silcftion region the principal liihoslriitigrjiphic mill* pas* from thr Devonian lo the Lower Carboniferous without coimpirnout facie* changes both in ibaly (Ponikev Formation) and carbonate fades (Lflefl Formation). In the Nfrky Jcseulk ue.i the absolute mrijoritv of the Lower Carboniferous beds belong to the f I y » c h formation called the Culm. In the western part (at the boundary between the llruby and Nf/ky JesenhV the hatat unit is the A nd Make li o r a Formation, tbc fjediutenlation of which began in the latent Devonian, persisting to earlier Lower Girboniferoui K o verdy n -|1 y - / i k in u ii iluvu 1966). In the casteni part (the Sternberk-Horul Be-Mfov help the Ponikev Formation ffhnle* with »licitcs) was being AJf Clumrnía iim^ttn (Mumler). a •mami-anl mmiinitoiil n-ptult.tNMl firirn lh» U|t|K>rtHu«l IWninit (FarowrnUtir, pfcwtcl HI thu beddini «irtw» »1 die Knu,> I...........h i».!•«» n..-ir MtHHH-lt» in tH* Mumvian Kant - ^ ty H fltTta**! deposed in il.-- Late Devonian Nfjfft$ |B lift Tour..imian -Vi*éan boin,.l..r>. lb,- 1>mg Horní Benešov Formation bat a predominance ol gn-vwackes 1/mer-Middle Vitéan according to tunerpoiilian}; at the boundary between lb.- pre flyiM-h formations there are in placen calcareous conglomerate and sandstone lories, rimming lbe elevation structure* (e\g. lbe Moraviky Beroun Conglomerates'. Tlie age of ihe higher Culm units of the Jeseník area (Moravice Formation nod lbe overlying Hradec and Kyjoyi-ce Formations), whirh some author* unite into the Hrndec-Kyjo-vice Formation, i* demonstrated by lite gontalile and olher faunas front lb.- interval of itjipcr Viséan to the lowest Nnmurinn A (tbff, Kunipera l!»7'i. I'M. Vhr individual I iilm m<-ml>eri imbricate from W to E, their muxuiuim thirbitPi* in the Western pari rehiring strikingly eastwards, riiiiiniah-d n* parly as the early Viseun, and higher up the rlnutrint Shale* with t, predominant r of siltstonrv In the southern and pattern parti (Moravian Kami | UPPt* vise AH 3.37 Strmligrnphir tcheme uf tha l-owar Girbtraifarotlt in I 1m Draliantki vrrbnvma Lpf.nJ a.i-.rrling U> J DvoMk 1973 B — Brwick* SImIm. 0 - Ostrov Shale* .1 IS tlraligrjphir t, limif .if ihe I ••«-r Qv«Weu«r«ut n the Vl#k» Jew-ink IlitU U. DvaMk, onf.) Alt — Aniitl.kM hr>r* l-i minium. HD — llnrnl Ekitu-Uiv h'nrinaliria, hi — Iforavira Fnrrantinn, — H-K — Hradec-Kyjovjr* Formation, P — p.»- nikrv I'ommluin_upper part. L — I-ftcA Kunnaltoa. upprr part. O — y \ ihi* Culm facie* begin* wild tin' flre/uia Shales coiiI.iuiimj; Irdnlule fauna of curly l,t middle Visenu aur < lilupůř I960), They are over I am by etpii\ulenl ftri >w«ckc* and shale* «1 I It r f* r « t i v a n o v I- o r in n 1 i o it in a reduced thickness. The youngeM unit i- lín- more than .iiMHI tu ihick M y ■ I e j n v i e e Fo r in o I i'» n (Dvorak I968j l!»7.'ibi; in lbe southern pari il» prominent an nil" i- arc lite Marice ami Lulce <.onglomcri with pebbles of Mnldntmln.ni rm'ks and non-liielkiiiinrpfin«i"i| Ih-viiiiiiiii mid Lomit I -ir I nul if <-r i it Jinie-Vii'-.see e.g. S t e I e I lOtřil Toward* N and NL the conglomerate fncies nre replied by greywueke* anil shale*, which in lbe VySkov nrr-ji yield .i rirb nppiT Visenu fuiiiui K ii in |i ř r ii ■ I. u n if lt>7"i . In tin- foreland and basement «1 the Outer Carpatbiaus mid in some t» doled Mjificial nrmmtnee* < I Iran ire mru) carbonate sediment niioi.....ninmed from the Devonian unltl the bile \ iséau. In the extreme eastern platform pari, however, interruption • • Í sedtrncnlalmn e_i>. S mid Sli of Ostrava) ha* been substantiated by the nhwure of the Tuuriiaitiuii mid lamcniiiau eonodmit /num. llie unit* of the l nlm development tm' I here of a ralher reduced thickness, although tbetr exi»1i'nri' l«ii- l-i'iii i'Mib'iu'ed bioitiiitiorupliinilh I b I u p á <" ■ knmpern 1072J. Ill the *lighll> regional mt'taiimrpliiited Lower (jirlNiiiifrrttll* of the ,lestM*k« pohoř,' Mu. ibr limestones containing liimeiiiniu fiiunu* are omtIuui > ml i m-uhN h\ -bule* with i r i * - iiilnlnie fiiiinn of tin HiMinimi Liirboiiifernu* boundary ht-ds I.CIilnpáé 1064). Higher up the stude* pas* ubruptly into greywaeke* lilld pnlyinii'tir »lliall-trniill" Limestone*, which on hiostraligrnphic evidence are Paiiiciiriinu and Tour ii»i in in age Chill pác - Zikmundova 1976). Tlir upper ToumtiffAti is represented by biorheitic limestone* with shale interlnyers and fntnuil and plu.it IosmIs nil mi.ilncne ol lb. II.eK -fliěkv l.iuie»loii.-, . The lower ( arl.oiiife -nun -'■'Pieiice etuis with chi*iii -tdinniit* of the Culm facie* probably Vrseen). T Ii e In n i' i ■* i 1 •' • i a ii 11 .i - i u Tb>' Lower I .iilmitifemus deposits of the Lower Sileainu Bath) occur pre-dotninantly on the Polish terrilnrv. along lite northern and en»teru margin* of lb*- Ii.i-iii. in (!jterbo«loM«kiu tbe% have buen e-.liibl i*hei| .»nl\ by boiiuj! in the i^nrlrf area. The txmrr Cnrlionifcroit* iBctiratntl in Ijnwer Sile*in wer*> drposilej in two sedimentary cycles: llie earlier cyde upper T«umai*iaii t" middle \ im'iiii) i* elm racier lied by fluvintile sidimeulutinn 'so-called fliiMnlde Culm. represetiUd bv tin- Mnn-ii/ou Member. /. i k ■> « a ItHi'i . Tlie you oner, upper Visean cycle sU oí marine ^odirnimi*; in Puland lhr>y form the Starý Zdroj lember (A u g ti * l y n i a k » Crocholski t968i and higher up l li e i, [, 1 ii w M i> in )• v r . tln* i. nf repre»*ivp rharueter and omiHiii* rontiheiiliil fmiiK. sw NE Mronny-r^řrčí textoroc wne .Moin Fault m SATN0V1CE Čapí tfrr^i HWUI VEBN£«OVICE 2 ÍIWJ 1111 9ioESI iiCZI wEZ3 ui23 uřZZ3 tul 2r>r :tA^ Ucnioriml ler-lum Üuinifii Ilm >W iiml> nl itit* lUihwrnuni pari uf >Ur l,mn Sdeaian l»iin (V Holuh- R. TiiaW IWk» J — Miililt« lurunijui. " — lovicr Tunitiiaii. 1 — iVtvMnnninii; ^ — tk-lidn ■ In Furtuatuii» (l-uwvr Triaaeici: • > — ItuhuvUi'!•■«■ lurrnaU"* (Irntnit^ianJ; ii — l'i'kiiiiKV Forraatiun f.S*)Miian): 7 — Bkmiiiimv roraulinn {u|i|>f-r Antun »anl, S — Uttkav jlamher (lowtr Ao(oni«iv ; 9 — Varor-rov \l«Miib.r (ilriiluinUn C — lnw«f Aiiliinino); W — Jlrka Mcmbcr (St*pli*ni*n A. B); // — >i iiiitünvii'c Mnolarr (Watlphalian D); 12 — Jivka und ^valuoovi» MiiiiIht*. uiilillcmiliatedi M — Zsetaf Formatioa (NauiiirUn C — Ä'mi (.Ii ilian O : Ii - rr>-»UllilW romplm; Jfl — lmrrhola Al tln' wt^lfin uml ininlierti murviti> ■ lin« iui*i«i there urr Ijiwit llnrlmni-fcfnii« «rdiiiii-iili nf differcnt (um-- 'Iiii vipienir »». of flmid origin. i1,*' **"».....*n lmiK*<.iit>» in ,ir Die li.wn Hrmii.r ta Mur«v.V in, i[„ bonmo rl.hplan »f Ilm imirciii „I Itw lU.lH.midn M*aul d*|irrt..,.ti IM ihr luir^n»»«! r, Ii,«- Cnrpathialt ' ,,rll"T Ptwio b\ V A-m-ii 141 3.43 Rhyolilc eHtision at Vraní hory near Bernurlice. Zncléř area. Bohemian purl of Ihc Lower Silcsmn basin. Auluninn Pholo by B. MnloulkovA Upper Carboniferous (Silesian), Permian and Triassic Towards the end of tbe Visean and at the beginning of Namurian A the sea retreated from a large part of the Bohemian Massif. Sedimentation continued only in the Upper Silesian region, but it was replaced by the paralic molusse and the extent of the sedimentary area was considerably reduced. In the Bohemian part of the Lower Silesian Basin the Lower Carboniferous sedimentation Bla/.kr.w Member) terminated during the Visean; during the Namurian A and B the Massif in this and other areas became a continental source iren. In the Upper Silesian liasin the marine sedimentation of the K y j o v i c e M ember terminated in the lower part of the Namurian A. The Ostrava formation, limited at the base by the Slur marine band and stratigru- phically corresponding to the Namurian A, is a continental complex with marine layers, which are denoted as marine bands. The Karviná Formation was deposited after a minor hiatus between Namurian A and B and further areal reduction of the sedimentary basin. In the Polish part of the basin sedimentation continued, whereas it was closed by the deposition of the Doubrava Member in the Czechoslovak part. In the Pernto-Carboniferous area of north-eastern Bohemia the Upper Carboniferous sedimentation began in the Lower Silesian Basin in Namurian C by the deposition of the Žacléř formation, and continued until Wert-phaliun C. The richest coal deposits of the 2acléř Formation are in the Lamper-lice Member near Zacléř. Near Malé Svatoňovice (E of Trutnov) and Rtyně v Podkrkonoší at the fool of the Krkonoše Mls. the coal seams of the Zneléř Formation are mined mainly in the Prkenný Důl-Zdárky Member. The following megacycle (O d o 1 o v Formation) dates from the interval of Westphalian D to Stephanian B. At the base of this megacycle there are the Svatoňovice Member (Westphalian D, Cantabrian to the lower Stephanian A) with the Svatoňovice group of seams worked near Malé Svatoňovice, and the Jlvka Memhat (upper part of Stephanian A and Stephanian Bj with the Radvanice coal seams. 3.4-4 Bouinl.iry between Zaelér ami Odolav Formations (Pctroviee and S\a-InAavirc Member*). Beds showing selective weathering are volcanoclastics of the UNI tnffaceoiia horizon; bound nry between WeMphnlian i- and I* Bo-liemiun part of llie Lower Silesian basin. Rnnd cutting near factory Lenka in Petflkovire near Tmlnov Pholo by V. Ilolub 142 143 sw NE 3.45 Geological cross-section of the western part of the Mšeno basin (between Mělník and Bezděz) Crystalline complex: In — Upper Proterozoic (quartz-albite-muscovite-chlorile subfacies), lb — Upper Proterozoic (quartz-epidote-biotite subfacies), lc — igneous rocks (granodiorile. diorite, granite); Upper Patacoznie: 2 — Lower Grey Formation, 3 — Lower Red Formation. 4 — Upper Grey Formation. 5 — Upper Red Formation; Upper Cretaceous: 6 — Cenomanian, 7 — Turanian; 8 — faults, established; 9 — faults, inferred; 10 - break in the section line; 11 - deep boreholes (V. Holub - R. Taster 1960) The Stephanian C is followed by the megacycle represented by the C h v a -leč Formation (Stephanian C to lower Autunian). The higher megacycle, Broumov Formation was formerly placed in the upper Autunian on the basis of strong volcanic activity (e.g. Petrascheck 1934 et seg., Holub-Prou-i a - T á si e r 1965), but its greater part is nowadays placed in the Lower Autunian on its lithostratigraphic (Tásler-Valín 1982) and biostratigraphtc (Holub - Kozur 1981) correlation with the Krkonoše-piedmont basin. The Oli-větín and Martinkovice Members contain significant correlative horizons of limestone -and -bituminous pelocarbonates; abundant fossil fauna and flora found in these rocks was described by Fric (1879—1901, 1912). After a major inlerruption of sedimentation, corresponding to the Saalic orogenic movements, the Saxonian (Trutnov Formation), Thuringian (Bohuslavice Formation) and Triassic (Bohdašín Formation) sequences were deposited. The post-Saalian sedimentation in the Lower Silesian Basin was of a similar character as sedimentation in the Krkonoše-piedmont basin. The sedimentary area of the Krkonoše-piedmont and Mnichovo Hradiště basins nearly coincided with that of the Lower Silesian basin. They differ in that sedimentation in the Krkonoše-piedmont basin began as late as the West-phalian C and in the Mnichovo Hradiště basin even later — in Westphalian D. In the Krkonoše-piedmont basin no seams equivalent to the Svatoňovice group of seams are known; the Syřenov group of seams (with a recently discovered bituminous coal deposit E of Lomnice nad Popelkou) corresponds to the Radva-nice group of seams of the Lower Silesian Basin. The new biostratigraphic investigations permit to parallelize the upper Prosečná Member of the Krko- .140 íjíuijifřri, gfrmuri (Cícb) iti red ■lruro|nhtn, Týw Mrmber til «b* ÍM/WV bnsin. Wř.lrrn Boluiniii Mr|i|i-inian A. b*i-rrl.-.le Xh3, .lepil. 4V.(M>iH. X» Phoio by H. Vrlf.tové uufc-pirdnioiil area witli the Martiukovirr Member oí lbe Broumov area II >•-luh- Kiiziir IflMai aurl lbe KahiA horixon wiih lbe Hejtmanko vire Hnrizai). Hit- stritipraphit: posilu.n »' tli*.- Oioulvice Member is naber uneerUún. The I t o i ii << v I'" luniiiipi n >a\unian couhi bc divided in to four subuniii on iKcoiiui oí ít» very goud drvi-bipnie.nl in the wholc nren (lluluh 1!)7"2. *e«- II . ,\t the bnufulnry with ihe Bohuslavice f-urmulion. al lbe inorgin »f lh«-sedimentat1} ar''u, a moderately lraus$!rp*«ive rt-latioii is observed bul in the cpjilrc oí lbe bnsin lbe Irauaition is quite grndunl. On ihe basis of litlmliígii il ibnolopmiMil in ihe area S of Trutnov {arouud llujnice and Cpice), Holub lí>72 dislinguuhed in lbe Thuriiurian spiiuence the Maríov Member in thr-npper pari fontu.) elit».-iiilprlřod*. mul the earbonale munplex in ihr lowrr |i,ui In lbe pastem part II I itb >«iriiiiirraphir correliitiun nud pnlapontulogirul find». Hp pliiced tho Banlin-viny and Výšinfcn Meiubrrt in the Ixtwer Tri»s.«ie iSeythian . and lbe Devét kH->i» Member in lbe \iu*irm on pnlarontoloeipal evidencp. The sedimenlulinn of thi* lnul unii clnvd ibp blbnu: uf lbe hanin in tbr Trins»ie period. In the Mni-ebovo Hradiště bann vdimeuialion was Iprminated in the Autunian. tcrurding lo lbe geological mul led umc condition*, the sediments of lln-Itrlire tután uc assigned in the Autuniun and Saxojiu.ii * without pulucnnlulngic-«1 evidence'. However, the whole slralal sequence i» unknown nud, 1 onseipjeniK . we cannot exclude the presence earlier roinplevi'- llt.il ure kiniuu rrmn oilier Mnu'lural unit' «1 uurlh eastern Bohemia. In rul mul wtintrm tíohtmia the er lied Groups were differentiated. Pel rase heck ll9l!l —1923) ttave place-names to these units which, according In lbe principle* nf ilraligraphic nomenclature, arc given preference. In the Riining practice immerirnl denotation is used (I for l li e P11 e I * K I n d n o Forntfilnni, II for 11» i> Týnec For rn -a I i on III for lhe S I a u v I-' » r in it I in n . and IV for lbe L I n £ For in -a t i v li . lín- S I n ii v Formalinu i* subdivided in (In- greatest detail willi the application ,>( several strut igrapliic conceptions. Thr classification developed b> ih«! Geological Survey and u«ed in map legend* has issued from lite division of F. Neniejc. I. Obrliel, and the insesiiuatimi result* achieved by lbe staff of I In* Geologii ill Survey, hikinn into . ■m^ideratíúti the optimum development id lbe units. At I In- bass' the lelenice Member Holnh HhI.'i umI ihi_- Malešice Member iNěmejc IH.Vii were defined. 11 b r h e I III.".* justifiubty sub-divided the (alter into lbe Mice mid llh-.lle \b-ni|.J > . a . IUm.I.. (•> II \ T-Í lit" ' ' — jaJe> ^--- V-v, TfiAi___ ^ i ,*rt?L TLasaal ' mj4&~^'~ •ISbP^ *IS^ ■ J^JbS^L, Bssjiiu > ___sm ^a^QPloi .1 4S KitMliuitir sjirul.Uisrt «s*fl for .lpe..r«ti.in pnrfw^ Trm».»- JVytbUn—A (>M«rry "lí *tv(li KJtNT ***** f>rs«n< k>W>c >'"""• br v The two rocks complexes that developed there are separated by a long hiatus. The older, Carboniferous complex contains coal seams which ^tratigraphically correspond lo the Radnice group of seams. It is not clear enough when the sedimentation of the older complex had begun; V. Havlena thinks it to be synchronous with other occurrences in central and western Bohemia, but N ě -m e j c (e.g. 1953) presumed that it had started earlier (in early Westphalian B or even in Westphalian A). The younger complex showing the character of red-beds with abundant products of explosive volcanism, is regarded as being partially equivalent to the Líně Formation. Subsequently to the Asturian movements, sedimentation began in the Boskovice and Blaníce Furrows in the late Stephanian and lasted until the Autunian; the lack of palaeontological finds does not permit to determine the time of the end of sedimentation accurately. With regard to a tectonic revival and the formation of marginal facies in the uppermost part of the profile, it is believed to fall in the late Autunian, after the earlier Saalic movements. The Carboniferous—Permian boundary (in the sense of Remy - Havlena 1962) is lithologically quite indistinct; in the Blanice Furrow it runs between the lower and upper seam horizons, and within the range of the Rosice-Oslavany group of seams in the Boskovice Furrow. The predominantly grey-coloured sediments in the lower part of the filling of the Blanice Furrow were termed by Holub (1980) the Černý Kostelec Formation: the lower Peklov Member bears the older coal horizon (at Peklov near Kostelec nad Černými lesy and in boreholes near České Budějovice). The upper Lhotice Member contains small seams of bituminous coal and anthracite, which are worked near Lhotice and at several localities near Vlašim (Nesperská Lhota, Chobot, etc.), and representatives of the upper coal horizon in the Český Brod area. The upper parts of the furrows are filled with sediments of the red-beds type which, chiefly in the Boskovice Furrow, are represented by layers of grey bituminous pelocarbonates and limestones rich in fossil fauna (e.g. insect, fishes and crustaceans); they are of help in biostratigraphic classification and correlation. The marginal lithofaci.es of the Boskovice Furrow representing the whole stratal sequence in the basin is the Rokytná Conglomerate. The Upper Palaeozoic sediments in the Železné hory IIills and sediments recently encountered by boring W of Hradec Králové (localities Zižkovec, Urba-nice) have been interpreted as relics of the filling of the Jihlava Furrow. Litho-logical analysis, however, has shown that they are older than those in the Boskovice and Blanice Furrows. They are correlated with the Týnec Formation of the central Bohemian region and with a part of the Permo-Carboniferous Odolov Formation in north-eastern Bohemia (Stephanian B). In the territory of NE Bohemia, there was truncated Permian sedimentation in the Lower Silesian and Krkonoše-piedmont basins ("Pfalzian" phase). After a short break a new platform sedimentation continued in the Lower Triassic. The Triassic sediments (Scythian — Anisian) are developed in the Germanic facies. With these sediments the megacyclus of Late Palaeozoic deposition ends. 3.1.4 Jurassic and Cretaceous The Jurassic in the Bohemian Massif The Jurassic of the Bohemian Massif forms a closed sedimentary cycle, which begins with a transgression in the Oxfordian, Calloviau and ends with the regression in the late Tithonian. The sea invaded the area of the Bohemian Massif gradually. At first the south-eastern part of the Massif in the foreland of the Eastern Alps and the W'cst Carpathians was flooded (B r i x et al. 1977). As early as in the Liassic this region was the site of continental sedimentation of coal-bearing beds, interrupted repeatedly by sea incursions (paralic type of coal sedimentation). Sedimentation of this type lasted until the Callovian, and locally effusions of basic lava occurred. The deposits (Diváky Formation) have been dated on palaeontological evidence, when Vašíček (1977) found a iytoeerate ammonite in the Březí 1 borehole near Mikulov. Thus, all those coal-bearing sediments cannot be interpreted as being of Late Carboniferous age. The Callovian-Oxfordian transgression proceeded into the Bohemian Massif Loth from the Boreal and Mediterranean (Tethydian) regions. Jurassic sediments have been chiefly preserved in the Dyje block, i.e. in the area situated SW of llie fault zone of the Nesvačilka trough and extending to the basement of the flysch complex of the Wienerwald. North-east of this line the Jurassic sediments have been found in autochthonous position by boring near Uhrice and Ježov (K o s t e 1 n í č e k et al. 1979, R c h á n e k 1980). The finds of Jurassic relicts in the environs of Brno and Moravian Karsl, combined with the distribution of pebbles of Jurassic rocks in Upper Cretaceous and Lower Badenian sediments suggest a considerable extent of the transgression. The Boreal sea invaded the area of the Bohemian Massif through the Labe zone. At the time of maximum inundation the two seas became joined through the Moravian (Saxon, in the German literature) straits (Dvořák in Svoboda et al. 1966). In northern Bohemia, in the blocks sunken along the Lusatian fault (around Doubice, Kyjov and Brlniky) the thickness of the Jurassic exceeds 120 m. The basal B r t n í k y Member consists of sandstones with layers of micro-conglomerate and claystone (secondary red beds, whose pigment had been redeposited frotm Permo-Carboniferous sediments). These beach, littoral and bar deposits are overlain by the Doubice Dolomite more than 100 m thick (Eliáš 1981). The diagenetic or epigenetic sparry dolomites represent original limestones deposited in an open shelf environment with a good circulation and normal salinity of sea water (a bay or a sea channel). On faunal evidence the stratigra-phic range of the Jurassic in northern Bohemia is the Callovian—Kimmeridgian. The Jurassic in the south-eastern part of the Bohemian Massif has a range of Callovian to Upper Tithonian and a thickness of over 2000 m. On the Dyje block, the transgression deposited the Nikolcice Formation, mainly in the predisposed NW—SE running Hustopec-Nosislav depression, and partly also on the parallel Mikulov-Drnholec elevation situated farther to the south. These clastic sediments are interpretable as littoral, beach and bar or 3.49 Palaeogeography of the Triassic and Jurassic in the Bohemian Massif (M. Etias. orig.) 1 — contemporaneous extent of Jurassic; 2 — outcrops of Jurassic carbonates of shelf lagoon; 3 — occurrences of rocks of basin and carbonate platform development; 4 — land-mass, presumed extent; 5 - shelf lagoon, presumed extent; G — carbonate facies, inferred extent; 7 — basin development — assumed extent NW SE 3.50 I.ilhofucies scheme of the Jurassic in the Bohemian Massif (M. Eli;;s. 1978) 1 — Nikolcice Formation: 2 — Hruso \;my Limestones and Dolomites; 3 — Nove Sedlo and Yranovice I.imestoiic< and Dolomites; 4 — Mikulov Marls: o — Kurdejov Limestones (lower part); 6 — Kurdejov Limestones (upper part); 7 — Kobvli Limestones and Dolomites ~T-\4 6 Pi I ° \A probably lagoonal deposits. The sequence is independent of the distribution of facies in the overlying units, which show the arrangement following the Carpathian trend (e.g. trends of palaeogeographic and facies boundaries). In the Jurassic of the Dyje block the pelitic-carbonate facies and the carbonate facies are discriminated in the Callovian, Oxfordian up to upper Tithonian interval (see Fig. 3.50). Palacogeographically, the Jurassic deposits in the SE of the Bohemian Massif are ranged to the Tethys shelf — a wide area of shallow-water carbonate sedimentation, which bordered the Tethys in the foreland. The following facies have been distinguished in the shelf area: a) t h e b a s i n f a c i e s , a pelitic-carbonate development in the eastern part of the Dyje block, broadly E of the Dolní Dunajovice—Nikolčice line. Towards the E the facies links on the Jurassic sedimentary area of ttie Outer Carpathians. The sediments are of a neritic to bathyal type, forming below the level of wave movement, in an insufficiently aerated environment. The facies gradually petered out westwards on a shallow carbonatt platform, which was a source of clastic carbonate material for this area. As a result, the bodies of carbonate elastics in the basin wedge out towards the east; b) the facies of the carbonate platform and its slopes in the eastern part of the Dyje block and SE of Brno (Stránská skála, Švédské valy), ft is represented by shallow-water carbonates (including oolite benches, patch-reefs, sponge mounds, oncoid and stromatolitic limestones, etc.). The carbonate platform was 10—15 km wide and passed into a shelf lagoon to the NW; c) the facies of shelf lagoon (northern vicinity of Brno. Moravian 3 O C O !_ i_ < CD > O c o -D u_ O o c o o o> o x: o LU IS1 o 1/5 UJ O < .o -o o c a- E o é o o — — m J9d -dfl a I P P! W □ L 5 = fř c o rsi u c E E" í í S c ^ E 4i _1 5 u — xi vrt TJ o ď CD m J3MQ-) N V I NOH 1 |1 Q tr o Lj_ >: o W 1 V W a S o c c -c o a o c .c o 0; a c o m 03 < y 3 9 o o a SVIl 3.51 Stratigraphy of the Jurassic in the Bohemian Massif Karst) deposited in the area of shallow-water carbonate sedimentation with a normal salinity and open circulation. The shelf lagoon was probably of a large extent in the eastern part of the Bohemian Massif. It is evidenced by the finds of limestone and silicite pebbles in the Upper Cretaceous conglomerates in the wider area of Svitavy (Souku p 1956), in the lower Badenian of the Carpathian Foredeep between Znojmo and Vyškov, in ihe Neogene relics near Moravský Krumlov (Dvořák 1956) and in the environs of Třebíč (Zapletal 1926, K. Zebcra, personal communication). It is assumed that the connection with the Jurassic of northern Bohemia was realized through this area. In the late Tithoniau the sea retreated from the Bohemian Massif and this area became dry land. The Cretaceous in the Bohemian Massif Lower Cretaceous —the Rudice Formation The Rudice Formation (originally placed in the uppermost Jurassic) is represented lithologieally by variegated clays with fragments of Jurassic cherts and quartz pebbles, and with locally developed limonitic Fe-ores at the base. In the vicinity of Rudice, Olomučany, Habrůvka and Babice it lies transgres-sively on the Devonian and Jurassic. The overlying fresh-water Cretaceous (Peruc-Korycany Formation) is of a definitely transgressive character. On the basis of superposition but without direct faunal and floral evidence the Rudice Formation is assigned to the Lower Cretaceous. Of separate position, relatively far from the eastern margin of the Bohemian Massif, is the Cretaceous microfauna found near Kurim XVV of Brno: planklonic foraminifers with representatives of the genus Iledbergella, corresponding strati-grapbically to the Aptian—Albian interval, have been recovered there in breccias. This facies, however, is clearly connected with the older Cretaceous development of the Carpathian Externides, which formed part of the Tethys. As a result of great subsidence of the margin of the Bohemian Massif, the transgression probably expanded along tectonic lines of NW—SE direction, which were strongly active mainly during the Tertiary giving rise to the Nesvaeilka trough SE of Brno. The Bohemian Cretaceous Basi.n The K o r y c a n.y Formation of ?Albian—Cenomanian age (C e c h et nl. 1980) is divided into the Peruc and Korycany developments. The Peruc development is generally older. The residual sediments and products of kaolinitic and lateritic weathering at its base are followed by kaolinitic sandstones, sandy claystones, and conglomerates. Thin seams of brown coal occur in the top part. «DRESDEN GÖRLITZ itfZGORZELEC LWÓWEK UBERE C^-^y TURNOV "YYO KLADNO. ~" ,..Mm.i ...in. l.i i urn-pond chrnno-•traligrnplui ;dl> lit IJ middle Tunuitoii. in the triiv <.f the stmlnlype uf this Muge iii ihe Anulo-t'nriMiiii hn«in. In ill* middle and np|H>r Turonian — the .1 i x c r n l; i. r m u I i u ti — two cycle* with .iltt-niriiiiif! inarUlotie*. marls sandstone* and sandstones: (oftm glaucoiihii'i cun he disltnituishcd. lln uM-r.-ige thickness nf this unil varies lift ween 1 < •* ► diH| JiHl m; the maximum thiikurss of up lu m wus cstuhli«l|fd in the inti-ilifj-ti part of ilic hii«iu |\punl |..»il» ..f lln- It/cru Formation are b,itriiinuii(t "luttiitrrla" (group. Vup/iilr* sciiufsi d'Orh. and llrlutrttlherei* /nr intuitu i I'okorus During Ihe dtp..sit ion of ihe Jixcrn Formation tin- sedimentary area became dinlli.»«t nut I I.icjiI ret'rr»«i,,n* look place in marginal pari* nf ihe basin. The uppermost Tiironinn 1» lower lonirinuu i* represented I >> 1 li e T e p I i I'orjiiuii....... 11 '-hint Lute- ii. id. I.mt'i purl iiiul lughei up roin|Ht*ed of cln\i.lnui'i. and inarlslnties with limestone iiilerlnycr*. Trie average thickness of the setpienco range* from -Ml to NO in. ihe maximum thickness i. .ii'linit; up |.t I lo oi lln- lniMtl iHiiinilury is characterized by n thin rnproliie hed l\ pi.nl fn>r.il- nf the Teplite I rniiilinn an' ejf. tilnlHilnilUfiHU lituu'iimu d'Orb. , hi,n. r,(j/Nj. roHirllittui Woods, Ituun-rramuM ntuimiiUu* Ficge , I'lutrtnirrraM Orhictimuium tieiiiilx ind Vhtu'ttrhntntutux wtmifilirotnit Rsa.l. I hiring sedimentation nf llir Teplice Kominlion the sedimentary area was deepened rutiiio. I he f) f i-/ n o Format io u .orrespi.tnls to the Co niacin n and very like|v also io ihe ...i 11.--i Snnioniiiii Its lower purl i* an equivalent of ihe so-railed Ihihtilec fneie*. Lull tbi* h.-l.tinrs uraiuiruphically tit the Comnciflii mul porllv substitute* for iheTeptire Formation. I-it liohjgic.ilI \ the H.ihaii-c facies is represented by alternating clayslone* and murlstones. ami m the w-i of On- It.tluniinn Creiureoii* Rutin locally by irhim uiiilii' tandslojies. It is rhnrurleri/ei] by fossils such as hmcrramua waiter* ilurfri)*it .Vtulert and Inoeemmu* drformi* Meek. Hin Hi- .-in. I;n mint ion is a typical representative of llie flyseboid facies of the Merrstiuin I r<-|iin->u» willi mi .illtrtuiiion nf inarlstrmes and psnmmiles. The iiuixiiuuiii lliickuos nf up to "ititl in is known to occur in the eastern limb of lln- Bohemian Crelueeouc BiMit. hill the average thickness is about !J If I ni. T\ pical fossils of ibis unil are (ilnlmirutu oito nff eoncafata 'Brotxeni. htoee-rjiojiri kuriieiii \lfiller, Uuui'rnmut invrtlntm Sowcrby. Martn/OMros ptrndate-rtmum Cro-siiuvre nnd Kartlerwi* karitriu Wrreni llss.l. Tvpu-.il «.f 11 if l.iti-M Santonian Mer bolt i»-e For in ii I i ■• i» is the sedimentation of psummites under the coiiililiona of decreasing subsidence »1 lln- fi.ili 1'i.lu nuiin rretaceoiii Basin nnd irrailiial cnustriclinn nf ihe serlinn-iitary area Both fauna anil flora are cousiderahly nnjuiveruhed. it comprises eg. Inn-rera/nuji .p . Seqtntia reichrnlwchi Oeinitf Aff/rl/io;thulium anguttwn fVelenov- Si"> Mi.lillr OrataMOM (I eili.innniull i] minfir«-«■ •■ t .in I ho |f»nirl uVp#OIH JWit-m nl llir Mi'l'lolli'luCllln- /JiMtat- ll>-'i- Cd«lav Plt.tlu fcy M. Stik *k> Knobhich. Krgrcsaive Snutoniaii sandsloiies are known from the W of llie Citike stretloliori Mis \s enipbusi/ed ulmve. ihe lU.lii'iiiiaii-Saxoaion rt«*im« luisin »,i. .1 link heist en tin- Mediterranean and Boreal regions. Tin* iiuinei-lioii existed ssith great probability from the OhoiimtttM and ■•uluunnli-d in the Turoninii. During the Sunltiiuim the sj'ti n-lreali'd eomplnlely from I be ureu ■•( ihe Iht-lieiiiian Massif. The bod* of the Bohemian Cretaceous Basin lie horuontally or nearly bori-/oiilnlly. Stroi-itiriilN. the basin is a syneclise whose axis runs from Dresden Ihmiiith the norlhern trncl of the Kibe Ijibe sallev across Nr. Bohemia (ci the \\V of Moruvia. Teetonie nioveiiieiits wen- produced hv I be 'SriMunc folding. Snvuiir tectonic lines, hossever. had remained active even duiiiitf the Ceiio/mc. 1 'A /'rKií(Kí.»|i'«írřu rtr-I4frn (Arlii-hniHdLkkT] Garl-Hr, Buhrtuiatn l'rrl»«uii« lln borchuie near Slexaké Pavlovice. Soukup líHJS fotiml in liir- tow«t port nf lln? mm-ucqcc (413 —191,."> in foruied of lijjla-(irr> (drnrwmi rlfi\*li>n< - » rirli iunetrainic fauna ivp /umrriuuu* M-iu.rúir And.. Iiuirruumu wrtttrršiUtrjťHHf And.. /. tfrtaloronrrtilnriM Gíímh... TliU nu-femhlnge U daled a* lati' Tirr.ijiuui Tin- ovcrlyinjr iijilit-|r.rey «ilty míCSCCOlti claystones tnul líflrtOIHI witli nud tlt-tritu* luiriuinlored in Úw dcplh íntrrvid of 22,'!.'t 113.0 id i-t»rrr*pond l<> tho Conúieioii. Tlie lowvr put of Ui«* Htjueriťr x ■«-!tjI \tuicmunu* rx jfr. inconitant Woods, and llir upprr j»axt /. Ufini li. Mul!. Tltc ovt-rall lilhotogícal cliuriulT «d tlít* ('.relaceniu Iroui tlre OS-j b.irrludr n-calU lln Ouiituiiin .nul Turoin.in ♦edmu-ut- lioni kl.-dAn Krubťii Králíky tmugh . Thry ntv iti ptirt «mjiií\nli-nt (<■ thc Kh>Ihi^-»iííiM "liedjí". In the N part of thc (>*..blaha area tahetit n-lien nf Crnoinnnian til.uu.nulu nud luiidunhc "-anď-l.m. - In..... lbe l.ulm. Their Ce- uoniauiiiti .mr i* docuuirntrd by tlíc orcurriMici' nf /-.'j nc^ru < uhnitím Lun .m.l ťi utru v Furmnlíuii : l)nrii>pi thr lutr Tun-tunii .md *,:ifly Sríinnian lbe Mikillurii pnrt nf ilif H.«)n ini.m Man-d í*v|M'rii"iiri'il sídj-ulcnci" ninvr incnl» iu coiitroM to n ffradn.il itpbtraval <■( il* ti.irlhfin pnrt. |o tlu- Treb-mi and fiudéjn-viťtf deureutoiM a vnriml hiruílrinc fequeno- ní co.irsr-ffrainrd «.mid. cunglo-Mďirtt, uftrn nrktiMc, varíegHtcd rlay*. nud MnuUt.nrs willi n..ilificd platil rmtuiins and Cridacriiii* plrmi nnpnui*.. ih-pu-uti-d. Tlu- uijixiiiuiin iliirkiiM* Ol ilif Kliki«\ I oriiKiliiMi hus Iummi • hI,iIiIi«Iii.a»in 'i'm' tn . The Xú7 Ctt*tnrtim MnanntM (KnoU.) Níinrjc ml K«i>'-ek- HhtIAjh-s irc Intiu, Kli\i'«v r.iriiinňnii Zalniji li«-»lH>, Snolonian. Naiuntl — faults; 4 Miocene watershed bet-ween the German—Polish sea and the Alpine-Carpathian foredeep ISIS* '■{Vi .'.i.i. i r] 1111 i.i.ij - 1 — c ■i i i B SI . I 'c c c ■ = t i f* i! S 3 ----- ■ *|| Si* B m * i n » ■ I I ll r I -. rif Xcii^.iii- -»itinii'nl- i- li|i to ;iíN> lil. Ihr relies rif Korene wdilniul v i.r. equivalents of the Staré S * il I o F n r m a t i o n oniy form filings of open fissures nt the wertern margin of the basin Xrovolcaiiilci produced in the major lower Mjuccne phone nrr not very widespread, usually occurring also n* fii-*i»re filling*. Depression* in ihr li:i-lli bol-("iii are filled with t In- I. our r e I I y and - n n «I P o r m a t i o n . which i* followed by I |i e Con I-seit in pur* m n l i n n nf iurjier rxleul <<50 m tliiik. Ibc maximum tlni-knes* ,if |hr coal »oulii ■ A'l m Conl -..lnnriili.il..n occurs úi lim« part* of ihr husiti: m Ihr Oldřiebov-1'oehliivir-e, odrma und d.fil Drgnphitihim tut-eiifrve (Hitům,) Sihmnlli SiW"Iiiv ln-tn. Slut* Stölln Inrjilily. up)*'r Finftu- (um- l.-.'l.ll III l. KlI.-llllN Ii ľlinli. archív* ľ'ľli. ľnilľ. hraiilihkrivy I ji/m" partial ti4«<>ii)!>. The Coal-seam Formation i* ovrrliiiii by lbe C y p r i * ľ' o r m u t i o u . emi-i-liuíl of elayrtOlie» with pyrite concretions und i .i. I.....,.|, ii.l.-i l.i. .-i - ll i- -I Iii- .i1--I lliiikiir-- -it ll.....n-t.-n.....lyin .-I ihr hati n These »rdniu-iil» belong «liaUiinipliiiMlIy In ihr lower Miocene upper KffrrÍMll In I rttlUUiginn . The find* of iimmuiul nliuiin» -.iinae-l I licit -iiblonii.il i.ui at mmf place*, eg. in ihr riisinui> of Františkovy |jí/tiŕ occurred still in ihc l:.i. -I i-.irK Mmcritr K.irpalúiii . In (In- Cln'1. Im-ui r\lriiM% r wdimriiliilioii louh pince in lbe Miocene, paHícnlnrly in ihr |j«le»l I'liocni.- H.muii.iLiii . m Inn the \ i I d i I p j u Formation wu* drpo*ilpd. In it* conlinnulion there are \e<ř- gene relicts in the Cheb-Domažli.ce graben (Tertiary of Mariánské Lázně — area 2b). Their thickness is up to 100 m at the eastern margin. in the Quaternary, neovolcanic effusions occurred in the Cheb basin (Komorní hůrka, age 0.26—0.8.") Ma, Železná hůrka, age 1.0—5.0 Ma; Sibrava -- Havlíček 1980), and a small postglacial basin had originated and was filled with diatomaceous earth and peat — Soos near Hájek, in the proximity of Františkovy Lázně. The Cheb basin has been up to dale ihe most seismically active area in the Bohemian Massif (Dvořák 1958a,b). The Sokolov basin. In contrast to the Cheb basin, the structure of this basin is controlled mainly by the faults of WSW—ENE trend, although the earlier tranverse faults of NW—SE direction (i.e. of another trend than shown by those of the Cheb-Domažlice graben) had been involved in the formation of the basin filling. Two major strike faults bound the basin structure: the Krušné hory fault in the N and the Ohře fault in the S. In the Sokolov basin and at the southern margin of the Doupovské hory Mls. the Staré Sedlo Formation occurs in its classic development. Fine-to coarse-grained sandstones with kaolinic cement, secondarily silicified. are the predominant rock type. Their maximum thickness has been assessed at the southern margin and in the centre of the Sokolov part of the basin. The plant assemblage is of ancient type, of late Eocene age, with many subtropical and tropical elements (K n o b 1 o c h 1962). After a stratigraphic hiatus, the sequence of the Josef scam was deposited. H o k r (1962) proved that the Josef seam is a component of continuous coal-forming sedimentation, suppressed by clastic fluviatile and lacustrine material and deposition of pyroclastics. The volcanogenic c o m p I ex developed from the sequence of the Josef seam. The volcanic material was supplied by the Doupovské hory stratovolcano. The volcanogenic complex attains maximum thicknesses in the area of Nové Sedlo and Alberov. apart from the western margin of the Doupovské hory, where the thickness increases abruptly. As conclusive evidence of the age of the volcanogenic complex in the Sokolov basin is not yet available, and the pollen spectrum resembles that of the Main seam (Pachová - Zert 1961), we place it into the Aquitanian (Upper Egerian). Directly above the lower part of the volcanogenic complex, the coal-forming sedimentation of the Main coal-seam Formation began, (t includes the Anežka and Antonín coal seams in the Sokolov basin. The Anežka seam is developed only in its western part at a thickness of 5_12 m In the central part of the basin the Anežka seam merges with the Antonín seam, forming its lower part. The Antonín seam is the thickest (20-30 m) and most persistent coal seam of the Sokolov basin. The united Anežka and Antonín seams in place of their conjunction attain a thickness of 60 m. Sedimentation of the Main coal-seam Formation was closed by a sudden rise of water level and development of an extensive lake instead of coal-forming swamp. The Cypris Formation which sedimented in it is formed of peliles. Exceptional are the Cankov Sands. 10—30 m thick, constituting an alluvial cone extending from the l\, in the upper part of the Cypris Formation. The Sokolov basin is distinguished by a special development of Neogene sequences, due to synsedimeutary subsidence of individual blocks into which the basin is dissected. The sediments are of early Miocene age (late Egerian—Ott-nangian). The North Bohemian Basin. It is a typical example of a basin formed as a result of volcano-tectonic subsidence. The Zatec sector between the Střezov and Podbořany faults subsided into emptied toagmatic chambers, which supplied material for the Doupovské hory Mts., and the Most sector between the Krušné hory and Bílina faults sank into the space left after the extrusion of volcanic material for the western part of the České středohoří Mts. Palaeogene sediments are known from the Podbořany area. In the kaolinic sands equivalent to the Staré Sedlo Formation, plant remains near Valeč and mammal finds in the basal part of the volcanogenic sequence (Dětaň, Dvérce — Bůžek - Kvaček - Fejfar 1979) provide evidence of the late Kocené age of this complex. The Volcanogenic Formation, represented for the most part by a thick layer of tuffs and tuffites, is not developed over the whole area. It dates from the main lower Miocene phase of neovolcanic effusion in the Doupovské hory and the České středohoří Mts. The start of volcanic activity has not been conclusively daLed so far. On the basis of the only floral genus Doliostrobus (Bůžek - Kvaček - Fejfar 1979) and the only faunal genus Elomeryx, and of the radiometric K/Ar age ,L . K o peck y 1978) the basal beds are thought to be 35.000.000 years old (early Oligocene). The lower Miocene filling of the North Bohemian basin is divided (according to miners' usage) into the Underlying Formation. Formation of b r o w n - c o a 1 seams, and the Overlying Form at i, on. Their total thickness in the deepest Most sector of the basin surpasses 500 m. The Underlying Formation composed dominanlly of sands and clays fills the depressions in the basin floor. In places there are indications of coal sedimentation and thin seams of brown coal. The sequence is not developed within the whole basin. The Formation of brown- coal seams in the Chomutov, Most and Teplice sectors of the basin is represented by a uniform coal seam with a thickness exceeding even 40 m. The coal seam shows a complicated development at the mouths of ancient streams in the Bílina and Žatec areas. The alluvial cones greatly affected the formation of the coal seam. In the Bílina area, a typical delta-like development on a small scale is observed (Hurník - Prokš 1977). whereas ia the proximity of Zatec the seam became split (from N to S) into three minor seams, which gradually pass into coal clays and clays with coal admixture. Simultaneously, the thickness of inter-seam sequences and their contents of psummites increase. The Overlying Formation, which at a thickness of up to 500 m covers the coal setfrn, implies the deepening of the lake hasin and deposition of clays in particular, and of sand in the environment of the two deltas. Sandy sedimentation which also appears in places at the Krušné hory margin of the basin indicates a supply of material by minor streams f i'om the Krušné hory crystalline area. Sedimentation of the Overlying Formation is for the most part quiescent, monotonous. Only in the uppermost part of the sequence, in the Lorn Member (V á n ě 1961, Elznie 1966) the coal and sand sedimentation demonstrates a gradual evanescence of the lake. On rich palaeontological evidence the age of the basin filling is early Miocene (late Egerian to Ottnangian). The Tertiary of the Plzeň area (2a) belongs genetically to the North Bohemian basin. It was deposited by a system of streams that opened into the North Bohemian basin in the Zatec and Bílina areas (Čadek 1966, Malkovský 1975, Pešek 1972J. The fluvial and occasional limnic deposits are coeval with the sediments of the North Bohemian brown-coal basin. Tertiary of western Bohemia The new palaeogeogruphie assessment of the Tertiary of W Bohemia is based on the analysis of the Neogene of the Bohemian Massif and the Alpine and Carpathian foredeeps (Malkovský 1975). The conception of a uniform drainage system in Neogene time (Kodym, Sen. 1963) and of the identical age of all Neogene occurrences within the interval of late Egerian — early Badenian (V á c 1 - M a 1 k o v s k ý 1962) has proved untenable. The system of streams opening into the North Bohemian basin, to which the Tertiary of the Plzeň area belongs (2a) and on which the river system of central Bohemia is linked, is of early Miocene age. It drained the Moldanubicu'ai region to the NW. On the contrary, the system of streams opening into the Cheb basin, to which the Tertiary of Mariánské Lázně belongs (2b) existed in the late Pliocene. They flowed through the Cheb-Domažlice graben, draining the adjacent mountain ranges. Tlie straligraphic range of the neovolcanic complex of the Doupovské hory and České středolion Mts.: a) The Doupovské hory Mts. The beginning of the activity of the Doupovské bory slralovolcann was previously placed in the Aquitanian. At the present il is dated, on evidence mentioned above, as early Oligocene. On an in- direct evidence, i.e. the occurrence of volcanogenic material in the Antonín seam and close above it. the volcanic activity expired at the Eggenburgian/Ottnangian boundary. There arc no reliable proofs for the existence of later volcanic phases in the Doupovské hory. b) T h e České stredolioří Mts. The beginning and termination of the main neovolcanic phase were synchronous with those of the volcanic activity in the Doupovské hory Mts. However, the ascent of neovolcanites continued here in a second phase. Il is demonstrably represented in the area of Teplice (Lom near Most. Strbico); il is younger than the sedimentary filling of the basin but its straligraphic position is not known so far. There is no safe evidence available of whether it is an independent phase or a phase approximate to or identical with the latest. Pliocene lo Pleistocene phase (Sibrava - Havlíček P. 1980). An intricate stratigraphy of the volcanic complex of the České středohorí is also suggested by very young sedimentary interbeds in the central part (Sar-malian — K e h a k o v á 1967). The Žit a v a b a s i n The Xilava basin extends on the territory of Czechoslovakia, the German Democratic Republic and Poland. Although it is separated from the eastern part of the České středohorí Mls. by a narrow transverse horst trending NW—SE (the Lužice fault), it belongs to the Neogene zone of volcano-tectonic subsidence. Its development is consistent with the history of other basins at the fool of the Krušné hory Mts., and lbe sedimentary filling consists of lower Miocene beds (upper Fgcrinn to Ottnangian). In the vicinity of Hrádek nad Xisoit. the sediments arc underlain hy neo-volcaniles of the main lower Miocene phase. The almost 400 m thick sedimentary filling is divided into ihe "Lower Hrádek Me m ber ". which occurs in the W of lbe Hrádek part of the basin, is maximum 140 m thick and bears the lower brown-coal seam (4—23 m in thickness). The "Upper Hrádek Member" overlies the lower brown-coal seam within the whole Bohemian part of the basin; its thickness exceeds 270 in. About 160 m above the coal seam there is a barren middle seam horizon of a thickness of 20—35 m; about 200 m above the lower coal seam the upper seam horizon covered with 50 m overlying clays has been worked until recently. The relicts of lower Miocene between Frýdlant, Kundratice, Višňová and Ariiollice arc also grouped with the Zitava basin. They represent a reduced development of the two units, and V á c 1 (1964) considers the seam mined in the part near Víska as an equivalent of the lower coal seam. The Žilava basin was supplied with clastic material by a stream flowing from the western margin of the Krkonoše-Jizerské hory pluton and its contact (V á c 1 - - Čadek 1962). Sediments occurring near Chrastavá, Machnín and in Liberec (Janův Did, Horní Hanychov) are of the same age as the " U p p e r H r á -dek M c m 1) e r ". The Tertiary in the basins of southern Bohemia The Neogene filling of the Třeboň and České Budějovice basins is to lie considered with respect to the drainage pattern during the middle Miocene, when a predominant part of Bohemia was drained into the Alpine and Carpathian foredeeps in the SE, and in the Pliocene, when the streams flowed north- and southwards from the upheaving area of central Bohemia. Sedimentation in the two basins was contemporaneous. The Palaeogene (Oligocene) Lipnice Formation is preserved only in relics, formed of sandstones of fluvialile and lacustrine origin and usually stli-cified. The Zliv Formation is the oldest Neogene unit. It had also succumbed to erosion and the preserved relics are silicified. The thickest and most extensive complex is the Mydlovary Formation composed of clays, diatomaceous earth and coal. It is also best preserved and readily comparable with the lower Badenian of the Alpine foredeep (Řeháková 1965, M a 1 k o v s k ý 1975, 1979J. Its character was modified by regressions of salt water from the Alpine foredeep. The following fresh-water moldavite-bearing Domanin Formation overlies it in places; along the basin margins it consists of psammites and psephites and in the centre of clays. In age the complex corresponds most probably to the earliest Sarmatian (late Badenian'.'). The Leden ice Formation lying unconformably on the Mydlovary and Ledenice Formations is of Pliocene age and again of fresh-water, generally lacustrine derivation. Of primary importance for the development of the. South Bohemian basins was the early Badenian transgression extending from the Alpine and Carpathian foredeeps into the Bohemian Massif at the time of the deposition of the Mydlovary Formation. The sea advanced through the river valleys far into the interior of the Massif (up to Lanškroun, Dští nad Orlicí and Tišnov), and in flat areas, as were the South Bohemian basins, is caused the salinity of streams and formation of through-drainage lakes. The sediments of the streams that opened into the bay of the early Badenian sea near Lanškroun are known from the areas at the foot of Orlické hory Mts. and around Králíky. The lower Sarmatian sediments of the South Bohemian basins are linked with the Sarmatian fresh-water molasse in the foreland of the Alps. The Sarmatian sediments are traceable, for example, in the Schwandorf valley (Til I'm an n 1904), i.e. at the same geographic latitude as is the northern border of the Třeboň basin near Tábor. Tertiary in Silesia Along the slate frontier with Poland, the fresh-water lacustrine sediments extend to Czechoslovakia in the neighbourhood of Vidnava, Grey kaohnitic clays with illite admixture were mined together with a coal seam at L'helna. The Neogene sequence attains a total thickness of up to 40 m and belongs to the lower Miocene (M a z a n c o v a 1958). Recent investigations (Gabriel et al. 1982) have not provided unambiguous straligraphic data. 3.1.6 Quaternary The dating of Quaternary sediments in the Czech Soc. Rep. is based on the universally accepted fundamental division of the Quaternary into the Lower. Middle and Upper Pleistocene and the llolocene. We are well aware that there is a certain inconsistence in assigning the former earliest Pleistocene, i.e. the stages termed Donau. Biber, Butley, Tegelen, Prelegelen, Briiggen, etc.. to the relatively well recognized Lower Pleistocene, although we do not know either the number and character of their climatic oscillations or their duration. Moreover, this classification does not lake into consideration the geological peculiarities of the sediments or the differences in the palaeorelief of the site of sedimentation. The last but not least important reason is the lack of unanimity on the date of the Pliocene—-Pleistocene boundary, which varies between 3.5 to 1.8—0.69 million years, i.e. within a range longer (ban was the whole Quaternary in the classic conception. With respect to these facts we deal, at least in a detailed description, separately with the oldest period and designate it in agreement with Z eh era (in S v o bo d a et al. 1966) as the Early Glacial and Interglacial; the First Glacial is here meant to be the Giinz. The Early Glacial (Donau, Biber, Pretegelen) This period embraces several, not accurately defined cold and warm oscillations at the beginning of the Quaternary, occupying at least one third of its whole duration. The oldest sedimenls of this age in the region si tidied are usually preserved on platforms above the valley of the present-day rivers or as basal members of the Quaternary complex in depressions. In the Cheb basin Pacltova (1962) assigned the Vildstejn Formation to this period but this straligraphic position is not quite conclusive \K n o b 1 o «: h 1065, S i b r a v a 1074). siuaujipas ado is £50DJ.r3| W0| 33jU0>lDU3N — Qi X) 1 ÍL E 'III ISA*] 5 rj — CD <0 E E "*... r-j is > = ° E; 0. a. _ > a. + 08B1 — > rr < i- a: £ - I M S'S UOI|DDS H/N In the Vltava-river valley most authors think the terraces of group I to belong in this si age (Záruba - B u c li a - L o ž e k 1977), the Lysolaje terrace to stadial I) I. and the Suclidol terrace to stadial D2. In the Labe valley, above the junction with the Vltava, it is the Horní Přím terrace (Z e b e r a 1956) and v é o 3 Ú S ě 2 S c a 3 t) ° E o war a - ° O JS > 0 D '5 i £ S > a. : = = is: <_r=> □ a. uo;Au -9I11A uoi qouoj jD||i^ I 3 £ o - L- (I O N/9 2. Z-« a i— 9/a downstream of the Vltava—Labe junction the Krabcice terrace (Balatka-- Sládek 1976) that are ranged here. In the relic of the last named terrace near Ostí nad Labem, bones of elephant Archidiskodoii genus were found (Li e -bus 1929, Sibrava 1972.'. In central Bohemia banded lacustrine clays to -marls, whose relics have been preserved between Budec and Dfetovice in the Kind no area probably correspond to stadial DL (Zebera in Svoboda 1966). The existence of a large lake in central Bohemia and in the area of Rip Hill postulated by Z e b c r a (1972) is still questionable. !7tT PKI 3.63 Dolní Věstonice loess series in relation to low terraces of the river Dyje (A. Zeman) 1 — substratum (Outer flysch) ; 2 — sandy gravel of the Main terrare; 3 — fluvial sandy gravel of valley terrace; 4 — stony slope loam; 5 — loess with fossil rjiedoi'oinplexes lit the drainage basin of the river Ohře. four highest terraces of group I have been placed in lite Early Glacial (Balatka-Sládek 1962) and parallelized with the Labe terraces. According lo palaeomagnctic measurements of A. Kočí, the Vysočany lerrac:1 (,f2) falls in the Maltiyama phase, either 0.9 or 1.7 million years B. I.\ 'Ihe second date appears to be more probable. Although it is only an approximate interpretation of a single measurement, the great difference betwee-i lbe age of the Lysolaje terrace group (820—980 thousand years, Z á -r o ha- B it c li a - U o y, e k 1977) and the almost twice as great age of lbe Vysočany terrace indicates I hat the correlation of river terraces in the Bohemian Massif is not only the question of topographic position, and that il will not be simple it) settle. li! northern Moravia, the relics of high terraces preserved along the rivers flowing from the Beskydy Mts. and from the Bohemian Massif as well (Týrá-cek 19(51 a. Maeoun el al. 1905, Ma conn 1980) are ranged to this period. They are represented by gravel without Nordic material. Of the sa'me age are verv likely preglacial sediments of through-drainage lakes, which have been found at the base of the Quaternary in the depressions and lectonically sunken valleys ? of the old drainage network in the Opava area. The upper part of the "Pliocene varied sequence'' of the Upper Morava depression is demonstrably of Quaternary age (M a c o u n - Růžička 1967}, similarly as the analogous fluvio-lacustrine sediments of the Prostějovská and £?5 TT" ta i* 31 ° I JS *j p o a ^ C 3 OJ" •Jí » ""o "O p-U ca i: ň í «■ ä ví O .3 u c/5 ■« v 5 ä W I T3 Ö > T3 to § w i—I Íh S " v ~ ''■ »■£ '3 -tí " * ii o í 1— M CO ■ S g S| ' U ^ V- - I >> g ic rr>lľ »I llir f'K IM — lue* tertúm P-iu:iui> id primitive voir »pei-it-Stimtmiux wire found A. Z c m a u el ah Ü'flO, Kovanda et al. IfWfJ'. and for similar sediments near /dolinky in the Z,di>iink\ Furrow, uitii ľairN rich tlirrinophilľ nstrurod* finiua. Niuiewhnl suulUtei- [ir>'v.....uhly the Ivuknrv. I .oiiuliiiiu'ralcs ľ > r i C v k líHilh and the highest Irrmce of the Moravian rivers preserved in lbe Moravian (■ale and nu I lie elevated muríni* of (he r H č f k tlH'ttn, M I cnm> et al. )!Uir» , »nd ihr -o called older gravel sheet which is develop ed mainly in I ho Dyjť-ÍJvratkii dľjiti-^i-iíi .nul m ili>- \\ik>>\ l.nte \ . / ť m n ei al. 1080, ■ ■ ■ - r /jKi>]lnii ľhrjín hy A, ZcMue i *?. The Early Interglacial {Donau-Giiiiz, Tegelen) No satisfactorily concrete evidence has so far been gathered for the Early Interglacial on the territory of the Czech Soc. Rep. On the basis of the morphoslrati-graphic position, only part of the marly-stony colluvial sediments of the platform at the foot of Rip Hill in Ctiněves might be a sole representative of it. The malacofauna includes the index species Gastrocopta serotina Ložek, which is characteristic of the oldest group of Quaternary molluscs (Záruba et el. 1977). The finds of vole species Mimomys pitimyiodes, M. reidi and Borsodiu sp. place this layer decidedly in the Villanfranchian faunistic stage (F e j f a r --Horáček 1983). The First Glacial (Giinz, Menap) On the river Vltava it is represented by a group of upper terraces, i.e. the Pankrác terrace (Gl) and Kralupy terrace (G2) (Záruba et al. 1977); on the Malé Labe by the Hrádek and Těchlovice terraces (2 e b e r a 1956), and high terraces with a base at 88—70 m above river level in eastern Bohemia (Seky-r a 1967); below the junction of the Vltava with the Labe by the Ledčice and Straškov terraces (Balatka - Sládek 1962), and the Neštěmice terrace CS i b r a v a 1972). In the Hip area Zebera considers the G2 sediments as lacustrine-fluvial and substantiates the existence of the lake by a 3—10'm thick bed of fine-grained sand and varved clay. in -Moravia, the 35 m-terrace of the river Opava (M a c o u n 1980) and analogous terrace on the rivers Morávka. Lučina and Bečva (T y r á č e k in M a conn et al. 1965), and the younger gravel sheet in the Moravian depressions may be equivalent (A . Zeman et al. 1980). This sheet is developed most markedly in the Dyje-Svratka depression and in the Vyškov Gate. The oldest proluvia with interbeds of loess and wind-blown sand, preserved locally at the margins of depressions, and old loess below Červený kopec near Brno are slratigraphic equivalents of it. In the Ohře river basin three terraces of group 11 arc ranged to the First Glacial (Balatka - Sládek 1976), but the parallelization is uncertain. An analogue are thought to be the loams in Cave VI on Chlum near Srbsko in the Bohemian Karst with the fauna corresponding to the oldest phase of the Biharian (F e j f a r 1961), and the Lower Pleistocene idling of the karst cavity Ilolštejn in the Moravian Karst (Musil 1966), which yielded similar mammal fauna. Záruba - Bucha - Ložek (1977) allot to the interstadial G1/G2 the rank of Tnterglacial and correlate it with the Cromerian. 3.67 Rraunlehm of the PK X. - Utmm taction Cut-Voný koprr CR«d Hill) ricnr Itmu. Untlrr thf *<>il ll>« B/M boundary w» founJ Phnlr. by A. Zj-m.in The r1r»l lfilrrjjlarial (liiiiw.Mindcl, Cronirr) In llir warm interval the lirauulchm fossil soil complex VI and/or VII on Červený knjwc and the *mU of tbe ferrrlu type on gravel sheets had developed. The pahidid -p-ilrrm jir.11-x wild thr I ruincrian f.nin.. :■(mv *■ I In- Suchdol lerracc (I B) near Curtice is re und ihe deposit* of the ■mull liinnii-fluvinl bruin near Pto/letire. The Palaeolithic culture (Přezletician) of the Acheuléan type in the very profile, accompanied by rich fauna (Š i b r a v a et al. 1979), places the locality among the foremost in Europe. The vertebrate fauna corresponds to the younger pha?e of the faunistic stage Bihari.an in the sense of Fejfar- Heinrich (1980). In Moravia, this date is ascribed lo the fillings of karst pockets in Stránská skála near Brno with Machairodus fauna and Banatica molusc assemblage, with index irtterglacial species Helicigona čapeki (Pbk) (Ložek - Fejfar 1957; Zcbera in Svoboda et al. 196tí), and detritus accumulations on the western slope of Stránská skála containing young Biharian fauna (Musil 19081. which cover the younger gravel sheet (Z e m a u A . 1974). Travertines at Kokory near Přerov are also ranged with the early Pleistocene, without more detailed assignment (T y r á č e k 1961b). The Second Glacial (Mindel, Elster) In the Vltava-river valley Mindel 1 is represented by the Vinohrady terrace and Mindel 2 by the Letná terrace (Záruba et al. 1977). In the Labe valley above the conjunction with the river Vltava the Lhotka and Nepolisy terraces, in the eastern part of the Labe valley five terraces at rel. altitudes 62 m (surface) and 50 m(base), 58/52, 55/46, 35/30 and 38/30 m, and the Nový Hradec and Čičtn terraces at the Labe/Orlice junction (Sekyra 1967) are thought to be of Mindelian date. In the Ohře-river valley Balatka and Sládek (1976) place seven separate accumulation lerraces of groups III and IV in this interval. Loess deposits in Letky, Zalov and Sedlec near Prague and in Horky nad Jizerou also belong here (Kukla - Ložek 1961). The lower part of sedimentary filling of the karst pocket C 718 obviously dates from interstadial M 1/2; it contains typical Ma-chairndos fauna with skeletal remains of Macaco cf. florentina, the first find of a monkey in Bohemia (Fejfar 1976). The upper part of the profile falls in M 2. In northern Bohemia, in the area of Nordic glacialion, denudation relics of Elster glacial sediments, which had been transported by melt waters into the Ploučnice valley and deposited there at a rel. altitude of 40—50 m, extend into the Labe valley near Děčín (5 i b r a v a - Václ 1962, Si.br a v a 1967). Proluvial accumulations in the České slředohorí Mls. have been recognized by Buf ková - Růžičková (1967). The first-order morphostratigraphic level is the Vinohrady terrace (1MB), which can be traced along the whole course of the Vltava from Prague basin up to its junction with the Labe, and further along the Labe river as the Straškov and Ncšlčmiee terraces; in the neighbourhood of Děčín the latter links up with the sediments of the Elster glaciation. In the sediments of the continental glaciation in the Opavská pahorkatina Upland, M a c o u n (1980) distinguished the older Opava (M 1) and the younger Kravaře (M2) glaciations, separated by the Otice warm oscillation. In the remaining area of northern Moravia the sediments of this glaciation are assigned to the Ulster without further subdivision. In the extraglacial area of Moravia, the Mindel deposits comprise loess sheets at the foot of Nová hora and Červený kopec near Brno (Kukla - Ložek 1961, Smolíková - Kovanda 1983); the younger fluvio-lacustrine sediments in the Upper Morava depression (M acoun - Růžička 1967); group IV of the Moravian river terraces (Zeman A. et al. 1980). In the initial phase of the Mindel the sedimentation of detrital deposits on Stránská skála probably came to an end. The Second Interglacial (Mindel-Riss, Holstein, s. I.) In the interior of Bohemia this period is characterized by the development of intensely weathered soils of complex V (Horky nad Jizerou) yielding thermo-phile molluscan fauna {Kukla - Ložek 1961); cave sediments (Dobrkovice II, Fejfar 1965); in Moravia by interglacial deposits on Turold near Mikulov; travertine in Tučín (Ložek - Tyráček 1958, K h e i 1 1965); paludal sediments above the Rvenice terrace near Stránce on the Ohře river; and the Labe terrace near Cilec, in which the index species Corbicula fluminalis (Mull.) was found. This fauna was always considered to be typical of the Holstein Interglacial, but the morphostratigraphic position of the terrace in the Labe-river terrace system is not so unambiguous. In the area of the Nordic glaciation the older accumulation of the Main terrace M acoun et al. 1965) and analogous accumulations in the Upper Morava depression and on the middle Morava (Macoun - Růžička 1967, A . Z e in a n et al. 1980) correspond to the cold oscillation within the Holstein Interglacial. In the Ohře river valley two (pre-Riss) terraces of group V are parallelized with it(Balatka-Sládek 1976). The organic and paludal sediments in Ostrava-Muglinov. Skřečoň and Dolní Lulyně (M aeon n et al. 1965) date from the earlier warm oscillation, and the organic and lacustrine sediments of the Stonava relict lake from the later warm oscillation. Sediments of relict lakes and ancient valleys in the Opavská pahorkatina Upland are correlated with the interglacial, in general. The Third Glacial (Riss, Saale s. 1.) In the Vltava-river valley the Dejvice terrace (V) is ranged to R 1 and the Veltrusy terrace to R 2 (VI. — Záruba et al. 1977); in the Malé Labe valley the Velký Barchov and the extensive younger Urbanice terraces, and with uncertainty the R 3 terrace, developed not very markedly and only in places (Z e -bera in Svoboda et al. 1966) are placed in this glacial stage. In the eastern sector of the Labe valley Sekyra (1967) assigns four terraces and the complicated Krnovice terrace at the Labe—Orlice junction to this interval. In the Labe valley below the confluence with the Vltava, the Citov and Mlčechvosty terraces (Balatka - Sládek 1962) or the Nebočady and Travčice terraces (Ložek - Sibrava 1968, S i b r a v a 1972) are parallelized with the above terraces. In the Ohře-river valley two groups of six separate terraces (Balatka -- Sládek 1976), i.e. VI: to VI4 and VIL and VII2 are dated as Rissian on the basis of morphostratigraphic correlation. In the region of highlands and mountain ranges of the Bohemian Massif, the markedly developed accumulation of the Main terrace on most of the rivers, particularly in South Bohemian basins, the older glaciation of the Krkonoše Mts., and the basal parts of late Pleistocene loess sheets fall in the Riss stage. In the extraglacial part of Moravia and in the Moravian depressions the younger accumulation of the Main terrace and the Radslavice terrace on the river Bečva had developed at that time. The latter is one of the 'most important stratigraphic key horizons in Europe for the correlation of the Nordic glaciation with the extraglacial area in the Danube drainage basin and the mountain glaciation of the Alps (Tyráček 1963). In the younger phases of the Riss stage prominent accumulations of slope deposits were formed as well as the most extensive proluvia and gravel fans coalescing into proluvial belts at the foot of mountains, and loess beds underlying PK IV in the environs of Brno. Jn the area of Nordic glaciation in northern Bohemia the existence of the Saale glaciation has not been evidenced although it is very probable, at least in places. In northern Moravia the Saale glaciation was of maximum extent (Tyráček 1961c). According to Macoun (1980), traces of two Saale glaciations are preserved in the Opavská pahorkatina Upland: the older Oldrisov phase is separated by a moderately warmer phase of the Neplachovice inter-stadial from the younger Palhanec glaciation. The new division has not been applied to the Ostrava basin and the Karviná area. Intensive loess sedimentation within the entire Bohemian Massif is demonstrated by Riss loess deposits at the base of young loess series, occurring abundantly in the interior parts of Bohe'mia (in the environs of Prague, in the Labe valley, the lower course of the Jizera valley, Kutná Hora area, and the areas of Kladno, Ostí nad Labem, Podbořany and Žatec), and in Moravia (vicinity of Brno and the Moravian depressions). The Third Inter glacial (Riss-Würm, Eemian) The last Interglacial is distinguished by a reduction of sedimentation and a predominance of weathering processes. Exception to this rule are karst areas and the formation of travertines. In river valleys the oxbows were gradually filled with sediments (Plotíště nad Labem near Hradec Králové — 2 e b e r a 1958, Babice and Jaroměř — Sekyra 1967). Cave deposits were laid down (fossil-rich basal sediments in the Chlupáč Cave in the Beroun area, possibly also Dobrkovice near Český Krumlov), which contain thermophile vertebral fauna and last occurrences of the Banatica mollusc fauna with index species Helicigona banatica Rsm., Soosia diodonta Fér., Aegopineüa ressmani West, and others, which are to date extinct in Central Europe (Ložek 1973). In this period the last typical interglacial soils of PK III were forming; they are known from many localities in the loess areas of Bohemia and Moravia (Sedlec, Kladno, Horky nad Jizerou, Kutná Hora, Ústí nad LabeTn, Nová hora.. Červený kopec, Modříce, Předmostí, Dolní Věstonice). Soils of terra fusca type and fresh-water carbonates also developed, the latter e.g. in Radslavice, Předmostí and Přerov (below the castle). The Last Glacial (Würm, Weichsel, Vistulian glaciation) In the valleys of virtually all streams in Bohemia and Moravia, independently of their size, the youngest thick sandy gravel of valley terrace had accumulated. The higher one or two terraces (W 1 and W 2) with separate rock bases are sometimes ranged to the Würm and, on the other hand, lower erosion or inset terraces have been discriminated in the uniform accumulation of the valley terrace. The Würm loess sheets are also of the largest extent. At suitable localities three separate eivers are distinguishable, separated by fossil soils PK II and PK I. Towards the end of the Würm, sedimentation of blown sands set in, persisting until the early llolocene. The development of slope deposits, debris materials, sotifluction sediments, boulder fields and stony and detrital cave sediments was very intensive. The Wi'r.'mian vertebral fauna, abundant in loess profiles is distinguished by three species: mammoth, wooly rhinoceros and moose (Předmostí, Věstonice, Ústí nad Labem, vicinity of Hradec Králové), L'rsus spelaeus, Bos prhnigenius and Equus cabattus predominate in cave deposits. Most occurrences are accompanied by minor fauna of subarctic steppe (Chlupáč Cave, Cave above Kačák in the Bohemian Karst, Dobrkovice, Volyňka-river valley, and nearly all caves in the Moravian Karsl, which also provide rich archeological finds). In loess deposits the first to appear is the fairly thermophile molluscan Striata fauna, and above it the psychrophile Collumela fauna typical of the glacial maximum. The most intensive deposition of blown sands (Labe river valley, the Železné hory Hills, Moravia) took place during the expiring of the Last Glacial and its transition into the Ilolocene (Postglacial). Holocene The youngest epoch in the history of the Earth is the Holocene, occupying the last ten thousand years, since the retreat of the last continental ice sheet from Europe to Fennoscandia. Because of human interference, the Holocene, which would normally be an analogue of Pleistocene interglacials, is essentially different and has practically no analogy in the past. One of the main reasons is the evolution of agriculture, giving rise to pastures and fields to the detriment of forests. This duly resulted in a changed development of soils and more intensive erosion and denudation. The distinctive feature of this period is a practically permanent removal of the upper parts of soils profiles and, on the other hand, cumulation of the eroded particles (L o ž e k J 973). Soils were ruined, resembling crude soils of cold Pleistocene intervals, vegetation also was adapting to changed conditions. Increased denudation caused filling of river beds, and deposition of flood loams. The most widespread sediments are flood loams, deluvial sediments and alluvial cones. In places sandy gravel of the lower valley terraces was rcdeposited. Peats are typical sediments of mountain and highland areas. Swamp peat, lacustrine sediments (at Komořany, Cejč, Kobyla), terra alba, calcareous tufa, gyttja, cascareous fen peats and fen clays and/or diatomaceous earth formed in basins and plains. Fresh-water carbonates precipitated mainly from cold springs form abundant but minor occurrences of a small thickness (Kovanda 1971). sedimentation extended farther into the Vindelic landmass than was presumed, forming probablly a separate sedimentary basijn. 3.2.2 Jurassic The Jurassic sediments in the units of the Flysch Carpathians form part of a continuous sequence of strata only in the Silesian unit, which begins with Ti-thonian sedimentation. In its Godula development, the lower Těšín Member represents the pelitic basin facies, and the overlying Těšín limestones a micritic facies. In the Baška development of the Silesian unit, the Tithonian consists of the Štramberk Limestones, which belong to the perireefal talus cones of the Baška cordillera. In other units the Jurassic sediments are only known from redeposited clastic material or tectonic klippes. These suggest that in the Dogger and Malm were deposited radtolarites (Pritluky) and lithologically differentiated limestone sequences of a small thickness (Pritluky, Cetechovice, Kurovice, Lukoveček); in some parts of the original Ždánice and Rača areas the limestone sedimentation preceded (as in Triassic) the initiation of the Outer Carpathian flysch geo-synclinal area itself. The development of these sediments shows close pa-laeogeographical relations to the Jurassic of the Klippen Belt (Cetechovice geo-syncline, sensu Andrusov 1930). Only the Tithonian limestones with transgressiye pelitic-sandy Turonian in the Pavlovské kopce Hills in front of the Ždánice unit (Pavlov zone, Kalá-šek ct al. 1963) are indicative of the palaeogeographical and palaeolectonic link with the platform development of the Jurassic in the Bohemian Massif. 3.2 The stratigraphic development of the West Carpathian units in Moravia The lithostratigraphy and spatial distribution of the West Carpathian units in eastern Moravia is fairly well known (Fig. 2.25). 3.2.1 Triassic Pebbles of light-coloured quartzite and limestone, which were found sporadically in the material of the Magura Flysch, are thought to be Triassic on account of their lithological character (C h m e I i k ct al. 1969). This indicates that Triassic 3.2. 3 Cretaceous The sedimentary areas of the Lower Cretaceous experienced similar development as the Jurassic basins. In the Silesian unit a continuous sedimentation proceeded from the Jurassic, being distinguished in the area oT the Baška cordillera by disintegration and redeposition of clasts of the Štramberk Limestones. In the Godula development of the Silesian unit the Lower Cretaceous is characterized by a predominance of black flysch sediments (Těšín -Hradiště Formation, Verovice Member), which were accompanied by synsedimenlary volcanism of the tesehenite association and transient supply of coarse sandy material (Hradiště sandstone bodies). In the remaining flysch units the development of the Lower Cretaceous was palaeogeographically independent of the later palaeolectonic development. The M A R G f COMP M A L E L X M 1 D D L e C 0 M P L E X Pouid ŕa ny Uľl t Z d ü n ice - Subsiles an unii (Ü u Kcrpa t i □ n l j a F m. c oj at o o) z Ot tnang la n řůvlů y Eqq enburg i dn š □ Šakví c. Marl >- K e p í e c rr Z 1 'i' E g e r i □ n B o u a ä y Mm i *.3E - s r' t < -Al C ŕ* ú ui(li "» tout □! e s rr ľ C* 0 i g o c e n e r r-. - C beds h p,t BpO s i D Upper t: a r b o- a* ' & L! b -1 V M Hí'd ; - Eocene Middle Lower ' Sůnc "rrľ /í <'I| £l oj a. S e n on ia n ) Cl ■ ^ Jŕn ÍJpr!-. ■ n o u Turonion < ■o ; [ I j £ Ce noma nian CL A l b i a n i (J A p t i n n Marl -J s-J * * Hautenvion > 1 t . i pp er-ľdou--k V a l ů n g i a n „ íi B e r i a 5 ° " (_. □ ti t h ö n i q n í 0 x f o r d i q n «ľľ £ ; S f"! i [ji K e l l o w □ y 1 MIDDLE COMPLEX Si i C S f Čí r unrt < Chsr* Bed5 -* Malina - < q B ŕ d S .- p strav -ť.ŕ Lhůta 3*d! Beds Trfil'n - uradislé lr?5 L íw(f iŕiíVi Beds MAGURA COMPLEX Outer units I Inner units ] R a č g unit Stromberk L ■ f" e s í o " e Bystrico unit BítéKarpatyumt Sees 3.fí8 Stratigraphic scheme of the West Carpathians in East Moravia (E. Menčík, orig.) continuation of the sedimentation of small thickness in the Cetechovřce syncline is demonstrated by calcareous claystones and marlstones in the klippes of the Zdán ice unit (Přítluky, Zdounky) and the Raca unit (Kurovice). The stratal sequences lithologically related to the sequence of strata of the Silesian unit — the Těšín-Hradiště Formation at Baraní (Matějka - Roth 1956) with the overlying L h ot y Merabe r and the Varied Godula Formation (AlbÍan—Cenomanian) at Smradlavá — folded in the frontal zones of the Rača unit in the Moravskoslezské Beskydy Mts. point to a palaeogeographically independent configuration of the sedimentary basins prior to the foundation of the younger Magura geosynclinc. The basin of the Bílé Karpaty unit in the Early Cretaceous and at the beginning of the Middle Cretaceous (Aptian—Albian) communicated- with the i OA 4 oc Äl.V.t Sclcroi lim» 1'irutli.XocnU tvtkittťwv, bliAUivft, liUJI i hi n trrlirm Slriiintirrli Mntm hx-rlt Lunmnnc. Tilhnnku; ■ — rnm wninn nf tW colony. X3. Ii —- liuvri-hiihnal mliiin nl ihfl rokmy, XS Plmtti «rrhivc TOG. Prah* "I. i Alfa«: Svtké vrrhv Hilt* in xmlbrm Miirnvia Tilhniiiun X»l"5 Photo «rrhit» ť?0Gi Prahu Íl VI ťti-fWorafaa fTui-rWi*.Wi*J íwffmruíŕiiim (C*4*J. Pminifaiiy um', l'.mjdrunv lomlil? l>irrh<.]e). up|»r Kwiwv Xl*>. (maK-rml ■>í fcl tl . ./lilii.v*; 3*:i (.J.Jiifi-nnu r^LulIini/fi fMrtriiuírirtriVi Btow. Carpalhinn IjiwIcpv h«f*lu>I« DfcfaiVK* í, Mnrmvian (Iowpí U h)™ m d), X™ä, (nnirn.l nl V. M..I-MlknvA) l'tnno nn-hÍM' m <■ ľ li i i ĺ i: 1 li T area of the Klippen Belt. They are characterized by the sediments of the Hluk Formation (Buday et al. 1963). The Middle Cretaceous is distinguished by the maximum sedimentation of sandy flysch facies of the Silesian unit, whose thickness ranges from several hundreds to several thousands of 'metres. It is foreshadowed by flysch sedimentation with spotted claystones (Lhoty Member). The Godula Formation itself consists of complexes of fine to middle-rhythmical flysch; in the basal part it is represented either by varied development (Varied Godula Member) or by sandy development (OsLravicc Sandstone), which is also distinctive of the middle Godula Member. Sandstones of this sequence are characterized by mass occurrence of giauconite. Sedimentation of the Godula Formation persisted until the early Senonian. At that lime gradual transition into the Istebna Formation (upper Senonian) is indicated by the deposition of isolated sandstone-conglomerate bodies, which are lithologically related to these upper layers (Puslevna Sandstones and Conglomerates and Malinowecka Skala Sandstones). In the Baška development of the Silesian unit, the Chlcbovice For 'in a t i o n and the overlying Baška Formation are equivalent to the Middle Cretaceous. The former is distinguished by sandstones and conglomerates with the largest accumulation of clasts from the Štramberk Limestones, derived from the destructed Baška Cordillera, and the latter by cherty sandstones. Pelitic development of the Cenomanian and Turonian has been found only locally in the envelope of the Štramberk Limestone. During the Middle Cretaceous (Turonian), sedimentation began at least in a part of the Subsilesian unit (the oldest beds of the Frýdek Formation, Roth et al. 1962). The geosyncline, in which the Magura flysch was deposited, had probably also been initiated, because the most recent studies indicate that the oldest beds of the Soláň Formation in the R a e a unit (lower varied complex and part of the "Lower Soláň Member") are of the Turonian _ ■■c 9-5 ce >— •? i> - "š I » &, I * a; tí po m< a .2 ď. o op B £ i a -5 o .5 •= I ^ ; £ c -o k 5 c: "čs - Cl,* *= . I GQ ' «s T5 J = C3 k( | OJ = ■s e s '5 s o 'h *J3 C -i ■I £ ■ I |^ " 3 /j - «i o 2 1 1 i c s ^ 1.Í2- os % £ 1 = CO >—I r5 In the Bílé Karpaty unit, the Palaeocene to middle Eocene are represented by the facies of variegated claystones which are represented by fine-rhythmical sandy flysch with green and greenish-grey claystones (lower division of the r- ~ - tí 3.7") Geological section of the southern part of the West Carpathians in Moravian area between Dunajovice-Lednice. (Meiičík. according to Z. Straník-J. Adámek - V. Ciprys 107').) 1 — napjje unils uf the Ouícr ("arpalhians: MP — Ponzdrany unit. XP — Zd;miop-Siihsilpsian unit. <_'./. — f.ejě-Zajeří zone; 2 — Jurassic kiippes of the Pavlovské kopec Hills: 3 — boundary of Ždánice-Hustopeře Formation against the basement;4 — Vienna basin (Neopene filling) ; '> — Outer Carpathian foredeep (Eggenburgian-Ottnangian and Karpatian); 6 — aulocluliojDus Oligoi'enc; 7 — Upper Cretaceous in autochthonous envelope: 8 — autochthonous Jurassic; 9 — crystalline complex; 10 — principal nappe surfaces; 11 — radial faults and partial thrust faults Palaeocene of the Bílé Karpaty unit). More sandy developments have been assessed only in a small area, together with dark-grey both calcareous and non-calcareous claystones (Svodnice Member, P e s 1 1968). A characteristic member of the last part of 'middle Eocene and of the upper Eocene in the Rača and Bystrica units is the sandy flysch of the Zlín Formation with a varying amount of calcareous pelites (in the Bystrica unit with clayey limestones — Lacko Marlstones). The lithofacies variability of the Zlín Formation in the Rača unit is manifested by the varying proportion of glauconitic or greywackeous sandstones in the flysch rhythms (Vsetín — Ky-čera Member). The lower part of the flysch development of the Vsetín Member is replaced locally by the facies making up separate bodies of predominant sandstones and conglomerates in the marginal parts of the Raca unit (marginal development) or in the group of inner anticlines (Luhačovice Member). The transition of these facies into the Vsetín Member is indicated by subordinate layers of arkosic sandstone. This part of the sequence is termed the "Lower Zlín Member" o f the Rača unit (M a t ě j k a - R o t h 1956). 24 In the Bílé Karpaty unit the facies of the upper Palaeogene division cor-lesponds to the Zlín Formation. The Palaeogene is divided on the basis of the proportion of calcareous sediments (claystones and sandstones) into the Hluk (calcareous) facies and the Vlára facies (with an Increased amount of sandstones). A transitional facies developed at the contact of Hluk and Vlára developments (B u d a y et al. 196.1), Over the larger area of the Magura group sedimentation came to an end in the late Eocene. Only in some zones of the Vsetín Member was the presence of the (lower?) Oligocene demonstrated. Most widely developed is Oligocene sedimentation connected with the Sub-menilitic Formation in the Central group. It begins with the deposition of the Menilitic Formation distributed over the whole area (M e n č í k 1973); this is followed by the Krosno Formation (in the Silesian unit) or the Ždánice-Hustopeče Formation (in SW of the Ždánice-Subsilesian unit). In the north-eastern part of the Zdánice-Subsilesian unit (at the foot of the Beskydy Mts.) sedimentation ends with the Menilitic Formation, but in the south-western part it continued from the Oligocene to the earliest Miocene (Egerian). In contrast to all other units, the Pouzdrany unit docs not contain older than upper Eocene beds; these open the deposition of the Pouzdrany Formation, which continued up to the Egerian. The layers of diatomite at the boundary between the calcareous and non-calcareous development of the Pouzdrany Formation can be regarded as a facies equivalent of the cherty beds iii thé M *n i 1 i t i c Formation in the Central group. The Boudky Marls and Křepice Formation overlying the Pouzdrany Formation are lithofacies equivalents of the youngest part of the Zdánice-Hustopeče Formation. 3.2.5 Neogene The Pouzdrany unit is the only flysch unit in which sedimentation continued into the early Miocene, being represented by the Sakvice Marls (Eggenburgian, Straník - M o 1 £ í k o v á 1980). It is probable that in the Zdánice unit the Miocene beds (Eggenburgian—Ottnangian—Karpatian) are separated from the ynderlying Zdánice-Hustopeče Formation by -a slight angular unconformity (personal communication, Z. Straník). The sequence is divided into the Sakvice Marls (Eggenburgian), Pavlovice Formation (Ottnangian) and the Laar Formation (Karpatian). These Miocene beds are preserved i. i the Ždánice unit only in small transverse depressions within the Hustopečská pahorkatina Upland. The slralal sequence of the Pouzdrany unit, including the underlying Pouzdrany Formation, shows a similar development as the Oligocene—Miocene filling of the foredeep on which the Outer Carpathian units are overthrust in southern Moravia. In agreement with the decision of the RCMNS (Regional Committee on Mediterranean Neogene Stratigraphy, 1975) so-called regional stages are applied to the chronostratigrapbic classification of the West Carpathian Tertiary (i.e. the region of Central Paratethys). The application of global classification of the Upper Tertiary (i.e. the Aquitanian, Burdigalian, Langhian, Serravallian, Tor-tonian, Messinian, Tabian, Plaisancian and Astian stages) meets with many difficulties. A separate scale has been compiled for the Western and Central Paratethys, which would express specific features of the biostratigraphic, palaeogeo-graphic and other developments of this region. The following stages are applied (the equivalent stages of the Mediterranean region are given in parentheses, for details see Tables 3, 4). Egerian (Chattian—lower Aquitanian) Eggenburgian (upper Aquitanian—lower Burdigalian) Ottnangian (middle Burdigalian) Karpatian (upper Burdigalian) Badenian (Langhian—lower Serravallian) Sarmatian (upper Serravallian—lower Tortonian) Pannonian (upper Tortonian) Pontian (upper Tortonian—Messinian) Dacian, Rumanian (Tabian, Plaisancian, Astian). The Eggenburgian beds occur in the Czechoslovak part of the Vienna basin above the sequence of the Klippen Belt. They also lie transgressively on the units of the Magura group. Lithologically, the Eggenburgian is represented in the older part by conglomerates and sandstones (e.g. the Chropov and Dobrá Voda types). Glauconitic sandstones with claystones constitute the older part of the Eggenburgian in the Lužice—Hodonín area. Variegated continental to brackish facies of conglomerates to sandstones are characteristic of the base of the Eggenburgian in the neighbourhood of Štefanov—Petrova Ves. The marine Eggenburgian facies is distinguished by a relatively rich forami-nifer assemblage with Cyclammina praecancellata Volosh, Haplophragmoides vasiceki vasiceki Cícha et Zapletalová, and by large pectens. The partly freshened basal facies of the Eggenburgian in the environs of Štefanov contain Cibicidoides budayi. The tnarine facies is here represented by Chilostomella avoided Rss. and Lenticulina mezneriscar. The lower part of the Lužice Formation (Bathysiphon —Cyclammina schlier) corresponds to the Eggenburgian especially in the area of Lužice. T a M r Siratigraphic scheint! Stare Rumanian .2 S g S oj e .2 v , e S- a p • •tí b ■ it — CQ Q. & 3 d e.2 « tc 'bp a S tí B a; Subcarpathian Miocene (Foredeep, S part) Lithostratigraphy or biostratigraphy Egerian Varied Formation "Tegel" Lithotham. limestone Brno sand Karpalliin "Schlier' Rzehakia and Varied Mbr. Mbr. Tracia pubescens Cibicidoides buduyi etc. f.ithology Mbr. Miogypsina comp lana la Var. sandy clay limestone marl, gravel sands sandy clay sandv "Schlier' sands clay rliyol. tuff, sandy clay sands clay marl Rh Siibcarpathian Miocene (Foredeep. N. part) j f.ilho- or biostratigrrvphy Rd Rh Kobeřice Mbr. Bulimina-Bolivina Bd, Spiratella Bd. 8 Evnporiíes Pseudotriplaüa Bd. detritus '"Schlier" grey and varied Mbr. Jaklovec Bd. Table 3.4 of the Xeogene in Moravia m I 'tri <ü C Vienna Basin (N. part) 1 c QJ tí Lithology d SB rÜ Czechosl. j I.ithology a u y .J JD litho- or biostratigraphy "o > (í -3 a> ba CS >" gravels sandy clay gypsum sandy clay I sandy clay [ ash, vole, breccia sandy clav clav Rd Upper Coal gravel Fin. Varied Mbr. Coal Mbr. C. zahalkai Bd. spathulata Bd E iu bglobosa Congrria Bd D parischi Bd D hoernesi Bd C ornithopsis Bd C M. impresso Bd A gravels coal clay. sand\ clay clay, coal coal sands clay sands md\ 8 empover Rd. Mactra Bd. Ervilia Bd. Rixsoa Bd. varied Bd. Spiroplectamm, Z. clay sands sands.'clav Rb B OS sandy clays conglomer. Bulim.-Baliv. Z. j sands, clay limest., coal LagenUlac-Orbuľma Z, marls, sand gravels Jahloniea | sandy clays Lakšiirska fid. (r-lc.) i conglomer. Tvnee I Cibicidcs-hlphidium) , i^.jjl conglomerate Lužice Mbr. Bathysiphon- I c ! 3 Cyclammina Schl. sandy clay i sands. ! conglomer. 10.5 13.5 15 16 18 22 IS In the Vienna basin the following units are nowadays assigned to the Ottnangian: the Štefanov Sandstones, the older Miocene of Lednice type, the Cibicides-elphidium schlier of the Lužice Formation and Robulus schlier (formerly placed in the Eggenburgian). In the closing phase of the Ottnangian the "fish schliers" were deposited. One of the significant Ottnangian species (Cibicidcs-Elphidium schlier) is Sigrnoilopsis ottnangensis Cicha, Ctyroká. The marine facies contains besides lenticuline planktonic foraminifers, particularly the species Cassigerinella boude-censis. In the "fish schlier1' representatives of the genus Silicoplacentina have been found. The maximum thickness of the Ottnangian, which is connected with the Eggenburgian by gradual transitions, attains in the Vienna basin 300 m. The oldest facies of the Karpatian are Týnec Sands of the Lakšár Formation, the Jablonicc Conglomerates being their 'marginal facies. The Lakšár Formation itself consists predominantly of fine sandy pelites. The younger Saštíii Sands and diatoms-bearing shales form a separate layer. The top layer of the Karpatian is represented by the Závod Formation and the Láb ostracode beds. As concerns faunal content, the typical unit of the Karpatian is the Lakšár Formation with extremely rich foraminifer faunas, e.g. Uvigerina parkeri brevi-jormis. The freshened Karpatian facies are characterized by the genera Candona, Stenocypris and others. The nannoplankton of the Karpatian corresponds to the older part of zone N N 5. The maximum thickness of the Karpatian in the Vienna basin attains 2300 m. The Karpatian sequences lie transgressively on the Ottnangian. In many areas of the Vienna basin the lower Badenian usually begins with conglomerates, sandstones and varied pelites, and its upper part is formed of calcareous clays. In the oldest part of the marine substage Moravian the representatives of the genus Globigerinoides are 'most abundant. This development is known from the Malackv area. However, the lower Badenian is distinguished most typically by the associations of the Lanzendorf horizon with e.g. Lcnticulina echinala (d'Orb.) and Orbulina saturalis Bronniman. In the upward direction the associations become impoverished. The overlying sequence contains Semivulvulina pectinata kolmanrd Cicha et Zapletalová, and the complex with Bolivina dilatata Rss. is typical of the terminal part of the lower Badenian. Nannoplankton of the lower Badenian corresponds to zone NN 5. The total thickness of the lower Badenian does not exceed 500 m. The middle Badenian—Wielician consists of the lithologically varied Žižkov Formation, the Láb "amphistegina" beds and the marine pelites of the zone with agglutinanls. The Žižkov Formation (gravel, varied pelites of the Velké Bílovice area, the central foredeep of Moravia) is usually sterile, whereas the Láb Formation (sandstones with interbeds of lithotamnion limestone) yielded seme faunal finds. Marine pelites which partly substitute both the varied Žižkov facies and the Láb Formation contain rich fauna of agglutinants with Pseudo-triplasia div. sp. The upper Badenian—Kosovian is best developed in the area of Studienka, Leváre, Závod and Borský Jur. Lithologically it is represented chiefly by pelites of the Bulimina—Bolivina zone and Ammonia zone. The typical plankton species is Yelaoertina div. sp. The sequence passes upwards gradually into impoverished facies with Ammonia, members of the miliolid family and ostracodes. The Sarmatian occurs in marginal and basin facies. The marginal facies are composed of sands and sandstones, whereas in the basin development predominate, pelites which in the lower layers are of varied character. The Sanmatian is divided on the basis of the molluscan fauna into Rissoa, Mactra and Ervilium-bearing beds and impoverished beds, or according to the micro-fauna (zone of large Elphidia, Zone Elphidium hauerinum-EIphidium antoninum, and the Zone Porosononion subgranosum). The Sarmatian shows a brachyhaline development and attains a maximum thickness of 700 m. The Pannonian is divided into several zones. Zone A represents a zone of impoverishment and zone B is characterized by Congeria ornitopsis and Mela-nopsis impresa. Zones C and D are difficult to separate; Congeria hoernesi is frequent in sandy facies and C. partschi in pelitic development. Congeria sub-glubosa is a significant fossil of zone E. Ostracodes are the most important representatives of the microfauna. Lithologically, sands and sandy clays predominate. The first phase of coal-bearing sedimentation falls in zone B. The Pontian overlying the Pannonian begins with a coal-bearing sequence which contains Congeria croalica. Higher up there is a complex of variegated clays, less frequently of gravel (zones G and F). The upper part of the Pontian is generally faunisticaily barren, only in some layer appear the representatives of the genus Candona. The Pliocene complexes correspond to the Dacian and Rumanian stages. In the Vienna basin they occur in a gravel and varied clay facies. It cannot be excluded that part of this sequence extends of the lowest Pleistocene. The maximum thickness of the Pannonian attains 550 m and that of the Pontian 150 in: the Pliocene has a maximum thickness of 180 m. TJi£-,Pan-nonian to Pontian appear in the oligohahne lo'completely freshened development. In the Carpathian foredeep in Moravia, between Znojmo and Ostrava (northern boundary) and in the south in front of and partly under the overlhrust units of the Outer Flysch belt, the Egerian in autochthonous position has been identified in a borehole near Malešovice. It is developed in the facies of dark claystones with Miogypsina complanata, but its total thickness is unknown. In Moravia, the Eggenburgian of the Carpathian foredeep has been evidenced in the Znojmo and Ostrava areas and in the central part of the foredeep. The developments with the molluscan fauna occur there predominantly in sandy facies and more scarcely in politic facies. The marginal development passes centrewards into pelites, which are known to occur before and under the front of the overthrust Pouzdiany and Ždánice units. It should be emphasized that a part of the Neogene units are involved in the front of overthrust flysch units on the younger autochthonous Tertiary. The molluscan fauna of the Eggen-burgian is characterized by Thracia pubescewt and Clilami/s jaklowetziana. Farther lo the south in Moravia, the Ottnangian clays and sandy clays were deposited. Towards the margins of the foredeep in the region of the Bohemian Massif Ihey pass into fresh-water to brackish sands with layers of gravel and varied clays. Within the whole sedimentary area of the Carpathian foredeep freshening of the basin continued in the upward direction and in the uppermost part Rzehakia sands with Rzehakia socialis were deposited. These beds are known in the vicinity of Brno, Maršovice and Rakšice. The Ottnangian sequences are of highly varied facies and in the lower part marine, brackish and fresh-water facies alternate. The early Miocene, Eggenburgian was also a period of local volcanic activity: the basalt volcanisim in the Opava area (Kamenná Hůrka near Olice) and rhyodacile volcanisin in overthrust units in the southern part of the foredeep. The total thickness of the Lower Miocene does not exceed 450 m. In the Karpatian the marine transgression in the foredeep expanded greatly. The sea reached as far as the western marginal part of the foredeep in Poland. In Moravia, sandy calcareous clays were deposited predominantly and Lo a lesser extent sands and sandstones. The fauna is known mainly from the clastic facies with Chlamys macratis. The sandy facies is developed in the southwestern part of the foredeep near Ilevlin, Jaroslavice and Dolní Nctčice. In the northern part of the foredeep, the lower part of the Karpatian occurs in the grey facies, and the younger one is built up of variegated clayey beds. The pelitic facies of the Karpatian contain rich foraminifer fauna with uvigerins. In the central part of the foredeep scarce diatomite-bearing beds have been found. The maximum thickness of the Karpatian in the foredeep attains 1200 m. Sedimentation was interrupted between the Karpatian, which has a transgres-sive character, and the younger Badenian. The transgression of the lower Badenian (Moravian) reached far into the eastern marginal part of the Bohemian Massif, extending frota the area of the Boskovice Furrow as far as the vicinity ol Uslí nad Orlicí. Part of the Nízký Jeseník Hills and of the Drahanská vrchovina Upland were washed away. In the southern part the area of Moravské Budějovice and Kralice nad Oslavou was flooded, and in the north the sedimentary basin proceeded into the foredeep in Poland, the Soviet Union and Rumania, and westwards from the Opava area into the Osoblaha projection. At the base of the lower Badenian gravel and sand were deposited. In the environs of Brno and Oslavany molluscs were rewashei inlo basal sands from the Ottnangian Rzehakia complex. Most widespread in I he lower Badenian arc non-sandy calcareous clays (called the "legel facies"), very rich in fauna with the index foraminifer Orbulina suluralis. During sedimentation of the upper part of the lower Badenian, sands and Lilliothamuioii limestones were deposited closing ihe sedimentation in this stage. The Lithothamuion limestones are known from the neighbourhood of Zidlochovice, Pratecký kopec Hill, the Boskovice Furrow, etc. In the Ostrava area the lower Badenian is developed in the facies of sandy calcareous clays, the Lithothamnion limestones arc 'missing. Sedimentation in the Carpathian foredeep between Ostrava and Znojmo—Mikulov ends with lower Badenian. Te middle Badenian (Wielician) occurs only in the area between Opava and llhičín. At the base there are pelites consistent with those of the Moravian. Higher up a gypsum sequence of the sabkha type, 60—70 m in thickness, terminates the middle Badenian sedimentation. The evaporite sedimentation gradually disappears in the upward direction. The overlying calcareous clays abounding in radiolarians and planklonic gastropods of the genus Spiratella form the base of the upper Badenian—Kosovian. Higher up the genera Bulimina and BoUvlna occur frequently. In the late Badenian the marine sedimentation was closed in the Opava area. Volcanism of basaltic typo was active in the Opava area (tuffs and tuffiles), and volcanites of a more acid character (rhyodacites) are known from the overthrust units within the whole Carpathian foredeep (lower Badenian tuffitcs). The total thickness of the middle Badenian does not exceed 200 m, and the 'maximum thickness of the upper Badenian is 300—350 m. The limnic complex of varied clays and sands filling the depression zone of the Upper Morava valley is placed in the stratigraphic range of Dacian—Rumanian. The sequence is 200 m thick at the most. The Kobeřice Gravels with pebble material from the Culm of the Nízký Jeseník Hills occurring in the Opava area are conditionally ranged to the Pliocene. I. 1 \i ľliiaJ variability of >r iJit> iliararteri/iiiton of tin- rtoliitmu .tí ,limn.u m ihr Bo-In-liii.iii \|j*s>if wi.t to tluir vt-rtiltil vniuiliiltlN. In nil imniitliotn ihr l>iTi|nirtiKi<-> ní liic principal kind* id iwdiiiiriil« ha* r bii'ii computed or ml limited llir mrlhoil i* ilcM'rihed ill lllf papri of K u k u I in pr»*xľ> ; tin' results «r«' ploltrd in gniph. I i. 4.2. Some modification* luiil In |h< nuiilr in tlmlip. i|rn nducalrd In tin' l.n«rr • .li 11-iiifcniiiv Tin' 1 |i|H*r (jirluuiififroitt mm* divided into Ute IJltruva ba*m ami ill. liitihir I.UMti* which Herr linked lo the ľi-ruiiun The following inforin.itioti is etidnil fmm the tfiJiplt. I. Si<'tli]ii, i,l.il(,.|i nf J t m- i.r.iniľ.1 iIíi^IiiS «iltsllUH-* and ťli»\ »Jini«-» i* rehilix.'li iiiiiloriii lliriiOf(lii>ot (In- «triiti^r:i|iltic Mtjueticr. The tiinximu an- in tlie fjniihririu mul Triti»»ic, ľlľ oi.iMiiiii ■ if '«i'tliiii'-titalioii of i*ofir%r i'l.iMiri occur in jtyMrin« which followed I jiniliriitii or arcompanird iIjowi-t. I |ipm lkal contriliuled (>> 11 u • relief energy . Im) il Imtl oiilx tfi'.mihirx und slifirt'trrm effcrt». In llie (nml» i. n .nul Ijiwi-r Ordnvíráin. for example, ll< • necimmliilioii ni \ öl. .um' pt-oiliM I» of n urvat lliirkn«—. ufft'i'K'rt only purl of I Ii er *y«|e*|l. Tlk<- influence ol |>.tl......'hl Ii.iL Wllt u-i|.il!\ tiM'l'l'Otni- |i> Ihr effect of tili' ri'hi-f lint il Mjit ho illl|Nirtlltil factor in IL production of rurhou.-iť'*. \l lln Inn.' •-' the iti, i x i ilium cnrtniiiiilr «t'iliiiii'iitiitiiio Silurian—Devonian. Inr;i-m< i i. - .ni-i.H- the I !■. Im ■ 111 r 11. \ln*il>lc nml n llir' IIIiiInk.)^ \ul\v* in lit........Iitii .tit.i.rl. »1 ľiuíctír Ittitln lo /. Kwkfl •i'tli infill < .illgUlllMTItlr» • ,ili.t«1nri. ^ • i 11 • 11 .r . 4- lili v . !.. 11. . i'nrlir.iiilr* .ll.rr |trc rrnl 7 B 4M M I II,! The numbers should be taken with reserve, as by averaging the not very precise values the errors may increase-. Nevertherless, we think it useful to submit these calculations. The predominance of sandstones and siltstones+clay-stones is expressive, the sandstones prevailing slightly over the lutites. 350001 4.2 Changes in rate of deposition of the sedimentary cover of the Bohemian Massit. Thickness (potential) of sediments is plotted on the vertical axis, and the geological history from Upper Proterozoic in millions of years on the horizontal axis. Slope of curve — rate of sedimentation. Numerals — sedimentation rate in individual" stages in cm/1000 years. Average sedimentation rate from the Late Proterozoic to Quaternary is 3.31 cm/1000 years (Z. KukaL orig.) The rate of sedimentation was calculated from the potential thickness of sediments of the individual formations and the known time span. To express the rate of sedimentation, the empiric curves (also called Bubnoff's curves) were constructed (the thickness of sediments is plotted on the vertical axis and conglo- sand- carbo-merates stones shales nates Tertiary 1 /// Cretaceous % % Jurassic V, Triossic W / Limnic Permo-Corbon.iferous 1 Y/< Upper Carboniferous of the Ostrava basin W, Lower Carboniferous / / % Devonian '', Silurian w Ordovician % ''///, Cambrian n z Proterozsic ''■V/ '/// f 1 I 1 1 M 1 1 1 50 % C T 1 1 r 5C % II II 1 L 1 1 1 50 % till ! 1 III 3 50 % 4.3 Graphic representation of sediment percentage in the formations of the Bohemian Massif. Only essential sediments are plotted, less frequent and pyroclastic sediments have been omitted (Z. Kukftl, orig.) the duration in millions of years on the horizontal axis). The slope of the curve gives the rate of sedimentation. The data on the absolute geological age and duration of the stratigraphic units are taken from the papers of Cohee et al. (1978 — all units), Jones et al. (1980 — Silurian and Devonian), C h u r k i n et al. (1977 — Ordovician and Silurian), and Van Ilinte (1976 — Cretaceous). The empiric curve for the whole sedimentary sequence of the Bohemian Massif is in Fig. 4.2. The units are taken as wholes even if only a part of some of them is represented by the sedimentary sequence. The potential thickness of the entire sedimentary cover of the Bohemian Massif is 33,150 m (without metamorphites). The average rate of sedimentation from the Late Proterozoic to the Quaternary is 3.31 cm/1000 years. The curve shows a marked fluctuation of the sedimentation rate. The slow Proterozoic sedimentation is followed by a prominent acceleration; the increased rate of sedimentation continues in the Ordovteian, declines again in the Silurian lo rise moderately in the Devonian \t the onset of the Carboniferous a conspicuous break lakes place, ij, fact the most prominent change m the sedimentary hislory of the Bohemian Massif as concerns cm/1000 years v',l„^ i seduncr.tatmr.rn the Bohemnvn Massif. Histogram on the left shows average induce " T'm}F™™: neozoic, Mesozoic and Ternary; histogram on the right side indicate, average sedimentation rates in the Palaeozoic (Z. Kukal ori-) the rate of sedimentation. Subsequently to the average rate of 3.0 cm/1000 years in the Devonian,, in the Early Carboniferous il increases eight times (27.5 cm/ 1000 years!. During the Late Carboniferous the sedimentation rate slows down but still remains high enough. An opposite marked change occurs at the onset of Mesozoic. During the Triassic the rate of sedimentation drops to a minimum value to speed up somewhat in the Jurassic and Cretaceous. In the Tertiary sedimentation slows down again. The data from ihe Precaiubrian cannot be taken very seriously as the thicknesses and slratigraphic assignment of the units are uncertain. It cannot thus be expected that the Precaiubrian orogenies will be expressed in the empiric curve. The post-orogenic sedimentation, however, shows an increased rate directly in the Cambrian and reasonably slows down in the 'mid-Palaeozoic to increase in the Devonian simultaneously with the initial phases of the Hercynian orogeny. The orogenic and late-orogenic sediments of the Lower and Upper Carboniferous and the Permian are deposited at an unusually high rate. The break at the Palaeozoic/Mesozoic boundary implies a transition to the platform development stage, which with its low sedimentation rate persists until the Quaternary. As Seen in liistogram in Pig. 4.4 the Palaeozoic is at the head, as concerns the sedimentation rate, being followed by the Mesozoic and Tertiary. As mentioned above, ihe low values in the Proterozoic are not very reliable. The second histogram (Fig. 4.4) shows the course of the sedimentation rate during ihe Palaeozoic, above all the drop of the rate between the Cambrian post-orogenic sedimentation and the Silurian and a new revival of sedimentation in the Devonian. The reversal between the Devonian and Early Carboniferous sedimentation rate is here well defined. The comparison of our compulations with ihe relevant data from other basins (e.g. Spencer 1974, Bono v el al. 1976. S c h w a b 1076) has shown that ihe Palaeozoic average corresponds to preorogenic and synorogenic sedimentation, ihe Upper Palaeozoic average to postorogenic (or lale orogenic) sedimentation. As a whole, the Bohemian Massif with its average sedimentation rate approaches rather lo geosynclines than platforms. The diagram also reveals that the continuous carbonate series of great thickness exhibit unusually steady rates of sedimentation (from 3.5 to 5.0 cm/1000 years) and the Palaeozoic argillaceous sediments very low values (1.2—1.5 cm/1000 years). 4.2 Sedimentary environment The sedimentary- environments of the deposits of most slratigraphic units of the Bohemian Massif are known, although they have been reconstructed in different details and using diffcrenl methods. The history of the environ'ments and particularly iheir sudden changes are controlled by tectonic movements. To illustrate ihe development of the environment of the Bohemian Massif, a standard environment series has been used as is usually applied to ancient sediments (e.g. Kukal 1971b, S e 11 e y 1976. Reading 197S). The development of the environment is depicted in Tab. 4.1. In the Proterozoic deep-sea sedimentation predominated; it may have occurred in inland or marginal seas with a diversified relief of the sea-floor. Sedimentary series were partly deposited also in shallow-water, or littoral and supralitloral environments, as evidenced by ihe occurrences of stromatolites. In the early Cambrian, coutmenial sedimentation look place in intramontane depressions wilh alluvial fans, which passed into alluvial plains and lakes. The Middle Cambrian marine sedimentation compares lo rather deep marginal or inland seas, in places with a rather strong relief of the sea-floor. The late Cambrian sedimentation returned into minor intramontane basins with alluvial fans and intermittent streams al the margins and a lake in the interior. Ordovician sediments are typical Table 4.1 Evolution of sedimentary environments in the Bohemian Massif. Heavy lines in systems denote the range of environment. Black wedges on the right — abrupt and great changes in sedimentary environments (Z. Kukal, orig.) System stable shelf unstable shelf intracrato-nic basin eugeo-syncline miogeo-syncline ',( rt Tory Cretaceous Jurassic Triassic Limnic Permo-Carboniferous Upper Carboniferous of the Ostrava basin Lower Carboniferous Devonian ! -■ — Silurian Ordovician Cambrian -1 : Proterozoic i -1— i deposits of a broad zone of a shallow and medium-deep sea. The shallow-water environments extended as far as the inlertidal zone, bays were numerous, and deltaic sedimentation was intensive. Shallow-water sedimentation also prevailed in the Silurian. Typical graptolitic shales are deposits of large bays or inland seas of smaller depths. The carbonate environments of the Upper Silurian were highly differentiated, ranging from biostromes in very shallow waters to basins attaining depths of up to several hundreds of metres. The Devonian in the Moravo-Silesian region began with alluvial sedimentation. Above the claslic deposits an extremely thick limestone complex was laid down, representing a shallow-water carbonate platform sloping into shallow-sea carbonate basins. The Devonian clayey shales sedimented in a somewhat deeper environment of marginal seas. In the latest Devonian the basin deepened at the site of deposition of the flysch (Andělská hora Formation). A strongly differentiated basin with troughs and shallower areas came into being. In the Early Carboniferous sedimentation continues on the carbonate platform in places but the greater part of the space is occupied by a deeper basin with flysch sedimentation. However, shallow bays and plateaus also developed and local transitions to -continental environments probably existed. The transition to Upper Carboni- Table A .2 J Maximum depths of basins in the sedimentary history of the q Bohemian Massif. They are shown by line segments and not by points, because reconstruction, especially for great depths, is uncer- |gj tain (Z. Kukal, one.) n __ |k Tertiary — - Cretaceous — Jurassic - Triassic - 1 Limnic Permo-Carboniferous - Upper Carboniferous of the Ostrava basin — Lower Carboniferous ---- Devonian Silurian Ordovician Cambrian Proterozoic -r—f-1---.—.-1_ 0 100 500 1000 m maximum depth ferous paralic coal basins in the Ostrava area was slow. The sea became shal-I lower changing gradually into shallow bays and lagoons, which alternated with \ wide coastal plains. Marine environments vanished and continental sedimentation of alluvial-lacustrine type was developing. Limnic sedimentary basins in the Permo-Carboniferous were filled with sediments of continental origin. Generally the sequence of alluvial fan — river channel — floodplain — lake has been reconstructed. Also eolian sediments — sands and loess have been described. In the Trlassic the Permo-Carboniferous sedimentation type continued. The Jurassic sedimentation took place predominantly in the shallowest sea, on a carbonate platform with lagoons and bioherms. The eastern margin of the Bohemian Massif deepened into a somewhat deeper basinal environment. Continental freshwater Cenomanian sediments are deposits of lakes and streams. Alluvial fans extended from the elevated position into depressions. The marine Cretaceous sedimentation represents a set of shallow-water environments, ranging from the prograding sandy shoreline through shallow-water flats with bars, barriers and sand waves up to shallow basins with clayey and marly floors. Continental sedimentation in the Tertiary occurred predominantly in a lacustrine environment. The products of neighbouring fluvial environ'ment and minor alluvial fans are also partly preserved. Lacustrine-deltaic sedimentation was marked. The mosL prominent break in the development of sedimentary environments occurred at the Proterozoic—Palaeozoic boundary; a minor one fell lo the midsi of the Late Carboniferous (approximately near the Westphalian—Stephanian boundary), another one between the Triassic and Jurassic and another between the Cretaceous and Tertiary. The picture is complemented by symbols showing maximum depths of the basins (Tab. 4.2). The values are only broad estimates, especially for deep-water deposits. For this very reason the maximum depths are shown by line segments and not by points. The maximum depths should have been attained during the Proterozoic and Early Carboniferous sedimentation, when depths of up lo several thousands of metres may be expected. During the Palaeozoic, From the Cambrian to Devonian, sedimentation occurred in basins with monotonous clayey sedimentation at depths of several hundreds, possibly even thousands of metres. For Mesozoic marine sedimentation only the shallowest environments could be determined. 4.3 Palaeoclimate The palaeoeli'matic history of the Bohemian Massif region has been reconstructed on the basis of the composition of sediments. The data have been checked against the palaeomagnetic reconstructions of palaeo-poles and palaeo-equators for different stratigraphic units (mainly McElhinny 1975 and Morel -- I r v i. n g 1978). Our model is based on the assumption that the climatic zonation of the Earth did not change essentially during the geological history. It is plausible that the zones were periodically expanded and compressed (e.g. the polar zone in glacial periods or subtropical arid zones). In our reconstruction we used the following criteria: 1. The presence of so-called palaeoclimalic indicators such as coal, evaporites, bioherms. aggregate limestones, stromatolites; 2. The presence of desert sand and eolian dust (in the form of palaeoloess or as an admixture in limestones); 3. The existence of abundant alluvial fans of great thickness, which are typical of semiarid climate; 4. The presence of red beds. The primary red beds indicate alternation of the tropical humid and tropical acid climate. 5. The type of weathering residues. Unfortunately, although very abundant in the Bohemian Massif, the interval of their formation might have been very long. Moreover, red lateritic and kaolinitic weathering products can develop within a broad range of climate. 6. The composition of clastic sediments, chiefly their mineral and chemical maturity. Mature sediments are supplied with detritus from the source areas where humid climate prevails. The effect of climate may be effaced by a rapid erosion induced by greater differences in the relief. A mixture of weathered and fresh unstable components is regarded as one of the proofs of semiarid climate. 7. The presence of deltaic sediments. Perennial streams and major deltas indicate humid climate. Table 4.3 m Pulncoclimatic history of the Bohemian Massif. Palaeoclimate is re- H constructed from the character of sediments and weathered materials aN {Z. Kukal, orig.), Teclofacies in the sedimentary history of the Hu- H hemian Massif (Z. Kukal, orig.) flg --- climatic zone System ^^-^^ ~ - 1 tropical I humid subtrop ari d cal humid moderate j polar hum! d j — Quaternary -h Teriiory ? —j Cretaceous 9 Jurassic -J— - J- Triassic r i— i Limnic Permo-Carboniferous _i_—.. -H " i__i _J_ Upper Carboniferous of Ihe Ostrava basin 1 i 1 i .j----+■-1 | Lower Carboniferous --- -7 Devonian S'iuriari i _i ■- ___------ Ordavician —i- -?j Cambrian -r~ Proterozoic 9 I — - i Our reconstruction of the palaeoclimatic history is in Tab. 4.3. We are well aware that the climatic conditions changed very rapidly during the geolog;,,al history and therefore only average palaeoclimate patterns for individual periods have been reconstructed. During one period arid climate may have alternated with the humid one many times. The reconstruction of the Proterozoic climate is the most difficult. During this long period the Bohemian Massif may have passed through several climatic zones. Immature sediments would attest rather to less intensive weathering in a moderate zone. The presence of glacial sediments not far from the Bohemian The most prominent break in tbe development of sedimentary environments occurred at the Proterozoic—Palaeozoic boundary; a minor one fell to the midst of the Late Carboniferous (approximately near the Westphalian—Stephanian boundary), another one between the Triassic and Jurassic and another between the Cretaceous and Tertiary. The picture is complemented by symbols showing maximum depths of the basins (Tab. 4.2). The values are only broad estimates, especially for deep-water deposits. For this very reason the maximum depths are shown by line segments and not by points. The maximum depths should have been attained during the Proterozoic and Early Carboniferous sedimentation, when depths of up to several thousands of metres may be expected. During the Palaeozoic, from the Cambrian to Devonian, sedimentation occurred in basins with monotonous clayey sedimentation at depths of several hundreds, possibly even thousands of metres. For Mesozoic marine sedimentation only the shallowest environments could be determined. 4.3 Palaeoclimate The palaeoclimatic history of the Bohemian Massif region has been reconstructed on the basis of tbe composition of sediments. The data have been checked against the palaeomagnetic reconstructions of palaeo-poles and palaeo-equators for different stratigraphic units (mainly M c E 1 h i n n y 1975 and Morel --Irving 1978). Our model is based on the assumption that the climatic zonation of the Earth did not change essentially during the geological history. It is plausible that the zones were periodically expanded and compressed (e.g. the polar zone in glacial periods or subtropical arid zones). In our reconstruction we used the following criteria: 1. The presence of so-called palaeoclimatic indicators such as coal, cvaporitcs, bioherms, aggregate limestones, stromatolites; 2. The presence of desert sand and eolian dust (in the form of palaeoloess or as an admixture in limestones); 3. The existence of abundant alluvial fans of great thickness, which are typical of semiarid climate; 4. The presence of red beds. The primary red beds indicate alternation of the ti'opical hu'mid and tropical acid climate. 5. The type of weathering residues. Unfortunately, although very abundant in tbe Bohemian Massif, the interval of their formation might have been very long. Moreover, red lateritic and kaolinitic weathering products can develop within a broad range of climate. 6. The composition of clastic sediments, chiefly their mineral and chemical maturity. Mature sediments are supplied with detritus from the source areas where humid climate prevails. The effect of climate may be effaced by a rapid erosion induced by greater differences in the relief. A mixture of weathered and fresh unstable components is regarded as one of the proofs of semiarid climate. 7. The presence of deltaic sediments. Perennial streams and major deltas indicate humid climate. Table 4.3 _ Pulaenetimatic history of the Bohemian Massif. Palaeoclimate is re- H conslructed from the character of sediments and weathered materials f .»na-l.mw-MU«* of ihr llohmiinll Ma«»ľ Cur* t .....>!«• IWl ihnwi >b- variability »I Ihf ř>, > valu* (i*, mtfo •<■"»•' «nnralc« ar*> «(«üiaUy indit-atrd is utnut of |ř*r:n (/. Kukni, uriff.) í.7 rVvrlupiiii'til l<-%rl «pminl L.rnl <>n itn-ralrtituln.n ii| avftmgt mtn|H»*»icrin. im n« Iii w r'nmiwVrr. SfS (taliu of itakl* «ml woilnldr rfiiniKiiwnt- iu «aii.U lriuli«n N / (raln» «I umlátili? rock IrvjrniriiU tu febUportJ and K/1* (ratio of K-trW*l»nr» I« t'l*$»> ifamj Í7- Kukat, una l hie* el uriMnlilc rock* ore labelled N. The different couiiH>»iliim of hn«al Cambrian, Cretuccmift, iiml partly also Ordovirian rongtonisrales it* parliculiirt*. well wen friiiu iIn*- k-niph Tin p< n■« nlline quart* n um*il\ |M>!>iljvp|y ear* related uilli «lahle pebble*, with th>- exception iif fine-grained t-niitfl.im.-i.Hi^ uf the pnmliu Upper Girltouifcrouik, Cretaeeouft ami .luru^-ac. in which the •ten-euio^c ,>! ipuiriz rin.i>* tu mow limn !Hl"„. The maxima uf utrtlahh- rlu»U nrr in the I'roteroieoir, '-nlili, limine iVniw-Ciirbntiifcmii*, Trinnsie nnd lliinter-miry cnnglmnerulev S ii n d s t o n i ■■ The "If vi'liipnii'lil of sand-tmie* i* illustrated l>\ means nl ill..... |.,ii,uu. li i-. wlin-ii charnrtrri/e lbe mmpo*Jli»ii and iiiJiiurii\ uf thew sediments. It i* ihr S N rnlio r.il.....I nil -l.ililr .in.) iih-i.iI.|i mam. in (In' -mul Iniclimi 11n N / i.nin 'rutin of unstable grain* to feldspars .nul tin- K I' ratio rutin nf pnlns-num feldspars In phifriiielasr* , liven llmnuh Ih>■ pjirainelert chance wild the graui-*i/r of *nud«tone», they are §o elm nut eristic lhal ihev maintain the iimiliiiiiftil.il priipi-rint ■.( sandy rocks of tiki* individual CUmtkgraplUc unili. Aviriipe values ■if these parameter* were rmnpiiti'.l .m>l illii>ti-.it> ) i ur.ipli Fi|r. 4.7 fur nil • vstem*. Tlii> > \ mru! markedly varies. The inutunly im:re«*e5 from immature IVoteroioic »and*tone». in (In- I'alm i./nir I trivial Devonian rli-ii.- form rtu i*.M i'plion. In the h«rl> CnrlKiiiifcious mi abrupt change look plncr* .nul n lung ti'ilimi'iitulioii nf niimntun tnmUmne*. with low S V value* came into beiiuf, iii'itlnr break h.it been established between ||n> Triussir nnrl luranMC, ihta lime a Midden reversal In mature sandstones. Hie period i>f their mihi.....nation la«t<'d mílii ihe < Quaternary, when the S \ value drop* »urp rising It Ouiiiermiry is, here reprrMuiied by o minor set nf fluvial »ands , Similarly ii» villi runglo* i nemiř*, tin- iediiiH'iiljii\ liMnry uf smulslimct ran he divided uitit |wto(m Kedimeiileil wilh ihr only excfpluni nl ill'" hnse of the "fru^Mi nml mil*, in (lie Mmilrriuir \ hi'diuii'utnti.iu of lithii «4iinN Mas renewed, Hi^h iulm . nf \ "/. rutin imply » r.ipid *ediftnenl-iilinfi nf undecutupo«eiJ rock fragnteiilM hul nl«n. and in mow place* uiuinly. a link of l'-l,| |..uhii iiuiliTiiil. i.e. a lark nf irrimiloids dud l,,iia/niiid iii.-!:iui..f j.I. in Uip ■n-arce ftfvii. Vii-iirdnn? In tlii-v iii.ln.ii.u :i >nfficicnl uinointl nf frldsp.iiliii-ninlerird woidd hn\i' heeii nvnilnhh' Ute ii* in die lj»te Cnrhnnifernii*, hill I he . *- . * .i i • I * of llie Ijiinteninry 'how* iliai it i* imi of universal vididily and t,(J B*il» al noduUr liattstnnet U-lmijimj itrnáff»|.Kictly la llir Tfrb»lrlwko Milage Pbaln l.v 7. K .1i..1i VQ Triiiriifnlur mr^rriorilation of the neraitc nunpetition of •«jiii»l.-int»* uf individual •ytlero*, with tad nvmtxm f) — quartz, H — rarV Iravntenla, F — fshlnpar. Arrow* *hi>w ilwvlnpmcat Ifpinl lr,.in ..hi i.. v.nnipir [Pn.' \0tn*alc—C* mh ri nn—flnlovirijin— Devonian — M—panic—Tflimry) udimpnt* (7 Kulul, nrtfr) Mir- I jmrr I W-\ ihrumi ttl ihr" H.»n .n»- li*n Photo bv JT. Svi.bodk lli.it ill m t < l< riitr.l rKiMiiii ihn feldspar detritus itiii> l»L rnnnkcd l>> nnutln-r unstable dHritus. Thi» was obviously the cjwe in the Early CvlMiuift-ruii*. f'hc K, P turvc refiwrs the *\»U\ fivctl above In the IVoleroimic, Cambrian, • Jrdnvirinn And a large part of the Devonian and part of the Lower Carbon-ifertiu*. phitfioclasi-s preduminali' aver potasaiuin frldspnra, A breaJk trading 4.| I Ivj.i.jI (tr»|ilir|iUu thfilrt unlh uil«rvntiit|iin> «f mffi (Wi-nWk. Silurian!*, llarrunitiaii Uaiin, nunr KnrliUjD towards tlie predominance of potassium feldspars has been established in the Upper Carboniferous and the K/P values attain their (maximum throughout the Mesozoic. Granitoids and possibly orthogneisses are thought to be the main source of potassium feldspars. The N/Z curve, however, speaks for the interpretation of this high ratio in terms of the deficiency of feldspathic source rocks. According to K/P curve they began to be of greater extent as late as the Late Carboniferous. It is possible that the weathering processes also played a certain role because, as is well known, the unstable rock fragments (clayey shales, phyllites, aphanites, etc.) weather more readily than feldspars. During the Late Carboniferous and throughout the Mesozoic the weathering was doubtless of high intensity and consequently the enrichment with feldspar detritus may have occurred directly in the source area. The development of sandstone composition is also illustrated in the triangle in Fig. 4.9. Average sandstones from alt systems are plotted and the sequence is shown by an arrow. This curve also consists of two parts. The development from the Proterozoic to the Devonian, characterized by the increase in quartz and feldspar amounts to the detriment of rock fragments was interrupted at the beginning of the Early Carboniferous and the curve returns almost to the starting point. The development from the Early Carboniferous to the Mesozoic and Tertiary was analogous, with increasing amount of quartz-feldspar detritus. The development in the Mesozoic and Tertiary, however, is shifted considerably to the feldspar maximum. Clayey sediments Chemical composition of clayey sediments is a very sensitive indicator of sedimentary conditions. Therefore, in the Bohemian Massif the vertical variability of characteristic parameters has been studied (see Fig. 4.12). The curve of Si02/Al203 ratio should indicate the percentage of coarser fractions, and possibly the admixture of authigenic quartz. Except for a great anomaly in the Silurian, a moderate decrease in the values is observable from the Proterozoic to the Tertiary. Of primary importance is the AI203/Na20 ratio, which defines the chemical maturity of sediments. The value of 15 is usually considered to be the boundary between mature and immature claystones. The curve for the clayslones studied rises from very low values in the Proterozoic to the Ordovician, dropping after a "Silurian anomaly" to very low values. Immature claystones sedimented still in the Devonian in the Prague basin. In contrast, almost supermalure rocks sedimented in the Late Devonian of the Moravian region. The decrease of the values in the Early Carboniferous can be expected. Kukal (1980) explains it by a change in the relief configuration and a supply of a large amount of immature detritus on the one hand, and by the climatic change, on the other. From the Early Carboniferous, clayey sediments of progressive maturity appeared, the Al203/Na20 ratio attaining unusually high values in the Tertiary. The oscillations described by Skoček (1974) from the black shales red beds a 10 Fe203/FeO 4.t.'i Black claystoues (sliafes) and red beds in the Bohemian Mu>sif. Average contents of Carg are given lor hlnck Hayslones, and aver. Fe203/FeU ratios for red beds (7,. Kukat, limine Permo-Carboniferous, due to differences between the claystones of red and grey complexes, are not plotted on the curve. The curve of Na30. K20 ratio also reflects' the development of maturity. The value of the ratio decreases with the increase in chemical maturity. In Fig. 4.12 (third curve from the left) the curve shows more irregularities than the previous curve. In the Proterozoic the values approach to 1.0, they decrease to the Cambrian and Middle Ordovician, to rise abruptly from the Upper Ordovician to Silurian (in the Silurian there is the greatest anomaly in the entire sequence). Until the Devonian the values rapidly decrease to a minimum. The increase Inwards i hi' Karly ami l-ate Carboniferous is easy to explain (by a supply of immature material . (nil ihr high values of the fresh-v*atrr l.cuianaoinn are more difficult i"i interpret. Towards the marine Criiomnjiijui. Tumniait and Seiuminu i\i> vjiluri decrease again ami remain at a very low level up In tbr Trrtiury. Hie curse show* hrortdlv that after great oscillation* in lie- Palaeozoic, mature detritus was being supplied beginning wild ihe Late I Jirbinitferou* until the Tertiary, except for the fresh-water Cennmauian. The curve of Fe;Oi Fef > ratio (Fig. 4.12 curve on the right} displays great and irregular nsctllnlinnt. Tin- sysieim without a major amount r black clayey sediments possess values much lower than 1.0 (the lowest lias twen established for Upper Carboniferous, then I'roleiwoic, Irrdnvician and Silurian . The values of the Upper Carboniferous are near to I ,11 varying .ncurdliu: 1" whether thry belong to grey or red rumplexes. The relatively high value nf typical block graptolitic Silurinn shales i* siirpiisiiig ll i- plausible that I In* trisaleiu iron has been preserved in un-decomposed minerals and in the vulcunic admixture. Similarly a* in »ands rocks, two cycles ore distinguishable in the desclopment «f maturity of clayey sediment*. The trend Inward* malnrity ap|>ears strongly from iIn- Proteroroii' In the Middle Ordostiian, In lbe I pjwr < Irdovirian sediments ihe degree of maturity drcrrrtsc*. winch iiihn relied the beginning -uppl\ ff nulu.biur< mati'rinl. which .......ife«tcd itself -" markedly in i In Silurian. The Devonian clayey sedtlmm- ue <•>> the contrary, supermalun- lite decrease in the Karly Carboniferous could be expected and since that time rcmihn and oio-iaiiiltnu 1 lieuiiial imitunug id clayey sediments continued until lbe Terlinry. Black shales and red beds These two sedimentary asnocinlions represent an important iiutiiln-r of the sediuirnlnr\ Hoipicnc.- Their occurrences; are shown in Fig. 4.KL The curve 0\ average organic cnrlmn content is adjoined to llo- block sediment?. Ihe lundnineitlal condilioti for the fnnnulion nf block clayey shales is the lack of oxygen needed fur the oxidation of organic matter. In the I*rotcm/oÍc the inv |hiv erisbnienl in oxygen was universal and thus sediments riclier in organic substance* predominated. Black shiile* of I trdoviri.m age are >i product of anoxic sedimentation in semi-isolated basin* of medium depth. Tile pelagic area oilo which the Prague Imsin passed eastwards also must base been n - rin-isolated basin with oxygen-poor water. Anoxic sedimentation culminated by deposition of ihe Silurian graptolitic shales; on increased percentage of p-.ni.-indicate* that the water near ihe bottom had to be poisoned with hydrogen 22u ■ulpiiiiir. TIn- wulrr uf lln- iliversifn-d l,nwrr < .ur\\. pulintanct» lhal llu* pr«'»i'fil n\>|!i'ii rmilil iml oMiJi/i- lín- uhniv .Hiiiuiiil. In ltur liniiitc iVnim-IjtrlionifiTiiii-. iridii wntor Crn-itiiwiiitit unci TVrtiary lliť nmrv rnrrly t rrd ln-d* an- pl«l|rd in Fí>\ Vl'1 liiffflhi; wilh lh«' nvrriqtv vahie* uf liti- l-cJI, |«Yíl ralin. Tlirrr nrr twit intixiinn uf rcd b**d» in ihr HoiVn.iwi M.-ko«if: 111 llu- l^mrr * Jinilirijiii mnlim-iilnl •rdiím-nt* i>f S.idfk mul I hiUiii-l |i>řii<- Korninlionx .nul 111 (In- lilium- [Vrinu-i arlwniifťnMn Iipwit nul l pp«r Hed Furimitions). Minor oocurrence* have hven HptiBQrilMN) iti llu- lowof pari itf lín- • lirlov >< 1,111 kluliin.i I mi 111.1l1.11t . iti lín- |iur.ihr I pper i arhoiiifemtu ipart of Snddle-Smin Mrinlwr and in lín- Irias-it. uIhtc m-n fnnii* a iimliminlinn uf llu- I pper Hrd l-orumlinn. Mu1 rni l»irnriri uf :i|[ii"sl .JI rvd Ih-iIí ík r\phiinri| hy ihr Mippl> of rrd «1 jílln-riTiií iiijiltri.il froin llu* InudujiiM, whirh mí prndinvd by iulpiuůvc wi-ritlu-riiuí priM-i-i.^ri ní kJmlllilllť or llili-ritiť type. 227 Tllť genesis i>ľ igneous ľink» mul <-\» •< iallv their iiilrusinn into llie upper purl* *if ílu.....rlli's rrusl. lo dule exposed by erosion, or to tlie earth* surface ilselí, is ultimately associated with lite leclutnr Im-mrv of tin- llohnniiiu Massif. VI-ihmigh Stilic's eoneepiinn of tliť relationship between tecinuie* mid ningruntism MVlli. lo.lav Inn u'llľlIlHliľ III «ouu' aspects llllll Cllllltol Ih< brought llllll hiiril)UII> Willi i In- jmu. ij.li - ..I |.l ii. iľľi.mi.-. il in still valid and moil appropriate Fur llltr Hnheiniati Ma**if. Maginulilc* nrc divided into initial (icusv nrlmtd), essentially associated with the development of the subsiding sedimentary husiu; plutonii- nuk- iiuiin* led with the major nrngenir proci«sses; subsequent magmat it«>>. formou; idler the main folding ph.i-i during the failinu mil of fnliijui! events, unit final platform Minifiiiritit*-* iissori.ili'ij wild iJiť plalfonn lei'lonies. \ol..imr rock- are mainly represented h\ effusive forms, relic* of Mihvolcnuie bodic* may lw identifier! only in plans. Some philnnilc* mm l»r very r|om- in lime in stdisequr-ul mugmatites representmg magma rliainber* of higlu-r Iving. at present wont away volcanic loriiis, ivluiti lime been i-Nposed b\ ;nt\.uti ■-.I m'iimhii This probability is indiral ed. for example, bv pebbles of effusive and hv p,thy sj.nl rock type* in the Ijiwcr < Jirboinfi-rous of Mortivin. vihieli lire derived from the ■.mini- area ni lbe Icsko-iii'oiivskii vrchovina Highland. The effusive rocks uiro. In- volcanic derivative* of today exposed granitoid massifs (A t e I c I IJMíO. Dvorak 1 í M >:» SiiprríiiqMisilinii of volcanic and plutonic activity ha* been eviď-need unambiguously m the Krušnŕ hon urea by the relation of granite to the Teplice IMirphyry Ohyolile. S a t t r n n IIMii, In tlie li-ľloiiiľ lii-t.nv of the Itohi-iuiiiii Mas-if the Irilniiiiiiiagiurilir i-vih- annul ni viny s developed eompleltdy or nre diffii -nit In date Tills relates particularly, lo (In- tm liimorphosnt vnleaiiie ni id philonic rock* of the crystalline unit, in which the time of origin of primary, complexes and their uu'luuinrphisiu have not yet hei'ii reioĽiii/Til wild n-rluiuly, However, the stages of inugniiilir netivity in the Mnheuit.-iu Massif can lie well identified within the senpe of both < .i.lmi.um ••mgeny (initial iiiIchimii, philmiisiii subsequent vnlruiliMli and the Herev iiian mum u\ ibii-i- stages, loo . Only vidcniiism of ihe platform type did develop a* a ri-v erherntion of tin- \lpine nmgeny Ho- rebilionsliip between |ln- plutonii and v.dianie activity has not Lieeu determined univlueiriglv in most cases mid, therefore, the philonic and vulcanic events will !«• discussed si-piu uli-l v. 5.1 Plutonii* nmipU'xi's 'Ihe lollouiim phltwiic roinpb-ves baví- bílil If—Mim 1 lim L_.au i — IMHupltitouiles of uiiniiiiKi age in metamorphosed region* pľniohyj Srnhnja — |J,,»Dn*1** wcnted with (fldomian orogeny 5.2 Principal plutonic bodies of ihe Bohemian Massif (J. Klomfnsky, A. Dudek 1978) 1 — Bohemian Massif; 2 — pre-Hercynian plutonic rocks; 3 — Hercynian plutonic rocks; 4 — cover of the Bohemian Massif — plutonites associated with Hercynian orogeny — plutonites in Tertiary volcanic areas. 5.1.1 Metaplutonites of uncertain age In the metamorphic units of the Bohemian Massif there occur orthogneiss bodies which evidently or with great probability formed by metamorphism of granitoid plutonites. Complexes of advanced migmatites of "orthogneiss"; appearance are not classed with this group. This relates e.g. to most of the Gfôhl Gneisses of the Moldanubicum (they are a product of several genetic processes — Dudek - Matejov ská - Suk 1974, usually of recrystallization of gra-nulitic rocks — Matej ovs ká 1967), to the migmatized complexes of the Moravo-Silesicum (Keprnik "orthogneiss" — M í s a f I960), Desná Orthogneiss, and Bechyně Orthogneiss (F e d i u k 1977). These rocks are not normal strati-graphic members of metamorphosed tmits but they are associated with faults (indicated also by the presence of ultrabasites), which facilitated the supply of heat and the origin of ultrametamorphic processes. This concept based on the investigation of the Bechyně "orthogneiss" (F e d i u k 1977) can be also applied to the Blaník orthogneiss and possibly to pegmatoid orthogneiss near Přibyslav vice S of Čáslav. Bodies of these "orthogneiss" are located on ancient N—S and E—W trending faults. True orthogneisses are represented by lite so-called Krušné hory red orthogneisses. the Jizerské hory and Krkonoše o r t h o -gneisses of the West Sudetic crystalline complex and theBíteš Gneiss in the Moravicum. The red orthogneisses are metagranites, in places with preserved porphyrilic texture, in places with relics of contact metamorphism in the mantle (Scheumann 1932). They occur in an anliform of E—W strike, which trends diagonally to the younger structural direction of the Krušné hory region. They originated most probably during Upper Proterozoic folding, but they are somewhat older than the Cadomian granites. The orthogneisses of the Jizerské hory and Krkono.še, also associated with the Cadomian orogeny, were probably partly produced by regional metamorphism of the Rumburk granite. Their genesis, however, has not been clarified convincingly, some authors ascribe Caledonian age to their metamorphism. These orthogneisses are also located in an E—W trending anti-form. Interpretation of the orthogneisses in the Orlické hory-Klodzko Dome as metagranitoids is questionable. The Bites Orthogneiss (tnuscovite biotite metagraniloid with augen structure) is the most significant member of the Moravicum sequence and a component of both the Dyje and Svratka Domes. Although the course of the body is highly diversified, it clearly follows a major NNE—SSYV fault, which extends from the Danube up to the northern end of the Svratka dome over a length of almost 130 km. The Bites Orthogneiss is prevalently thought to have been intruded between the Vranov-Olešnice Group and the Bílý potok Group (Mísa ř 1961, Dudek 1962, Jaroš - M í s a ř 1976). With regard to the stratigraphic position of these units, the orthogneiss was dated as Cadotaian with great probability, but the recent radiometric Bb/Sr measurement lias given an age of almost 800 Ma (Scharber t 1977). Common features of the metaplutonites of the Bohemian Massif crystalline units are their connection with ancient structural E—W and N—S directions, a prominent granitic chemistry with a little increased sodium content, and pronounced leucocratic character of all types. 5.1.2 Plutonites associated with Cadomian orogeny The existence of extensive Cadomian plutonism in the Bohemian Massif was controversial for a long time because there is no direct geological evidence for the age of most of the bodies, and the time of their origin can be inferred only froim broad circumstantial evidence. However, recent detailed research and radiometric measurements have brought unambiguous proofs of at least Ch-domian age for a number of bodies. According to assembled data and spatial analysis (Dudek - Melková 1975, K lomínský - Dudek 1978). the Cadomian plutonites are mostly confined to the structural units characterized by lower-grade metamorphism, absence of Hercynian plutonism, a smaller thickness of the crust (Beránek - Dudek 1972, Beránek et al. 1975) and positive gravity anomalies. The Cadomian plutonites are located 'mainly in the Teplá-Barrandian block, the Železné bory region, the West Sudetic region, and the southern part of the Moravo-Silesian region. The following massifs can be justifiably considered j»s Cadomian units (Fig. 5.2): a) some massifs connected with the West Bohemian fault zone b) massifs in the Teplá anliclinoriutn and volcanic zones of the Teplá-Barrandian block c) some massifs in lbe Železné hory region d) the Lusatian massif and some minor massifs of the Orlické hory Mts. in the West Sudetcs v) Brno pluton and other bodies in the basement of the Carpathian foredeep and flysch nappes. a) Basic bodies along the West Bohemian fault zone constitute a separate group of Cadomian magmatites. From NXWT to SSE there occur minor basic massifs near Teplá. Mulěnín, Nařctín and the large Poběžovice and Kdyní massif:;. The massifs arc connected with volcanic zones of the Barrandian Upper Proterozoic and the largest volcano-plulonic basic complexes — the Mariánské Lázně and Kdyně massifs — are emplaeed at the intersection of the deep Ohře and Central Bohemian fault zones with the West Bohemian fault zone. The Mariánské Lain-' complex consists almost exclusively of ineta-volcuuie-i, whereas volcano-plulonic and plutonic complexes arc represented in the more southerly massifs. The Mutcnin and Nařetín bodies show a ring structure (V c j n a r 1975, Tonika 1978) and were intruded only aflcr the main phase of Cado'niian regional melamorphisiu. The Poběžovice massif also displays a complex zonal structure. All the massifs contain a broad pattern of basic rocks, involving olivine gabbrouoriles, gabhros. olivine gabbros. hornblende gubbros to dioriles. 1 j i the zone of the Bohemian Quartz Lode there are also small ultiabasitc bodies (V c j n a r 1960b) which can be ranged to the Cadomian synorogenic plutonism only with reservation, as they may be older. The group of Cadomian granitoids comprises tbe Leslkov massif (biotite granodiorile to quartz diorile), the Hanov massif (granite, granodiorite) and ihe Mračnice-Jeníkovice massif XW of Domažlice (nutscovite-biotite granite). Although these bodies are connected with the West Bohemian fault zone, their intrusive form is markedly influenced by ihe structure of ihe Proterozoic: the bodies are greatly elongated in SW—NE direction, parallel to the trend of the Teplá antielinorkím. The Cadomian age of these bodies is very probable but has not been as yet evidenced radiometrically. Some rock types of the Bor massif are demonstrably of Cadomian provenience (55b Ma), and the Slod massif as well (510—530 Ma, Smejkal - V e j n a r 1965). The latter body is situated a little off the West Bohemian fault zone and is composed of hornblende-biotitc quartz diorite and biolite-leucogranite (Tonika - V c j n a r 1966). b) In the north-western part of the Teplá-Barrandian block (showing positive gravity anomalies) there are granodiorite bodies near Polom and granitoid bodies, most of lliem buried by platform sediments. Minor basic bodies are closely related to the Proterozoic volcanic zones. Their structure is controlled by the structure of Proterozoic complexes and thus most massifs are elongated in SW—NE up to W— E direction (Chaloupský in Málko v sky et al. 1974). The Cado'mian age has not been evidenced by radiometric measurements for the large Louny massif formed of tbe Tis biotite granite, but it has been conclusively proved for tbe highly variable Neratovice massif (535—573 Ma) and the little massif near Bechlm built up of granite and pyroxene diorite (550 Ma, C h á b 1975). c) I n the basement of i h c Cretaceous B asin the structural directions indicated by the shape of Cadomian plutons turn from SW—NE to W—E and even XW—SE; the latter trend is well seen on the structural position of the Chvaletice granite massif in the Železné hory Hills and of the gahbro body near Týnec nad Labem. The Železné hory fault and its intersection with lbe Přibyslav fault zone of N — S strike was the site of tbe intrusion of Vserarlov granite of the Železné bory pluton (V a c h t 1 1975) and of the complex gabbro-peridotito Ransko massif (M í s a ř et al. 1974), composed of scrpentinized dunite, troctolile. olivine gabbro, gahbro, hornblende gabbro and anorlbosile, dl The most significant Cadomian pinion in the West Sudetes is the Lu-s a t. i a n m a s s i f , the major part of which is situated outside Bohemia. It is formed of a number of rock types of Cadomian age and additionally also of younger llercynian "Stoekgranits1". The complex comprises biotite granodiorite (Lusatian granodiorite), muscovite-biotite (hybrid) granodiorite, and the Rumburk granite, which grades into the Jizerské hory oitbogneiss in tbe E. The Cadomian age of the predominant part of the massif was proved for both the Rumburk granite (rinds of pebbles in the Ordovician — Chaloupský 1962) and the Lusatian granodiorite (radiometric age of 560—570 Ma, II a a k e 1973). In the Orlické hory-Klodzko Dome, the pre-I lercynian plutonites are probably the Nový Hrádek albite-granodiorite massif, gabbro body at Špičák, and grano-dioriles to tonalites on the southern and eastern sides of the Dome, tn the Zábřeh Croup and the Staré Město mica-schists belt. The age of these rocks is uncertain; they have been regarded as Caledonian or early Hercynian intrusives. e) The largest Cadomian body in the study area is the Brno plutou (550-600 Ma, Dudek - Melková 1975; 584 Ma, U-Ph, van Bree-m e n et al. 1982). Besides the outcrops in the Brno massif itself and in the Dvje and Svratka massifs, it extends far eastwards in the basement of the foredeep and flysch nappes. Minor bodies occurring in the zone of the Upper Morava depression and north of it probably are connected with the Brno plutou at depth under the crystalline mantle. The plutou consists of a number of petro-graphical types ranging from basic to acid rocks (5 t e 1 c 1 1963, Slelcl et al. 1973. 1976). Acid leucogranites to leucogranodiorites are more frequent in the granite massif beneath the Upper Morava depression Mi of Prostějov (age of 470-540 Ma, X o m c o v á 1969). In the fault zone of the Upper Morava depression, gabbro with ullramafic pyroxenite and peridotite layers has been located in the Vlkoš-1 borehole and gabbronorite in borings at Rusava. In the Brno plutou, besides the basic zone of the Brno massif, diori.le has been identified in the Mušov body and in a small massif near Dražovice. The biotite-hornblende granodiorite to lonalile forming an extensive buried body of E—\Y trend in the Ždánický les area is of a somewhat more acid nature. A substantially larger area is occupied by the biotite-hornblende leucotonaliles of the Hlansko and Slavkov types, biotile leucogranodiorites, and light-coloured granite building up the southerly part ol the plutou at the Czechoslovak/Austrian boundary. The biotite leucogranite of a minor massif near Lulmá is of a special type. The distribution of individual types has been studied on the basis of numerous borings and geophysical data (Dudek 1980). It is evident that the E—W and 'X—S directions played important role in the localization of intrusions and limitation of the bodies. The NYV—SE strikes (the zone of Upper Morava depression, structures of Xesvačilka and Yranovice troughs) are later and disturb the plulon structure. Besides a special structural geological position, the Cadomian plutonites show other characteristic features. The analysis of chemistry of the whole series and especially its comparison with chemistry of the Hercynian plutonites have revealed a sodium flavour of the Cadomian granitoids and some basic bodies (I) u -dek - K 1 o in í n s k ý 1978), and a distinct lcucocrnlic nature of granodioriic and tonalite types, in particular (Dudek 1977. 1980). 5.1. 3 Hercynian plutonism and its relation to tectonics The Hercynian plutonites are the most widespread magmatites in the Bohemian Massif. They make up large pinions in its nucleus and marginal parts, consolidating and cementing this structural unit, which after the Hercynian orogeny had assumed a markedly stabilized character. The occurrence of superficial plutonic bodies of Hercynian age is shown in Fig, 5.2; at no great depth, however, they are of a much greater extent, underlying the crystalline complex over vast areas, especially in the Krušné hory Mts. (Tischendorf et al. 1965) and in the Moldanubicum of southern Bohemia (Dudek - Suk 1965, Moulova - Suk 1970). According to radiometric (mainly K/Ar) age data the Hercynian granitoids have been divided into three groups (Bernard - Klomin-s k ý 1975). Tonalites and related rocks are the oldest (about 360 million years). The durbachitic rocks (age of about 360—400 million years) also belong in this group. Granites of the marginal parts of the massif are younger (about 300 million years) and the group of tin-bearing granites of the Krušné hory Mts. are the youngest (about 260 million years). On the basis of mineral and chemical composition, geological habit, spatial distribution and structural position, the following groups of Hercynian plutonites can be differentiated in the Bohemian Massif (Bernard - Dudek 1967, Saltran - Klomínský 1970, Klomínský-Dudek 1978): a) group of granites b) group of granodioriles c) group of tonalites d) group of dioriles to gabbros e) group of durbachites f) alkaline plutonites. a) Granites, mainly muscovite-biotite or biotite granite types, very often porphyritic, are the most widespread rocks of the Bohemian Massif. They occur chiefly in the Krušné hory and Šumava mountain ranges and in the Českomoravská vrchovina Highland. They were intruded predominantly from the late Viséan to early Westphalian. A characteristic member of the granite series is the group of younger aulometamorphosed granites enriched in Na, Li and other elements, with which the vein and greisen Sn-W mineralization is associated. Tin-bearing granites had developed mainly in the Krušné hory block (the Krušné hory and Slavkovský les Mts.); in the areas of the Sumava and Českomoravská vrchovina only initial stages of autometamorphiSm are present. The muscovite-biotite granites penetrate from the E into the northern part of the Central Bohemian Pluton, forming there the so-called fiíčany type. Similar rocks underlie the Permo-Carboniferous of Český Brod and are presumed to extend as far as Kolín in the basement of the Kutná Hora crystalline complex tV7 (Orel 1975). llercyniari granitoids of a small extent oceur in the northern part of the Železné hory pluton, form several bodies beneath the Cretaceous and particularly the large Krkonoše-Jizerské hory pluton (Klomínský 1969). They also constitute the Žulová massif and the small Šumperk 'massif in the Moravo-Silesian region. b) The group of g r a n o d i o r i t e s synchronous with granites is much smaller. They are predominantly biotitic, with a small amount of hornblende in some varieties. They usually occur together with granites, building separate massifs (minor stocks) only in the Teplá-Barrandian block, such as the Čistá massif (K loraínský 1963) and a major part of the Kladruby massif (N e -u žilová - V e j n a r 1966). In the Central Bohemian Pluton they are represented by the Požáry type, and by the Weinsberg and Freistadt types in the Moldanubicum. There they are somewhat older and 'more intensely affected by tectonic events than the muscovite-bi.otite granites. They occur mainly in Austria whence they extend to the Šumava Mls. and Novohradské hory Hills on the Bohemian territory. Small massifs ascending from beneath the Cretaceous near Litice nad Orlicí and Rychnov nad Kněžnou also show gronodioritic composition (D o m e v k a - O p 1 e I a I 1974). c) The group denoted as "tonalite group'" includes horn-blende-biotile quartz diorites, tonalites to granodiorites. They are characterized by numerous inclusions of more basic diorile and gabbro, which in places have a size of small massifs and in places form long stripes. Tonalites are accompanied by a varied swarm of dykes and b\r AtHmineralization (S a 11 r a n - Klomínský 1970). They belong to the older group of Hercynian plutonitcs. which e.g. Chaloupský (1975) dates as Cadomian. Their most typical development has been recognized in the Central Bohemian Pluton, mainly in its northwestern part (Sázava and related types). The large part of the Železné hory pluton and a conjoined massif beneath the Cretaceous sediments are also classed with this group (Chaloupský in M alko v ský el al. 1974). Small lo-nalile stocks occur in the Teplá-Barrandian block (Štčnovice and Bohutin stocks), and others have been found by mine workings on fault structures parallel to the north-western margin of the Central Bohemian Pluton (V 1 a í í m s k ý 1973). d) The mafic rocks usually forin small bodies enclosed in granitoids of the tonalite group, such as basic bodies in the Central Bohemian Pluton between Březnice and Něcín in the Příbram area, and between Pecerady and Velké Popovice in the Sázava area. Enclosures of similar character are also abundant in the Železné hory pluton. Isolated minor bodies of mafic rocks are known from the neighbourhood of the Čistá-Jesenice massif (e.g. melagabbro at Petrovice; — Tlrych et al. 1976). The age of these rocks has not been recognized with certainty (melagabbro — 380 million years). e) Hercynian plutonitcs of a peculiar type are the so-called d u r b a e h i - tes, which are melanocratic hornblende-biotite- or pyroxene-bio tile granites to monzodioriles. They are characterized by a high biotite content, and a considerable amount of potassium, iron and magnesium. Their composition resembles that of lamprophyres. Durbachites occur in two zones of NNE—SSW direction: the zone at the eastern margin of the Central Bohetaiian Pluton is distinguished by the Čertovo břemeno and Tábor (syenite) bodies, a number of small bodies in the Písek and Vodňany area and the massif of Knížecí stolec in the Šumava Mis. The second zone follows the eastern branch of the Moldanubicum and consists of the Třebíč and Jihlava massifs in Moravia and the Austrian Raslenberg massif, in particular. Durbachites are often foliated, the K-feldspar phenocrysts in the marginal parts of the massifs are distinctly oriented (e.g. Bubeníček 1968). The Moldanubicum is the only unit of the Bo-hemiani Massif where they occur. They are not found among the Cadomian plutonitcs either. f) A short mention should be made of alkaline Hercynian pluto n i. t e s , which were established in the Čistá massif (alkaline metasomatites — Klomínský 1961, Kopecký L. el al. 1970) and in the form of xenoliths in pipe breccia at Košťál SW of Litoměrire in the České slředohoří Mts. (Kopeck ý L . 1966). In the Bohemian Massif Hercynian plulons occur in other areas than Cadomian plutons and their spatial distribution is governed by a different structural plan. Large massifs are located in areas of negative gravity anomalies (Fig. 2.36) — the Krušné hory and Moldanubian blocks and part of the West Sudetie block. In the areas of positive gravity anomalies Hercynian granitoids occur rarely in the form of minor stocks (e.g. "Stockgranit" in the Lusatian massif, the Štčnovice, Čistá, Bohutin and Babylon massifs in the Teplá-Barrandian block) and they are probably absent in the Brno pluton area. The axial part of the Hercynian orogen is characterized by a predominant presence of tonalite plutons of Central Bohemia and Železné hory. The Central Bohemian Pluton was intruded along the Central Bohemian suture of SW—NE trend, at the boundary between the Moldanubicum and Teplá-Barrandian block. Basaltoid and acid 'magmas ascended along this ancient fault as early as the Late Proterozoic (Jílové Zone): the tonalite rock types of the Central Bohemian Pluton are most abundant in the proximity of ancient basic volcanic complexes. The overall composition of the Central Bohemian Pluton is of tholeiitic character (P a 1 i v c o v á 1965, S t e i n o c h e r 1969, Vejnar 1973), which points to the genesis of magmas very deep in the crust, possibly in the mantle, and to a great depth extent of the Central Bohemian suture. In the marginal parts of the Massif, in areas more remote from the axis of the Hercynian orogen, plutons of more acid granodiorite and granite were emplaced, the composition of which was approaching the eutectie granite (Klomínský - Dudek 1978). Intrusions 'mainlv follow NE—SW and NW-SE 55 M^ImmImm Píu.^. i^jutt in Kr-iiiu. oř tru- £i*fnm t.p*, M^rtlnMr TrUja 6.7 Tnunn-un* •JUnp»r* .n Jmiil* vttn. W«.Utm »lf.|» M Jwnník «*u oí t1^-- llw Čeikoiiinnv.k* irivlomm. HiťU......I ItwlO ST J. MIIKMl &>ullwm ...nrdin ..f itvr C«nlr*l Bohemian Pluton Piloto by J. 5vi4**U .Y6 IVii-rili* incl»nii-n« in quarlr dmrtUt (tniuibUf) crt" «1» Siinvi (yiw. Onlral Roíi*niim» Plutím. .|nntr> =1 TVIrtln in li* Stutnvonvrr valley Phuli* by J- Slobodu 5J "DlvH kunany" nr.ir Pclroikn in tlie Krkurwtr Mlí VtWhcrtrd granil( of Uw Krkrt-unie-IucmLí hory ptnlan Photo by X Svobnd* trends, more rarely the N—S, NNE—SSW and E—W strikes. In the Krušné hory and the Českomoravská vrchovina the massifs intruded into anticlinorial structures bounded in the SE (E) by deep faults (Ohře and Přibyslav fault zones); in the Sumava they are located directly on fault structures. The intrusions of durbachites followed a separate structural plan; they form two zones of SSW—NNE direction. The fabric of durbachite is markedly adapted to the structure of the mantle, at least in near-contact parts (Bubeníček 1968, Beneš 1971); they are evidently older than other Hercynian types (most probably late synkinematic). The shapes of granite plutons are poorly known. The analysis of geological and geophysical data indicates that the Krušné hory massifs are most likely batholiths extending or widening to great depths (Polanský 1977). In contrast, the Krkonoše 'massif is of a thick-slab form, rooted mushroom-like at the southern side of the body (K1 o m í n s k ý 1969). The central massif of the Českomoravská vrchovina also shows rather a slabby shape (Suk - Weiss 1976). The areas of supply characterized by prominent negative anomalies occurred mainly in the southern part of the massif and in the neighbourhood of Melechov and Ceřínek. Granite massifs obviously penetrated very near to the surface so that they disrupted their mantle in places. Such a contact is known chiefly from the northern part of the central massif (Krupička 1968). Young tin-bearing granites of the Krušné hory penetrated close to the surface, locally even into the effusive complex of Teplice porphyry; the Krkonoše massif is also a subsurface intrusion. The character of the inner structure of plutons is universally adapted to the structure of the mantle (Beneš 1971). 5.1.4 Neoidic plutonites Plutonites of Alpine age are extremely scarce in the Bohemian Massif. We can range to them the sub volcanic bodies of alkaline plutonites in centres of volcanic activity in the Doupovské hory area (theralite and essexite at the site of central vent) and small stocks and dykes of essexite and sodalite syenite around Roztoky and Březno in the České středohoří Mts. These two occurrences are located at the crossing of major tectonic lines — the Ohře fault zone and the Labe line, or of the former with the Jáchymov fault zone. 5.2 Volcanic complexes 5.2.1 Metavolcanites of uncertain age in the crystalline areas In the parts of the Bohemian Massif built up of crystalline rock complexes, the metamorphosed series contain an abundance of rocks formed by meta-morphism of acid and basic volcanites. Some of the metamor-phic complexes can be parallelized reliably enough with the Upper Proterozoic of the Barrandian (e.g. the Zábřeh Group, Letovice crystalline complex, Nové Město phyllites) or with the Palaeozoic (Železný Brod crystalline complex), but the stratigraphic assignment of the great majority of crystalline complexes is unknown. Their sedimentation, volcanism and probably also mela'morphism occurred already before the Cadomian orogeny (Zoubek 1976, and many other authors). Metavolcanites arc most widely distributed in the Moldanubicum. They are initial volcanites, which developed in the sedimentary area at the time of its dissection into minor basins, when intensive basic and acid volcanism accompanied sedimentation of the Moldanubian Varied Group of diverse fades development. Volcanism began with basic (amphibolite) to ultrabasic (ser-pentinite) types and continued with a common ascent of basic and acid rhyolitie rocks (granulites) and ended again with basic rocks types (Zoubek 1976, Pletánek-Suk 1976). Metavolcanites occur in all three zones of the Varied Group of the Moldanubicu'm; amphibolites are present in the western zone between Klatovy and Český .Šternberk, amphibolites together with the granulite formation of a large extent are developed in the central zone between černá and Jihlava, and granuliles with amphibolites in the eastern zone in Moravia. Granuliles are most likely equivalents of rhyolite effusions and chiefly of tuffs and tuffites (Zoubek 1948, Matějovská 1967). The relatively little differentiated amphibolite series is divisible into two groups, which differ slightly in chemistry: amphibolites associated with the granulite formation, and amphibolites of the other parts of the Varied Group (Suk 1971). In the thoroughly studied parts of the Moravian Moldanubicum and in the Strážek Moldanubicum they correspond lo tholeiitic basalt and alkali-calcic basalt (K 1 á -p o v á 1977, Sichtařová 1977). These two different trends are obviously also typical of the other parts of the Moldanubicum. Metamorphosed basaltic volcanites are abundant in the Moravicum and Si-lesi.cum (in the Mica-schist zone, Vranov-Olešnice Group, Staré Město mica-schist zone and other units). Their association with the varied units suggest that they bad originated under similar tectonic regimes as amphibolites in the Varied Group of the Moldanubicum. In the pre-Proterozoic formation of the remaining crystalline units the meta-volcanites are much scarcer: they occur in a small amount in the Krušné hory Crystalline. In the West Sudetic Crystalline they are part of Upper Proterozoic complexes. 5.2.2 Volcanism connected with the Cadomian orogeny (Upper Proterozoic—Cambrian) Unusually abundant occurrences of volcanites of the Cadomian cycle come from the period of Upper Proterozoic sedimentation of the series developed typically chiefly in the Barrandian and in areas of metamorphosed Proterozoic complexes (the Český les. the Krušné hory, crystalline complexes of Krkonoše, Orlické hory and Letovice, Zábřeh Group, and parts of the Hrubý Jeseník crystalline complex). In the Teplá-Barrandian region volcanic rocks occur in five zones, which differ in composition of the rocks and overall variability (Fiala 1971b, 1977). The zones striking SW-NE are parallel to the fold structure of the Proterozoic, and are compared by some authors with recent island arcs. The rocks are typical submarine effusions and extrusions represented by lava flows, luffs, tuffiles, granulates and granulate breccias. The chemistry of volcanites and of the volcanic association differs from one zone to another (Fiala 1971b, 1977); it is predominantly tholeiitic in i\\V and in the SE part it shows a discrete tendencv to alkali-calcic tvpes. The zones are the following: a) Central volcanic zone, 150 km long, extends between Kralupy n. Vltavou and Domažlice, ft contains mainly metabasalls of tholeiite-basalt chemistry, spilites and sporadic keratophyres. Volcanic rocks arc mostly affected by secondary alterations. b) Zone of potassium spilitc forms a belt of Slalina-Pavlíkov NW of the principal zone. c) The Stribro-Plasy zone displays a strong differentiation frotai ultrabasic types through rnetabasalts, keratophyre-spilites to quartz albilophyres (albite rhyolit.es). d) The Mariánské Lázně metabasite cotaplex consists of rnetabasalts associated with abundant ultrabasites, in places with gabbroic bodies (the whole set of rocks shows the character of an ophiolite complex, corresponding to it in metamorphism, too). e) Southern volcanic zone stretches between Klatovy and Zbraslav and is formed of a typical melabasalt-spilite-keratophyre formation. The amount of acid volcanites increases to the NE. f) Jílové zone containing abundant andesite and rhyolite in addition to basalt types. The volcanic facies in the north-eastern parts of zone e) and in zone f) suggest that in this part the thickness of the crust in the Cadomian geosyncline was greater (F i a 1 a 1977), and of the continental type. In the Železné hory Hills the Proterozoic volcanites of the Prospililic Group are of a more pronounced spilitic character than the allied rocks of the central Barrandian zone. The Postspilitic Group contains mainly intermediate and acid volcanics, which grade upwards into more alkaline types (Fiala 1971b). The Cambrian volcanism is of a typical subsequent (in the sense of Stille), and subaerial character. The earlier infrequent extrusions have been established in the Cambrian of Brdy and Rožmitál p. TiVmšínem, and they belong lo the Lower Cambrian (Havlíček 1971). Their composition corresponds to that of andesite and rhyolite. In the linear Křivoklát-Rokycany zone, which is the main volcanic area. Waldhausrová (1971) differentiated four eruption phases: 1. palaeodacites, 2. palaeo-andesiles, 3. pophyritic palaeo-dacites and palaeorhyodacites and 4. the youngest palaeorhyolitcs. In the more easterly Strašíce zone, palaeo-andesites are accompanied by rocks of basalt chemistry. The volcanism is predominantly of Late Cambrian age but it might have continued until the Ordovician. Vidal et al. (1975), for example, give an age of 475 million years. The Cambrian subsequent volcanites have not been found outside the Barrandian area, bul Proterozoic volcanic rocks are widely distributed there. In the West Sudetic region basalt volcanism was active in all Upper Proterozoic series. Metabasalts arc most abundant in the Lesczyniec unit in Poland, at the eastern margin of the Krkonoše-Jizerské hory anticlinorium, being appreciably scarcur i;i the Krkonoše and Jested crystalline areas. Proterozoic metavolcanites of the Orlické hory Mts. are prevalently basic submarine initial volcanic rocks following the zones of NNW—SSE direction; acidic types are very subordinate. In chemistry, these basites correspond most probably to abyssal tholeiites (Domečka-Opletal, 1981) or tholeiite-basalts and are thus closely related to the Proterozoic volcanites of the Barrandian. Upper Proterozoic volcanism is markedly distributed at the eastern margin of the Bohemian Massif, especially in the Zábřeh Group and the Letovice crystalline complex. Volcanics of metabasalt composition predominate, being locally associted with ultrabasites and gabbros (Letovice, the Svitavy area); acid types are very rare or absent altogether. In general, Upper Proterozoic volcanism was centred to highly mobile sedimentary areas. It was of submarine, taiainly effusive and extrusive type, and in places it mav have even produced shallow intrusions. The rocks were chiefly tholeiitic basalts, more or less spilitized in some parts. Along the margins of major crustal blocks, the faults acting as supply channels reached to considerable depths and the volcanic associations are represented by basic-ultrabasic types ?47 I Marians** iJtznr complex, Letovice crystalline complex). Inside (lie blocks, ultrobasjc diffcrculüüc« occur s|w radically ami basalts are associated with mure «cid ly|w* — nudesiles to alhile rhyohlev 5.9 Spilile piuW-Uvas. Abandon«! quarry in lh« Ctlava-fiv*r mil** naar Kotarov («a»l of I'l/eA). Upfwr Pnitrroaolc of lht> Barrandian Photo by J. StoIi ■ 11 5.2.3 Yoliuiii-ni rt-lalni lo lite development Iff l.llWtT t'.ll.K'irr'l.H' -Ctljltlrll luf V ItrCB» of A partial i-rulonizaliun of the Bohemian Massif after the Cadmnian orogeny wnt reflected in the Uorraiidinn area iu the development of typical Lippe» Cambrian subsequent volcanism. I n its rlmiwt plin«e ihr incrcas-inif consolidation induced transition lo final volcnnism; tin* is mdicuti-d mmiih l>y the occurrence nf more busic ha*nltic rorks with slightly alkaline tendency in the \oungest Tncnibers of the Strniice sonc. Tin» devclupnniit. Iiinvcver. sn-brought in end by n new mobilixalion of the crust, by the subsidence of the (Irilnviciau sedimentary area in the IWr.indi.m und Wi»*t Sudetic region*. Sumc 5.1(1 Spilile of dir .rmr.il tan» in Barrmndiaa L'npsr Prou-ramie. KMvokUt, Cfit-v« Plioto by J- Rubin parts oí tlie Moravo-Silesian zone were also mobilized, but much later, at the beginning of lbe Devonian. Synchronously with the subsidence of the central pari of the Barrandian, deep channels of supply were opened and submarine basalt volcanism had developed intensely (Fiala J971a.b). In the earliest phases the effusive rocks were of andcsitc-basaltic type, but on account of proceeding subsidence the EIVE—YVSW supplying faults had reached to increasing depths and the voicanites assumed basaltic character of steadily increasing basicity. Eruptions, mostly fissu;-e eruptions, produced large amounts of lavals and tuff*, and the majority of effusives are aiitometamorphoscd (diabases). The evolution towards more basic types continued in the Late Ordovician and Silurian, when even olivine basalts and ultrabasites appeared. The Silurian volcanism, which was developing especially during the lale Wenlockian and early Budňanian (Fiala 1970) is more basic and poorer in potassium than the Ordovician volcanism, and it was most intensive in the north-western limb of the Barrandian, between Loděnice and Beroun. Basic volcanics arc spilitized and metasomatized at the import of sodium (es-sexitic and teschenitic diabases, sporadically up to egirine-augite syenites — Fiala 1971b). Dykes of ullrabasic rocks, picrites and peridotites, are very characteristic. T h e Devonian volcanism is limited to a small area west of Prague. It is represented by submarine effusions of very basic vitric diabase, accompanied by tuffs and tuff i tes (F i a 1 a 1970). Occurrences of Lower Palaeozoic volcanism are connected with deep WSW— ENE trending faults, which were channels of supply of basic magma from deep parts of the crusl. Volcanic centres and areas of the 'most intensive volcanic activity moved during the Cambrian to Devonian gradually to the ENE (Rohlich - Sťo víčková 1968) simultaneously with the increasing alkalinity of basaltoid rocks (F i a 1 a 1971a,b). Of great importance for the recognition of the structure of deeper crustal layers are the finds of diverse types of inclusions in Ordovician diabases W and NW of Beroun. Gabbro was identified at Krušná hora near Hudlice, altered ultrabasites and fragments of feldspars near Chyňava and Kařízek, and granitoid pebbles (probably fragments of Cambrian conglomerates) NE of Hořovice, S of Otmíče. These finds indicate that major complexes of older magmatic rocks may exist in the basement of the Barrandian Palaeozoic (Fiala 1971b). In the Krkonošc-Jizerské hory region the Early Palaeozoic volcanites are distributed randomly; they arc more frequent only in the Železný Brod crystalline area and in the Rvchory Hills at the eastern margin of the Krkonoše-Jizerské hory dome. Volcanites of basaltic composition predominate in both these areas. In the former, volcanic activity followed the E—W structural trend and began in the Ordovician to develop with greater intensity in the Silurian; its prjduets appear particularly above the graphitic phyllites (F e d i u k 1962). Tin earli.cv volcanic rocks of the Silurian complex have basaltoid composition, which changed abruptly in the later phase, the main products being keratophyres and quartz keratophyres (albitc trachytes and rhyolit.es). In the tipper part of the complex the succession of basic and acid types repeals once more, and the differential ion sporadically progressed up to ultramafic types (F e d i u k 1962). The volcanic complex is metamorphosed in grcenschist facies. Isolated peridotitc dykes NW of Železný Brod display some chemical relations to the Silurian volcanism but they arc somewhat later than the metamorphie foliation of the neighbouring sediments (F e d i u k 1971b). They seem to be in s'.nilar time relation to basaltoid volcanism as the intrusions in western Bohemia to the Upper Proterozoic volcanism. In the Rvchory Hills the differentiation of the volcanic complex is substantially lower than in the Železný Brod area; the main rocks are basaltoid types, their tuffs and tuffites; the differentiates of higher acidity are lacking (F e d i u k 1958). Metamorphism is of a slightly higher grade than in the Železný Brod crystalline complex. Metavolcanites in the Krkonoše and Jested crystalline complexes are of the same type but of a much smaller extent. Devonian volcanism of basaltic character is represented only in the north-wcslern part, of the Ještědské pohoří Mts. In the Moravo-Silesian region the regeneration of the sedimentary area and the onset of a new geosynclinttl regime began only at the beginning of the Devonian. The transgressive coarser-clastic sediments are followed by finegrained pelilic-psammilic scdjmcntalion, accompanied by intensive volcanic activity. The volcanic products are mainly basic lavas (pillow-lavas are frequent), tuffs and tuffites, and in the Middle Devonian acid volcanites, keratophyres and quartz keratophyres increased in amount. The whole rock set shows prominent features of initial spilitc-keratophyre volcanism and low-grade metamorphism. The volcanic rocks occur in the Vrbno Group and stratigraphically equivalent units, in the Sternberk-Horní Benešov zone and subordinated/ in the Konice-Mladec Devonian. The effusive volcanism had a character of linear fissure eruptions and aligned volcanic cenlres (the strike of fissures SSW—NNE). Acid volcanic rocks were confined to separate centres located at the margins of elevation structures (B a r t h 1966). The Jeseník and Soboli'n massifs can be assigned to the volcanism of the Vrbno Group as subvolcanic bodies (Pouba 1962). The localization and development of Devonian initial volcanism suggest that the main supply channels followed deep fault zones of Červenohorské sedlo and the Sternberk-IIorní Benešov zone. 5.2.4 Hercynian late - orogenic volcanism The Permo-Carboniferous of the Bohemian Massif extends at the southern margin of the occurrence of typical subsequent Hercynian volcanism in Central Europe, in the Permo-Carboniferous basins of central Bohemia and the West Sudetes and their close neighbourhood there are essentially two groups of volcan-ites: acid quartz porphyries and more basic melaphyrcs. in the "melaphyre" group effusive types predominate over tuffs; the character of rhyolite eruptions is mainly extrusive (tuffs, agglomerates, igni'mbrites); effusions are scarcer. The rocks of t h e "melaphyre" group are for the most part andesiles or basalt-andesites, andesite-latites and latites and, to a minor extent, of basalt type (F e d i u k 1967). There exists a number of structural types denoted by special names. The extent and composition of volcanism somewhat differ in individual basins; the principal maxima of volcanic activity were concentrated into two phases, the earlier in the Carboniferous, chiefly in West-phalian B and C. and the later in the Late Permian, mainly in late Autunian. Regional distribution of the two phases is not equal: Upper Carboniferous volcaniles predominate in the basins of central Bohemia, and Permian volcanites in the Mnichovo Hradiště, Krkonoše-piedmont and Intra-Sudetic basins. In the basins of central Bohemia volcanic activity began before the onset of sedimentation, and the oldest volcanites thus form the basement of basin sediments. Explosive volcanism intensified especially in Westphalian C, occurring in depressions and ridges which separated them, and in their northern neighbourhood. Accumulations of ejecta are traceable in some horizons (whetstones) over a great distance (Pešek 1975); on the basis of their habit the sites of volcanic centres can be reconstructed. They are assumed to occur between the Plzeň and Rakovník basins, near Nové Strašecí and Zlonice, and in the northern part of the Ohře valley, most probably in the area of 0parno volcanic rocks (Mašek 1973, Fig. 5.12). Some of these centres are located on major deep faults. In addition to the predominating acid volcano-elastics and less abundant effusions, isolated effusions of basaltic rocks have been found in the southern part of the Kladno basin and in the Rakovník basin (Kopecký L . - M a 1 k o v s k ý 1958, Mašek 1973). Beneath the Cretaceous basin the volcanic rocks are prevalently of Permian age. They are centred to the area north of the Maršo\ ice-Bezděz elevation, where melaphyrcs constitute almost the whole filling of the Mnichovo Hradiště basin. To the south of the elevation, the proportion of volcanic rock's in the sedimentary complexes is very small and they are represented only by acid types (Fed i uk 1967). Mclaphyres in the Mnichovo Hradiště basin belong to three volcanic cycles. In the oldest cycle there are basaltic to olivine basaltic types (palatinites), in the middle cycle are rocks of basalt chemistry (tholeiites), and in the latest cycle i_i_i_i_i—i 5.11 Schematic map of the occurrences of subsequent Upper Palaeozoic volcanites at the northern margin of the Bohemian Massif (J. Masek 1973) I — quartz porphyries; 2 — melaphyrcs; 3 — line separating the northerly areas of predominantly Permian volcanism from the southerly areas of Carboniferous volcanism 5.12 Scheme showing the explosive centres of Westphalian age in Central Bohemian basins and their northern neighbourhood (J. Mašek 1973) 1 — Explosive crater at Nové Strašecí; 2 — pyroclastic cone near Zlonice; 3 — hypothetical eruptive centre of the whetstone horizon; 4 — hypothetical centre of other volcanic accumulations. Dashed lines — isolines of thicknesses of the whetstone horizon andesites to dacites (navites); most of them are strongly secondarily altered. Rhyolitic types occur only in a small amount in a narrow stripe along the Lužice fault. Rhyolites (quartz porphyry) in the Mšeno basin are rare (they display nevaditic texture), but are common in the continuation of the Teplice (k>riihyr> nuil |M»ruliyrv in llu- Opinio valley. Tbe> are represented mainly by i-......Iinifv luff* nnd tuffiles. The chemical character of these rhy.dilc» is •-lightly nlknlir Fcdiuk 1967). Noli nun- rocks of iln- Krkonose-pirthiiout basin are similar to those of the Mnichovo Hradišti' basins mot an- present in all stratigrafihir units. Inter-in -dime and bnsie tneinliers melaphyres predominate over rhyolites. The basic type* fonn effusions, sills and irregular inlrusu. In,die*. In ihe ImIm -u.b'in husiu, ihr i-nipiive r'• t v oh unie phase occurred in the leiiuiau; ti lower and an tipper eruptive series base been differeulialed m llie I'ecriiiau rock rotuplev. In Bohemia, llie lower consists mainly uf qrnimbrites (II r d I i ŕ k o v a IIMH'i ami builds up Lbe Jin nH Hills in tin- Itmu-itiov an-n nnd the Vmnl hory Mill- in lbe Zurief area. Tlie rocks arc of rhyoljie tV|k- Outside the f'ertiin-s^irlHtniferous basins then' is .< notable ..f ihe "Teplice i| i tar Ir |mrphyry ", ll is a fissure volcano, which extruded along \ < Iretifliuir faults and its dew lopmeul began in the hue Wotplinlinii, i.e. in the early pba-e of -.ubseipieiil volcanisui. ll is funned of n series of effusions nnd luff lasers: rb>»ilile* appear in n number of slructmiil types uewnlifes. febites, pittbsiiiiie. fluidní ivpe* *> a i 1 rau MHtfii. TV Teplice pttrpliyry is older (hnu lbe I.íle.t j dm se ní 11*11 it-i s .- ,:i.iuit. - ■>( ihe kniMie le.rs Siibseqiient volcnni-iii in the basins of central Bohemia « as as-nciale, | x» lie-nrlivil*. of radial funll teclonics. whirh led to the origin of subsiding basins. Hie location of main volranic centre*, and of llie repine imrphyry shows that the faults of X—5 direction played lln* innsi important role. In the Sudelic Penno-Cflrhouifcruiis an-a. llie NW—SF. fault structures al the site of Ihe present Liisalian fault and XK of it served as channels of supply, as is evidenced by the laige-i .... uiiailaiiou of basaltic nicks in ihe Mnichovo Hradišti*- basin and con* ceniriile.l oirurrences id le-s mobile ipinrl/ porphyry in a narrow zone along lhi» line I riJiuli Ißfli). Beep fault* at ihe umr-jms id llie I m-a Sudeln' basin lial n similar fiiiuiion. Thin tnyrr* ol "Mnstein" and some wht'Moiie* of lire 1 Ulniva-Kursiuii basin are interpreted as products of acid volranisrn. Tlie source areas of volcanic iiiiileriil art- as yet unknown hul ibey were obviously al a gn*al distance fmm Ii»- s - liiieiilary an>«. Su|3 tnkt strmt.th.ifi Mt», viewed from Rwtnbýl. V-tlrr ol thv Ijbr in Ihe n-atr*. Map all Vlilriii» lot Briil Klolaŕná ia the hSHlurronast Pkolo by J. Svnbads 514 Vwil h«ff« will» fntffmnih ..f iili.f^l marialinvr«, tolled "iíony Hill«''*. Cnke itfe-<|i»hí luiminatile*. Only nt lhe hcvinniui; of die Tcrtinrs the Alpine ľnliintu evoked rejuvenation nf ilu> ancient fault system of the rnossif, liminh in north-western mul iiurllicrn Hnlu*niio. A system nf deep (nulls OÍ tl.r Krušné hory prahni nrijítniilcd os q anupimelll nf tin* ""Mih? rifl of ENE in-iiil l\ .1 f> >: - h > I. ľ»ľ" M' ľ I . Tli. | ■ 11 n. 11 i.il -ir.ľ tiiii-s nre the KruiiHÍ h»ry í.mil m the NW, llie Líl.imŕŕiec fault in tlie SE and the central futdl in tin-centre nf tlie grnltcn. The faults of NW—SE direction ln>nmie th>- *ile*. nf wnltrred volcanic occurrence* in the Ihdieminu Cretaceous límiii and in the Nfský Jc-•■•iiik area. Each of these area* exhibit* duracterirliŕ form* and type* of Volcanic hudie* nml cliurnctcmlic rheum ;d feature* of rock*. Accordhut Ui K <* p ľ k ý L. (1978,i. volcanic activity occurred in four separate eruption phases. The oldest is the Palaencenc phase ifitl—67 Ma;1, which is di»i|ii|.'iiľ>ti<'d by melililic ntnmimiilc-i cinplaccd along the nmruinal faults of tlie OTultcn. and derived ľmm (In- deepe*i m (tantalu: wurci'« Al the nnrth-cii*lern lľrniiiinli»u nf ilír Ijlnniéricc futill a uuuiIht of dvkea ;iiul coiic<>rdniit hudie* nf pol/enile* nriginaled. Melilitir rock* alw occut in the prnxiwuty of the IŕlIflŤÍltl ä.ulll Of primáry importanee wn» tlie Oliaocenc phate (17—3ó May during wlúch mu*l volrtmite* of the lŕednhnri and (Joii|mi\vke hory Mt«. nscended to tlie Mirľuee. Tlie liig »trntuvl<...... of tlie lloupovskó hory oceupie* the *outh- wenlern piift of llie KrilMié lior% grahcii. Tlie otpph eliriluiel 111 lln.' .....tre ul lli< mnuiilnm* i* filled »ith ev»e.\iie conuuiiiiu: »lreuk« of iheralile. Tlie char-acleriilir mck*. are ha«.alt«iid* viillt leucile. ui c»iitru«l In the < '-niti atfedolioM, where and nenln-linc ;nc tlie principál ľr>id*. Tne- České slŕedohnrf Mli. *hnu> n structure nf n \ olcuno-lcetonir horst. The [ullnniiig empiion stojte* cnn hr di*tiiurui*hed in il* development a part front tlie oldeft meltlitic rocka); 1. tbe Lninnlt-pliiiiioliln J .-sSimIi-t-plmlír .iinl i!, tracliv tc phonnlilic The 1,'iM mie rnniieľle.) uilh ihe i-enlrul íault. nnd .dl u f tlniit bcloitfí In ihe I )litf.i-M inct'lio phasc of the Bohemian Ma*»if Kopec k ý L. I9*iíj. The forinalion of kiiiilu-rlilnid brern.i* in pijie* aear the l.itoiiw'nce fault uIbo fnlls in ihis periód 'Kopeck v L. 1971). i ■ v 5-15 Coluinnur juíniiiia uf •■Ininr Ituttall t,ii«arr> al Pi-tMiekln r m ..r >YíiIwmIii i EH £E7J 3.10 BtntrtlNilum m |iltiinnir Ivntm mill k<-> hid) mU» ul Tertiary veliunilra in tltr Ukf »irrtli.l,.io Ml. til llir Ijtlw-mrr \alky ((i Kodvm t'.Ml! I — hkwviir; J — Miltilil* •vmnlr: .1 — iiekr «nili< u' | Mih»t«iilinll> less intensive ami less eMerisive ihnn llie ( lUgoi-eio- |iIi.im<. In |ln- wider nren of ihe fvrusne liury grobcii, tome vulriiiiir bodies around Teplire ami i«ohtird iiccurrenre* f.c^t. Vinarirkd Inira near kltidno. I'riiovsku llnuiolk.i Hill NW ul l'1/ei'i m products nf ibis phase. Tin" Ppafci an- iiiimtK alkaline olivine hiisalls, biisonites nul olivine n<<- phcliuilc*. In (he Itohcimmi l>elaccous lia*m .....»1 of llie vulcanic occurrence* •lale from llii> phuse. In llii* area of specific |ielrocln'iuiriil i-humcler iwilb ne-phelim- as a typical foid' llie rocks usually form dyke* nnd silt, and volcanic vents al the margin of ihe basin. The rocks arc represented by olivine basalts nnd ob%me iiepheliinli-Ti: nllrntwsic types occur ul ibo margins of Ihe basin (ejg, in ihe Semily nren . 517 Rut" t-va. "Vwiiws «»i»k»** i«r Hnini.il Mu.iirMmr* v.il«m. of Ik. Wl*i*n Ms lanwis. .m...«rn,rf.l «1 l»«U rul.una* «.« Vikrf HUI, wrlh »1 Vai»* Ihe C»*W ,...,l,i|,..H Ml*. i« northern Bofcl.....» b> 1 I'll* Quaternary plump (0.8—2.1* Mil i» u{ the leant ■■slei.l; the vulcanic ««-niitiiicc* are sporadic in tin- CMl iiuwn and die M*ky .lesenlk ilitliv Tin? fork* in ihe ioirroiiiidirijz« of I.hrh ,ur nl ullriilhi-.il' i'liur.ii'liT, Ixiiik transitional fcctuecu wlmn>- nrplichnile mill olivine niehlilitc llu- liti-nlixjiliun id vole-unit-., in tin* Jr^riiik lldU wo* prediiptiM'd rhieflv hy the presence of deep \\V—SE 1r.....In-j.' f.'mll*: tl»' continuation of the Outer Sudetic fiiult iBcNku fa till mil jt» enncing with the Slernberk-Ihum llcnc*uv <)•■«-(■ fiiult. und the fuull nm.....j; farther iwrlll between Krnov mid 'Mravu. 'Hie ucplicline tia*au-- llic lute l'"rtuiunn. lliu» fiilhiijt in tlu- I l|iguiui■« n.n \ ; i j_'«■ I'lu'v ltiuko up cinder coiim and tpomdjc offuMOiuj between liudiiuv Hlid tludiwivkoo and llruiilul. In I In- I Mrm 'n-Karv in.i l>n»in the nco volcanic activity wh of limited exJenl Minor dyke* and HIIiiue* nf .mail vents nrijrii tilled in ihe older, Hli^oio..... 5.2. f> Nfoidir volcmmnt in Hit* Moravian part Of Hit* West * ;l|-|i.lllli:lll- The Iran-* of Neonli< ^Iriuu-iu in the south-eastern part of the Bohemian Matvil ,,rr fuiuiil in (lie Dojiger. Mure tlllrilMve lUJ||iiie*laliont> are o|iu»rved in the Lower llrrlureou* or the upperum*! lurti»»i<: o[ the *ii|r<.iun mill ami in the N-inoiian of Ihe Nhiu'ii.i uiul limine* . I ulf* .uul lidfite* in the f]v»cli uniu and hi I luL Xetigeuc fiiliuiz ol the fornla-ep mid the \ ieiinii tianin are pmdiol* of in-li-i mi',Jj.i 11 |r, neid \ ulrmiinlu. The enrlie»l producti of Nenidir vwlcatuim ID Ihe foreland of ihe I Inter t-arpjilhiiuo lime heen u,-e»*ed in luiviil elairiic lied* «1 llu- autochthonous .fura-Hi- in Austria. K n p o n n e k el at. ', PN»"»i described wen diabase Ipaloeo-bojuilt layer* from elastic Dogger encountered in l'«rruu-2 Imrehnlo, Then* rocks IBay b« anoetated genetically with the tx?d(iicc zone. The oldeM vulcanite* of I lie Carpathian Flwli in the arwt iitudied ure ihe rock* ■•[ t« Mheuile n**o< latioii in the Uiwcr Oetneeou* nf the Sik'siait unit (■ffaaiona in the llauleriviaii - Bnrretnian TMJtvd Iradilt* Foruialiori. hyp«li> »*nl form* in the tower part of the Teitn Konnnlion of Malm ace . Hie rock* occur in hrojul hell extending from llrmiice across Frydek-MUtek. Cesky lei in 10 •be neitflilHiuitiiioil of |tnl>k" Ui.ihi in Poland. I'hrv ure developed m I lie funn "f •iiluiijiiuie «lie< i« pillow lav us. Jijrpliinn-rali- lavas, granulates, (iiuygdaloiiL and thkes .uul -ill- •■! hmliK uinnl »i/e. llu- principal iHprurratoe* are entr- eeiitnileil In ilejeelioil i......» .it llu' loOl of the Haik.i dupe id lite Mli-Mllli •eiliuienhoA Ii.i-.im i>riin11• I \ov\ .liefu and Thnec. Tlii! lypicul minerál ní the le*rhenile .iH*or ialiofi i* rmiilrjnii-. :n i-niiipiiiiieil by Ti-augile. Ti-;ntiphiiiole and obvine. Tli*? miiouj.iL» of feltl^jmrs var}-. Thr vicialion i* ťoiu|ioM.il iii.mil;> ní i.m henite mul pieritr and rclaled loek* »uc|i n* ttljviiw diaba**- aud diid»n**-t'irrilt. lín |m'triKgru|»h> of pinue dyke> fnuiul h\ Imňiig I ilieh H-*i in I pper Ln-triceous marbioiie* of lbe Hile Knrpnly nud of lln> Mugtirn I KmJi mu* fn>t dcseribed by Slavík ilttHl. liy a na logy uilh tlu- \uMrian necnrrencefc im* picrite effuuiuii* urv plat-ed iii the Senuiiirm (Kli** 107**1. tu tlu- jidpireui pan of lbe Magoru TKvIi Hit* \n|imu»m i* iiidiealťd by iiiervraed innleiil, ..f hnrnblende in heitvy f met ion e,g. Jungovi Imrehnle, KliéS I970l. In rennl yeur* proihlťln of inleriueihule i ■ >h a m-iii hnve fllwi bfťii i«i| ulili-liril in lbe fhsdi frcipience. Tuff iind luffilc liiycr* mi ui. í>t exuuiple. in rlir- limhih Fornulion (proluddy in its Senoniím pařil, in lbe Sríiouuin of thr hteima Korinnlinu i><> in 11 in r. ;iri- nit her ř-poradie. IntrniH-diuli x-olťuiii*in li more widely ilislnbiili-d hul becmiM' nf ponr rxpímure il i- dif fu-idl tu folluw in ll>sfli m-iIiiiiciiIi l'alui'0|r|írilpliiťii] rcťiiii*lmi'li»ltt periliil ni In ,i>-.iiine (I■.■ l bíi.iir Mihiini-iii .....upan-d «ith iinlinl Mi|nliii+r hefnre lbe nnum nf Iru*1 Rysch froui llir relntivrly rining cnrdillernv I iilemiediale volenui«un i* Uiought to be Ujudired in coriblleru*, iilthougti there i* no direiH evidence aviiiliiblr. ScArte lnyefs nf vitrir lufU ani! toffue- hnve Ihi-m fnund in Itadeiiiun *e-ihniciil* nf llie l.nrpuihiaii forei.tr^p 10 snuitnrn Moruvia. Hh>'uli1e tuff- are kiiuMii froiu lbe [hiď-miii nf lln- l otravu uren ji ml lbe Mornviuti titile nud frnlii tlu- Kjirpoliiiii uf lbe \ iciillfl basitL 6. Metamorphic history On thtt terrilury of thc (./ech Sociuli*! Ib-puhhr regionu! inetaumrplii«in iiiniuly llffcctcd thr IHUl.4 of tlu IL.ilnhii.iu M.i«lf; lbe \lpme luel.imorph-t.iii .lul n.>: rcneh therc front tlu- ť.urpnlliiuiiv l'ln- I jmIiuuíuii .nul ! leri-yiiimi mr-luiuorplio aingc* are of prinuiry import nitce; the -pie*t»t>n whi-lluT nr tmi llu- prc-4 Jidmninn regioital ini-laiuorphi-.ni and itill rcmaiu* to be lablinbcil: t Ji e M n I il a ti u h i rt II -T b u r Í ii g í a n . Wtrnt S u cl c I i c nud It r li n province*. The Ja-t ■ mi' i, M-|iar:tli'ile*ian U'l| ÍFlg. ň:i. Tlie M o I (I u n ii b i a n T li u r i u g i a u province involvr-s four rrgmri- i .iii-i>iii.i' ..( /mii..» ihr s.inii' ni tlu- Mnlibiiiiibiiiii. the krušné hory, tbe Tcphi-Unrruudiuu a ml tlu* Tbiirínginii rrginn* witb «tiii of pn-vah-ntl* \ovr- mul uietliurn-preMiiire fúrie*. Ili I h e W e * t Sude t i C «i e t a m o r p b i c province Utere are Iwu region* i.e. lbe Krkonoše and lbe Orlické hory region*, wítb fneie-j preiioiuiiiantly of iiieibuui mul loirbet |iri'«hh'». lil lliirni/litnmua a-iitnn,il«-n..ilil* rftwi.. (lurtamílnc 7-IimImv «i* \l. fi.J MrLi.....r|.ln. ilui.inll i.l tlíc IkiliKiuuii M.i.-il .mil llic Um., lnut in litr IrrrH.ir* ..( xlw i „-,1. It.....Má- 0 i li.ii.. M Sut IWÍHi In tlx MoniMi Sj|ť*inu mne. Frail r* n). l!MiS din niiiiiiiilid tin- I Mil Moravian iljtilomian. «d nn-diiim prewuwl. Middlr Moravian isynktneniniii.. rurly I hi i \ líniu mul Ijilr Moravian llrrcynian retrograde plwiM-* Iii«' ItriiiniN istuliriiiit represent* u «rpuriitr B r ti <> in r I » m u r phi c l> rovi n r ' 6.1 Prt-Cadoiiiian iiirtaiiiorphism ilu r\i«tiin-i- .if ilir iiniimcninl rrn»l Inriuiiii; the ImmiimMI ol I he volcano* -i ■>liiifiiljir> nľriľ* id lilt' < Jtilmiiiini nniu'ľiiiľ sUi«ľ m I In* llolieumiu Ma»sif tí d«'niun>lrul«'d In miipifoliiiiird i-\ nlriio' «hieb. Iinvirvi-t, i- h"t lliterpM'lable iiiiJimliigunodv. Thľ (m, iii-iih' iiu'l;iiimi|ilin^'.l I pper ľrulľni/uii uii-> «Juki-, nf ihn» Ihir-rundinii have provided ila-tu mineral* mul rnik fragment* fuming front plulnuie mul effiu>ivľ rock« mul lueliimnrphile* showing Ihm In medium gradrn nf alteration pliv Hilf, mnu *clii*t. -fwen« lii ľliunifU-riítie ínr thľ older ľnili-ro/mc 11Í ílu- |cnn>iijiľtiiali.iN >hield. ľlie primary iiu'f i>ľ llír /iriiin* mrr«'Hpiii]iU In thľ Karelinu nrtigeiiy i'JIHHI— 1! IC MI Mu, (í r n u c r t el al. 197.1. I« e h a u e r - ti r ö ne n f e I d c f I'.ITT «liuli *ug-gľ*ls lluit lliey ma> have lnivi Irn 11». ported from I lie fdiicld. This inli 1 pilialifin. however, » debatable heciuoa* imnuetrir nval ínrnu of zircon tuny hiinIK nriuin-nli- from i-lougnlcd i-ry«tnl* durinu ihr Irutn.port in waler: IIn* /iron- iiuiv nl-.ii In» iiM'lJunorphiiKcnn- and. eon«cqiirnl!y. formed in m'Iii. In um«! id llo* l'mainhriau uniU <>í llu- I(••hi-niiiin M.i-»d *rir ,il-.> fmind •iictncougtnmcnile-i m which, despite «tnmii iueliininrphi»ni nip to higher am* phitudile facie*. Fig. li.'l the original material of |iehhti*« i« well distinguishable. In llicue metacinuthmierntcs nccurriiig in tin- Middnrmhicum near Hluboká nad IH77. 19K2). in ll». l'.u.n art-a iNemu, 15171» , in lbe Krušné bory Mu. Valtra n 19631, in tbe Barrandian (Fiala 1972, 1980), ili.' -Udí, ,iiiM." Siiiliinla 1i:il . niid tím Zelené hory 1 lilia ÍFiala • - Sxiiliti.l.i IT.Ii , id,-re „re pehlile« nf nirtiiv i .li unit hnvall nud rbynlile, 1'luliinilet. itraundioritr, ipinrt, díorile, p|ii|(iaplite . tourmaline rpiiirlrilr and liorufel«. ratr-«iliratr inelnmorpliilf*. mnuvhi I'ppcr I'nili-m/nir ■o'llimimlnrv l.iiMii < hnli-ľrlr l!»7:t. S a 11 r n f i lM% |.í<» %idi>tiinliiilľd fur luiunjf tin- pie I ppif I'lutern/oir mHalilorpllii' »l.'nii» arc various unrtinfumiili«-« or lliruM -ml.nv, id uiip|M^ referred In frmii tie-ľniliio/oii id thľ Iliili.iiniiM \hi^»d lind ;in,iK-.- ..í tit,- j:.'|iim^ >d tei'lnni,' ľl»'iiiľiiť>: llt,-\ n\i',il lln- vrijii.-iii',- \'id«' md> rxi'i'pl-inruill) iwil.-m-i' fur duiu.Ľ lbe ini'tiiumrphiMU. tilllunigli tbt*> tun- idleii u»ed fur ■měli nili ipnUiluni Millmol >nff irti-nl rrilnivni lilt Mi-tin .mvliiitwrnlr (tiiliiiiuiiilir Miuhili-nuiti (' 'in.iij. nf llir \\i.W Hnobirwm. (■•U.ilin/ i|imrrv r«riit Pu-m n-iilrul lt.iliri.iiri Mil. rml ..I t) \i'ii»« IImiIii IiV II. Xtnli.ulUiit i. \ fry mli-ri'«liii|t in \ ii-w id Ihi* rvisli'iiir nf tlir I'rn-amlirinn lia>i*iui'nl i* lbe find nf (lir h .Mis;ri'«nm nf I'pprr I'mli'm/uii- iiii'tai'i.n|řl.uiii'nil.' mi I lir iml i limnlili- m'iii I Imlh'jiiv \ r ň h n - I Ii n Ii l'ISI , wliiľli i» .-i|iii\ iilinl In linii iiirijrn-^ifm id lbe Hrinverinn nu the griinodinnH^Hirlliiijiucisi in tlir Ammrienn Mi««*if (1 n y n é IÜ7J . Siguifu iml nulii-nltiiriH nf tl.....\i*lrnrr id pn-l Jidnmion rl,iii,-ul> ,-j.i*t| ni tin- Idiinii%mliiluuui Mo»l of tin- ladimni'lm dum Innn ■ Iii.- unit iiirn-«|wnd tu tlie Ijidiuiutiii fitaife Im'I "iHI Ma. I> u d e k l!*Sí» , Iml di'ípit, npioti-d tni'üMircmculB al*w tmrlier ri|í«'«. appear 1KMI—t'ilH* Ma — aiuphibulr (mni lb«' limnlili m Drn/uvice, Diitlľk ■ M «■ I k n v ú Ml7."n. 'Ilu« on-nrrrurr nf tbe |trv-í»i. Tin« iiii'liiiiiiirpliihiu in Miiiin part* of thc Iti -uimvUtulicunt illili llllít-ls frimi lín- il......Irl nf [In- I .iiiiiiuiiijl OH-IUIIHirpIlIMO lil lil-' Itnliť linuli Miisstf lu thc solllheru purl ul lln* itrunnvistnhetun plisllilc* nf ureeu*elii*t fiii ns |>rei.ái| tlu- hmiiiil.'iry nf Inulile ivniri.nl (» ii.iihiil . hul |,.-,,iii.....f th- ii.iiipirx hlm-k niriirtun* (St cl cl - \\ ci»« I97f|i rock» »f thc epiilntr-iiiuplii-bottlt f-M-if* ir.(t. tufiir Rrlinvicc. Dudek líHUh and granulite fnetr* in the Mitii-I,i\ hiir-i. Dudek t!«i:i lu-i-ui- jntntlv »ith llieni. In the northeni part IJIIťlv > nf the lligllrr .liuphllmhle fu<-i i-, niť rť|,i.--i I mrk' ..F Ihr ijmirl/' muvrni itfkvnuili- mildt-rie*» paüü caMwurd« ihlo «tlbiuanil-' jr netuše* nnd mi-riiuiti-In- (To tli S I k 1)>7'_í . \eenrdnu- tii s I e I c l - \V e i - * I!»7S ihr niij; mulite* Icrmiiiati« in the Lednice -ume. Ind-rveiiitLg heiweeu tili» jtnne mul the IVrípicnin- línem.....ii .ne Kn-tiiM-híit* mul. in thc liiinctneiil nf lln- WeM i.arpnlliiruis, llie rock* nf ihe rptdnle HiiiphlUillW- fneie*. I '.enlii-ju ;ill\, the l'reenitlhriail ílgc of ilii* uieitiiiiiirpliioiii i- evidenční h> llie trunsffreisinn of the Lower ťalai-o/oic lit Mnraxia. 6.2 TIk' Cmlomlan mHü morphin stuge In utnul crynlalline nuil* nf llie Itnlieuuuu \ín»*il llie ilist riliiilmn and elinraeler nf ihr uielaiuorpiúsm of ihr I ..iil.Miii.in fundament of the I len*\ nides are trnce-ílhle. llie t Jiihiruillli H^e nf this meljllimrphisill is suhftlntiluitvd geologů-ully, r»)ieri;(IK \i\ ihr | riHls|>rr*sinn nf I hť I 11» ei illid Midlllr I mulit i.m :oid I >rdu*i ici.'ili nu Itu- fiilileil .nul iiielaniiirphused I p|MT IVoteru/uie in llie llitirtuidiuti und lile /.e|e/ué hor> Ihlls Fiala - S v o li o d a 10.%0 . Dudek - Fediuk líí.Vj, Ilnvlfrck 1971. líiHtl . Iilcnlirid ronditiun* e*.i*l in olJier part* id the I leii-\ milí—, e.ií. in lln- >i h\» nivsvidd nud lln- Artiiuiirrm miissif In mine »ei-tnr* ■Mí. in the Siiv-lliiirtlUlinun the 1'rolero/nu I .mihnuti lnuimbry i* nliM-iirc, hul evi-u there n ilnking clia-igr m ihc lecloiiir rem nu- mni thc cniifiprurnl imi ní -Mllť.' iiT.i, i. uifiTiihlr [nun ihr lilhnlngA nf «eilmii-ul-. I'' i n I n •' S V O h o - d» I»5ň.. \n iiupiirlaiit -"Uif nf infnni iiilii.ri i-, the ouiteruil nf |M-lihle« a ml elastíc uiínernts in l^itver Pnlneu/nic mek*. 1'i'ldile* nf ealarlaslic irrnuite mul orlho-Uliťiss wen- ilesenlH-d Irmu lite tjiillhrinn und I irdmirian iimjíliiiiier.ilť-. nf the HiiiTjindiau und the ?ele/ně hory (lili* Zelenka IH'iTt. Kialu I9ÍH, Feil i o k IJr.V.I'. Aeisiriliiuí to F i a I n 1(180 llu-n- gratíitoiiU ilifďr pnouou-nlly Iroiil llie iiTiiniloid* in thi- l'roti-m/m- |-« I il >ti-- nud inirl.. .Il\ mrrei- in |n-1rn- iH Priu il fiK-i-i n( tloiilinivřans. IjMioirmtiť nimr.nilc-tmilítr (Kmihm) tcnmn Kulni Huni rry*l.illinr iiuniilr* oo»l <■( Pnwue Ptmiu by i. S*«lh»lu chemislrv with the pre-llercynian magmalites of the Železné hory Hills, the Lusatian massif and red gneisses of the Krušné hory Mts. Pebbles of these, part.lv schistose, have been found in other Lower Palaeozoic conglomerates (C haloupsk ý 1962). Pebbles of phyllile and dynamically metamorphosed 50 km Or, Distribution of Cu.lominn mctamoq.Uic zone, in the liohnrimn iXbissif (M. Suk. urig.) 1 - Kvnmle-stHiirolile /.one: 2 - cMorile /..me: 3 - prelmiU:-l>unu'<-llyile zone:; 4 - oeeii/-n-nrc of gi-nniilitic r,.«-ks: 5 - crlogile occurrences; 6 - occurrence ní glnueophnnir rocks grevwacke are known from the Barrandian (Keltner - Dudek 1956, F e -dink - H o h 1 i c b 1960): finds of pebbles of kyanite-bearing mica-schists are reported by Fiala (1948, 1980) and Kukal (1966); the latter established their supply fro'm the Sli, i.e. from the 'islets-zone", to which the rock associations and their petrographical types are very similar. Finds of pebbles ol calc-silicale rocks and marble (the Železné hory), metavokanites and greenschists are less frequent. The minerals in the association of clastic minerals (P e t r á n e k 1952, K u -k a 1 1962. 1966) correspond exclusively to the assemblage of garnet-kyanile-staurolile, with epidole, tourmaline, anatase, monazile, etc. For the time being, minerals common at the present-day denudation level of the Hercynian meta-morphism have not been found and no marked changes in the composition of clastic minerals have been established which would suggest a progressive mi-covering of deeper, more intensely altered layers of Cadomian orogeny. Radiometric data provide important evidence for the timing of the Cadomian melamorphic cycle. The data obtained on volcanites and metavolcanilcs universally confirm Upper Proterozoie age of the educt iBites Gneiss 796 .Ma — S c h a r b e r t 1977; spililes of the Barrandian 660 Ma — Jäger 1977). The data corresponding to the Cadomian metamoiphism were established by G r a u e r t et al. (1973) and Gebauer - 6 riinenf el d er (1977) as ranging from 690 to 550 Ma. Jäger (1977) considers the value of 670 Ma determined for the spilit.es from the Barrandian Zitec Conglomerates to be the limit for the beginning of the Cadomian 'metamorphism. Hie age of late tectonic and postlectomc massifs is about 550+30 Ma (K 1 o-minský - Dudek 1978). This date is in good agreement with the frequently reported age of W%\ Ma for the culmination of the Cadomian metamoiphism in the whole region of the European Ilercynides. All these data are al variance with lbe geological conditions in the Bohemian Massif at the Proterozoie—Palaeozoic boundary'. They presume, namely, a syn chrouous formation of lbe Cambrian molasse (Lower Cambrian in the Barrandian dated biostratigraphically and radioinelricallyj and the regional imetamorphisiu associated with the emplacement of pluloniles. It is the same situation as in the Hercynides: in northern Moravia the rocks altered by Hercynian lnclamorphism occur in pebbles in the Upper Viséan, whereas in other sectors (e.g. in the zone adjacent to the Kouty belt al the western boundary of the Nízký Jeseník) meta-morpliism and emplacement of plul.otiil.es continued beyond the boundary of the Late Carboniferous. According to geological and radiometric data the beginning of melamorphic activity must be placed in the Late Proterozoie (650—630 Ma) and its culmination at the onset of the Palaeozoic at about 570 Ma. The Cadomian orogeny closed by the late tectonic phase (550—530 Ma) and final tectonic 'movements at the Cambrian/Ordovician boundary. The radiometric data on the metamor-phit.es and magmat it es from the Barrandian Proterozoie. the Moldamibicum (G o r o c h o v et al. 1977), lbe Lusatian massif and lbe Orlické hory and Krušné hory Mls. range williin this interval. The origin of lale-leclonie magmalites, which usually imply the close of regional metamorphism is thus placed in the Early Cambrian (Neratovice, Kdyně, Bansko massif. Stod, and others). Somewhat younger Laie Cumbrian volcanites in the Křivoklát-Bokycany zone (170 Ma, Vi dal et al. 1975), already show Table 8.1 ' ■ -it r... I - m ihr I pprr l*i""ii*ro7«n- "I lU.hiini- uhft J, l.luib - / Vrjmi . I. 7,t>ubrk Avcrafti (train tin Tj |nni..nihif mut*rail of mrtapaUlaw 1 > |">nv r|'lu. imri'-i 1 nf ronlJihAaiin |.|. till (in J Ill-i-IK it,- r.rr1lvile llnrmndian Upper Prtilrrnaoic 0.02-41.00 mm i lilonlr putupcllyila rhlnnl* 0.03—©01 mm bk>lilr e|ii arlim.litr OjOi—08 nun 0.5—I 3 mm tfanirl biTnlilrmle+albitr I>r>ma>lir>> cryitalline unit (Iniirnlile niirnblcluU-f- idigKcts** Syamtr hnmbbnudr-r aililni iir 1 mm - • illimonile h< ■ t n 1 .Ir m Ir + I: i brii I > • ri 11' Mnltlanuhinim :'i till ?......11 ii Ml« Mfanajajkj Ubniibiritr+pymieiM'f - tni.l, \n m\raf ■ Immbb-nile-J-g*ratt «nl>p.n|ur-nl fentiiri- \\ u I .1 li n 11 » i' r u i j V.ili. V i u 1 n I !l71 u . linil In li-liic event* in tlir Ordnvieion may lie regarded cither n% the lust mitnift>»iuliiiii|k'ttks for tlir second ullcrnuliv c It n tl I I c li I!"it-. I- i a I .■ I!*7l.i A sunihir ngc of the (jidnmiun orogeny nn be derived from railionietrir data also fnr llie Motihirniliicuin. chiefly fur urlhogricissrs Arnold el id. Oil r.rb>cilp [piia in iiiuNXif ilpliiotitr (Kouiim' pn.i-.- \ rl.o» Mlvn m ir Kntini Horn Knlll.i II... i i-r-v -■ . Ilaiiir- iiniq.lry t'liiitia by D, MaMllfcnv* II ' f.iMnl terpen tim/nl gjirur.l |wrutolilr lUrhtire ...-n Kulna Hum, Kulnu Mora rry»l»ftW rumples Vhntr, by B MalmiOW* (i.S ť.rumdilc body of the DJansliv les and its 'inner structure (0. Kodym. jun.-!'. Jakeš -P. Schovánek I 978) 1 — nuragnciss encircling the massif; 2 — nltrabasites; 3 — melabasites of tlie granulite iníissif (mainly pyribnlites); 4 — amphiboliles in the rim of the massif; 5 — grantilites of the massif core; fj — partly recrystallized biotile granulite of transitional zone; 7 — re-crystallized biotite granulite in the outer parts of the ma.ssif; 8 — orthogneisses and migma-tites; 9 — granites and granodiorites; 10 — Tertiary and Cretaceous; 11 — Holubov borehole Gorochov et al. 1977, G r a u e r t et al. 1973, Kohler - Miiller -- So hni us 1979, Gehauer - Griinenfelder 1974). The only ex- npiii.ii i-* tli. ngi ni (.".ui ',7" Mu nl.iiini.il l.-i iln' |nini.ii\ li.ini.i-. nu ihmi of granulite*. Au iiilerprelalkui nf ili'» ilnln stoulil ni i ui r r n bum jH-rsistruice Of llu? CndumiAU UWtMQorphtism in tbc Moliliuiuluľuiii nnlll tlie I >ľdi i\ U'illli. \\e iflkllk lIllTlfiUV llllH' lllllll Li I» ■*- fissuinption tluil Nit- itiiliťiiiinii Mnsxif i* n rcliii nf llu* Ijulomian ■.Inntnrr llu' cxleitsinn nl IIn- t .aihHinun loelmtlorplni- /otiri llltu IIn- -mIut llllit* ■ I tlie Miirnjrľnu Hrrcynidcs rammt he reeoii*lriicted. In tlie llnju-miim MnssiS il-u-lf ujíly .< frin!iiiľut.ir> ie.-iuiMriulinu i* poscible. iWvrrlhcle--, ilu-ir stonal c*>ur»e oml nguiar distrihution mi) Ire cvúlenred i'ifi. . Arnirding n> lull" rnnsiMenl ilntn f rum llu1 dilferent pnrls nf ihr I íoli.niiiiin Mtissif. llia i-hnriictfr uf ibis melaruorphisni i^irri-«|»ui.U in ílu- MuIijuIíiiii lype. i.ľ. tu lbe lljelnllkorphic m.ti.-. ní ii n .lunu |>i • ■--.iiľ- ■-. In tlir higln-r (finde* tili.' illflueilCC of higher pressure t*, iírurrully iimrr prnjiuiiiiced tb&n ín tbc hisver imca, ("hiinu-t.-r- ntie i.* llu' rxlremi-l> ni|ii«l MM(m-nľi- ->f nn'ii.....i-Iih- .....tlii» fcalurc i» svell kin it.S ii (tmu (lír ľ.|.ľi Marriiinlinn ngiiiM. tvhrrc a serie* id llighrr prrvmri- has iwfll rrrniflii/ľil in thľ Tepla areJi »ml ii «ijuenre uf liissrr pn-voín- in llu s\V, in lbe urea u f ihr IJ.....n>|n-.- i-h.si.iI1i.....omple\ ľul> l\ »* kiwnrdu \\V aml ,V i\ (utvářil* SW und F.. intn llu- mantle "f lín- Central [lohi-uiÍJín Mulou Suk 11*7 V. 1111 - /iiiiJitiiui in ili. Kulu;. Ih.ra t .v\ *lulline. J ťoma/hce Cry-lalline, in Iii«.' Murmíriiiji mul l.oťirnin riirrcsjiouds lo thľ Cnduminn tnehimorphi*iii nf iiiľdiuiu (jrndi", Tlie kyauite-Klaundile usvcmhliivc appcur* im ty [ m 1111 ■ tr | ■ Ii 1 •' im- iienil* nf [In- I Jidniiiiiin ih>i.i n>. n plii*iu m all .u.'.....f llu Mn^-if ;unl in lln- Einopnb Hcrcynidw in generál t,D a r u » i c p c n lUTtľ■. In Ihr Mnldanuliiruiu |1km Uliiwral* rtn- in man y cu e* pirnerved »* ruliet- ■■! rar liet mcluiu-u |ilir-ni. I-nun u......-ruin nhscrvjiljnu* nf ihr tii|UTÍlll|Hi*i-d 'liiilo-ľal (m-w-llililjiiíi- Ispii'd ■ ■I lin- Ih-n-yiiinti tiM'taiti(irplii«m ii ľ.in Ih- infľrrcii linii Ihf granulite kyaiiit*1-prirm-l us-i-uil.l.iiu- in l|i*> Mu|i)jiniihi«-iiin, llu- Ktilini Imríi er-voiillim- ťiiinph-\, th. I .iigiľiiui aml in ihr Kruiriŕ Imry region belongí tu ihr f julnmuoi iiH-taiimr-pliii" Miure, jind prohiihK ihr f«>riiuiti4iu uf tbi; <>m[dinrite-f(aniet n*víiihluge in cclogilc*. Ion íUdn-v kin n el n|. 1077), pnrlimlnrb wbcrr ibiry nre iM|tiis alrnl in «ramdiii- h u d r k I!I7I . Tbcrv i«. Imwevcr. n qucaliuii whelhrr tbrwe are im« irrnnulitľ- i«nd eilni/itr* or wbetber tltcse minerál n»i71. Frail H td. HM* nnd V r á n n ■ f»T? ■ Ins..in llve fimt liyjml hfw. lbe iither i> Mrtiul h> . aumrig utliem, M a i ŕ j o v » b á UÖ75J, ThtN Wllf>fH| adinnee il» prineipnl argument a ounilHui iiUeninlion nf these "granul i len'4 willi aiupliihiilite*, liornl Irndt-hinlite and hmlile panusiteis» Kig. ii.H , wbirJi iire lypu-nl nf tlie Jiinplitbolite fai ion, Anuihr fa*'! uf M «n#" ini|it»rtaniii '» lbe pie-t/nee ..f 'graililtile" nunerul n»nliibliigf« in lbe Kniieiiiuiu Mut'if Ingelher «Uh.......Iiilmlno. m ihr rink- n| tlie kvaiiite-Minindiie /.m. U u dek - Suk lí-71 . fnr i-Mimpk. m lln- Miildcuiubicuiu, tlie Kutna tlum C.ryslnlhne (Koutek IHlHii. llie iJiimaíliiT Crystalline Vi-jnnr ľ'^1 mid in the Krušné tmr> Mt*. (1 ||| KiliLml ,r*-1ittlj|h< linir*l»nr «f Ihr «..Mntiutlmil V.rieil Umiili. Vnitry uf Ihr SAuv« ľ. i..... ... !■■!.. n -I - .í....... Iť..... I.v II M .t.a.ll....- In id- Iiiiíln-r /....... íh'^ ni'- pieMuii míly where the rucks during tin? poly- imtauuirphie des.-li.pun.nl I....I i......d lliriinjrb llie pbiiM' id kyanile Mttiuntitc nllominn: rnck* eorn>>|nuidiiig t<> higlu-f-irrade muiaiunrplii-m or ibm* of dii-ferem iy|ie* are esc-niliunal in the ngmii uf Cndoininu metaimirpliUDx Cbab in I. h Jih > ii k lll"7 described Irmu lín1 Mnríáiisk* lÁKItb complex an in-iTi-iise uf Cad4unian inetuauirpliisin in i-clnirile*.. iiitiphibulilc* and ser|KiiH»nii.-* up to the rutile zone. A relict rutile zone is also reported by M a l ě j o v s k a (1975) from the West Moravian granulite bell. Zoubek (1951. 1980) associates the so-called Gfohl migmatization in the Moldanubicum with the Ca-domian metamorphistai, but the association with migmatites is not usual for the Dalradian type of metamorphism. The pressure plays such a great role that migmatization does not develop up to the highest-grade regional metamorphism. The Gfohl migmalization in the Moldanubicum originated during Hercynian metamorphism by superposition of migmatite structures on the educt, the two components of which are really Cadomian. Zoubek's assumption relates to these very components. The connection of the origin of migmatite structures with the Hercynian metamorphism has been proved in both the Gfohl Gneiss of western Moravia (M a t ě j o v s k á 1975) and the equivalent Popovice and Podolsko complexes (Dudek et al. 1974). As far as the Cadomian migmatites occur, the migmatization is invariably linked with contact effects (or emplacement of lale-tectonic magmatites, such as red gneiss in the Krušné hory Mts. or orthogneisses in the Moldanubicum (Ambrož 1935, Fediuk 1970). In many rocks, formerly denoted as migmatites, banding originated by another process (e.g. in the Bites Gneiss, Frasl et al. 1968; the Sněžník Gneiss in the Orlické hory Mts., Opletal et al. 1980; in the Kouřim Gneiss of the Kutná Hora Crystalline). Relict manifestations of contact metamorphism of Cadomian age are also known from the Moldanubicum, for example, from the border of the Stráž Orthogneiss near Jindřichův Hradec, or from the Pacov Orthogneiss, from which greisen was reported by Němec -Teněík (1976). Dislocation metamorphism of Cadomian age is known from the granulites of the Krušné hory Mls. (B e h r et al. 1965) and the Moldanubicum (Suk 1979). 6.3 Problem of Caledonian metamorphism In the Bohemian Massif an extensive Caledonian metamorphism was presumed above all in ihe Lugicum, where Caledonian deformations have been reliably substantiated (K o d y m 0. sen. - S v o b o d a 1948, Chaloupsky- 1966). The Lugicum was therefore regarded as a separate branch of the Caledonian orogenic zone and is still separated from the Bohemian Massif by some authors (W a t z n a u e r 1968). However, no independent metamorphism could be proved in this area, and neither magmatites nor flysch and molasse sediments that would correspond to the effects of Caledonian orogeny in the Bohemian Massif have been recognized. Also in other parts of the European Hercynides the low-pressure metamorphic features can mostly be ranged to the Cadomian 'metamorphism and the low-pressure phenomena to the Hercynian metamor- phism. This, of course, does not alter Llie fact that the Bohemian phase is an essential divide in the history of the Hercynides, representing ihe rejuvenation of the Epicadomian platform and the onset of Hercynian development. Only sporadic opinions were put forwards on the activity of the Caledonian metamorphism in oilier parts of the Bohemian Massif. For example, S t e j s k a 1 (1925) and Zoubek (1946) considered the Moldanubian granulites to be of Caledonian (i.e. Lale Cambrian) age. This hypothesis was unexpecledly supported by radiometric Rb/Sr data, which for granulites and orthogneisses of the Moldanubicum range from 420 lo 530 Ma (Dornsiepen 1979). The discrepancy belween the geological situation and these data is explained by some authors in terms of heterogeneous rocks, which had been brought up from depth during the Hercynian orogeny (Z wart 1969) or of extensive nappes (T h i e 1 e 1971). Zoubek (1980) proved by a detailed analysis that we are not able to decipher convincingly these data which are in essence enigmatic (one oF the possible explanations is lhat they belong to the Cadomian stage rejuvenated by Hercynian events). This is also suggested by their great scatter and the fact that all of them have been obtained on polymetamorphosed rocks (Dornsiepen 1979). Another explanation assumes that the Cadomian and Hercynian mctamor-phisms belong Lo one continuous megacycle which, according to data given above, began in ihe Late Proterozoic and ended wilh the late Hercynian magmatism (Skvor 1970. Fischer - Troll 1973). This interpretation would agree with the idea that the European Hercynides originated as a result of collision of ihe southern (Gondwana) and northern (Laurasian) blocks, but it does not correspond to basic geological data: a) Whereas the Caledonian stage is substantiated only by geochronological data and tectonic events, both the Hercynian and Cadomian metamorphic stages display a regular and complete sequence of phases from the syntectonic dynamic metamorphism through high-temperature periplutonic metamorphism (which is more prominent in the Hercynian metamorphism than in the Cadomian) up lo the phase of retrograde alterations. Evidence exists e.g. in the Barrandian (C h a b in Chab-Suk 1977), and for the Hercynian metamorphism at the Molda-ntibicum/Saxothuringicum boundary (e.g. Schreyer 1965). b) In both stages there is also a complete succession of magmatic types, from the "geosynclinal" through syntectonic abyssal to the "subsequent" acid and basic volcanistm. c) The extent and gradation of the metamorphic zones of the two stages differ sharply (zonal course of Cadomian metamorphism and domal of the ITercvniun metamorphism). These arguments against a separate Caledonian slage of regional metamorphism and uninterrupted existence of metamorphic conditions in the upper crustal lavers from the Cadomian to Hercynian stage do not exclude that the fundamental cause was a continuous trend of Gondwana and Laurasia towards collision, or as presumed by Krebs - \V acbendorf (1973) or Zwart -- D o rn s i e p e n (1980), a secular vertical supply of masses and energy m places of lbe mantle hot spot. 6.4 The Hercynian metamorphic stage The second principal process of regional metamorphism is the Hercynian stage, which was active to a large extent in the whole Bohemian Massif. It is evidenced geologically by the transgression of the Lower Carboniferous on the folded and metamorphosed Lower Palaeozoic in Moravia, by the fading out of metamorphic alterations during the sedimentation of the Lower Carboniferous, and by metamorphism of biostiatigraphically proved Lower Palaeozoic sediments in the mountain ranges of the Krkonoše, Jizerské hory and Krušné hory (in some parts.) and in the "Islets zone". The onset of the Hercynian metamorphic stage is difficult to determine. K o d y m sen. - Svoboda (líKS) and Škvor (1970) have proved that the beginning of the Hercynian stage must be placed in the Ordovician, when isothermal solutions began to ascend, it is therefore possible that in the areas of higher-grade metamorphism, e.g. in the Moldanubicum, there are exposed layers in which Hercynian alterations had started in the Ordovician, whereas in other areas which represented higher layers of the Hercynian orogen, sedimentation continued still in the Devonian (Jeseníky Mts.. Barrandian). Radiometric data and their scatter from -íOO Ma to about 270 Ma would correspond to this interpretation; the latter value compares with the closing phase of heating in the late tectonic magmatism. The Late Devonian can be regarded as the period ol culminating Hercynian metamorphism. The time succession is complicated by '.he typical migration of maximum metamorphism in the Hercynian zone from the south, i.e. from the Moldanubicum northwards into the Saxothuringicum and the Rhenohercynian zone during the Devonian to Early Carboniferous. This migration can be substantiated as in the Bohemian Massif (the Brclonian phase in the Moldanubicum, Sudetic phase in lbe Krušné hory Mts.) so at other places in the Her-cynidos, for example, in the Rheinisches Gebirge (radiometrically). The termination of this metamorphic phase is also asynchronous owing to the origin of autonomous blocks. Whereas in the Lower Carboniferous, molasses of Moravia already contain pebbles of typical Moldanubian rocks (5 I e 1 c 1 1960, 1969), in the Krušné hory region and northern Moravia alterations had occurred still in the Late Carboniferous. The Hercynian metamorphism is thought to be a low-pressure metamorphism of the periplutonic cordierile-sillimanite type. However, it shows this character chiefly in the Moldanubian zone, in other sectors it is rather of the Barrovian T utile 6.2 Melamorphk- stages and itieir phases on the territory of the Czech Soc. Rep. a. bo s s Niiine of metám, phase Approximate interval at present denudation level in million years Type of metam. phase Typical examples in the Czech Soc Rep. Saxonian platform phase contact met. in Bohemo-Silesian volcanic arc, Pb:U re-equilibration 0> ÜB a C « .5 « £' — Late Moravian (Frasl et al. 1968) 300-280 retrogressive phase albitization, epidolization of Hercynian intrusives, Teplice porphyry tu B >~i ň OJ C Bohemo-Moravian 330-300 lale tectonic phase Central Bohemian-|-Mnldanubian plutons, periplutonic metam. (cordierile migmatites) Ligurian (Kornprohst et al. 1980) 370-330 syntectonic phase andalusite-staurolite alterations in cryst. units (Jeseníky Mts.) Bohemian {early Caledonian) 520-450 platform phase Křivoklát-Rokycany Belt íŕ bi ri 540-430 retrogressive phase alterations in the Jílové Zone c S -s -S " "s o Norman {Kornprobst cl al. I960) 570-540 lale tectonic phase Lusatian pluton. Prulero-zoic basic massifs of Barrandian, Islels Zone-(-Zelezné hory Hills E Earlv "Moravian (Frašl el al. 1968) G.W-570 syntectonic phase reg. metam. of Barrow type in Barrandian, boundary of granulite facics in Moldanubicum ? platform phase "e a ä retrogressive phase higher-temp, alterations of basic rocks of Brno Massif c c, -- c s £ -š s 0J b ft- Icai ti an phase (Korriprobst ni al. 198'J) ? 1800 (900?) late tectonic phase syntectonic phase Brno phi ion (900 Ma?) reg. met. to granulite facies in Brno unit ,*A|V.\- jíl I Ulil' •i i f\_/t i M 11 i: ; i ")! i 1111111 1111 N 11 r ; Wj i ii 111111 i i 1111 + i-í- + f + + + + + + + + + + + + + +Nf + + + + + +-r + ,+ + + + + + + 4- + + + + -H\+ -r- -I- t + f + + + + + +- X h + BSG OPARANY (i.1'2 Zdiu's of periplulonie migmatization ut Lhe southern margin of the Ontrnl Bohemian Pluton (M. Suk. 1981) 1 — Ceiilrnl liohemimi Pinion; 2 — hornblcitf the Varied C roup of ihe Moldanubieuni; -) — zone of pearl gneiss (PG) •. (i — /one of si romulitic migmnlile (I'M); 7 — zone of sillim:'.iu!e-hiolite parngnciss ( 5S(i) type, and in the Krkonoše Mts. at the northern margin, it bears features of a series of medium or higher pressures (Fedi.uk - M í s a r 1968, Ryka --Znosko 1978, Stele 1 1968, Cháb- Vrána 1979). Some characters of higher pressure are, of course, found even in the cordierite meiamorphisim of the Moldanubicum (F e d i u k 1971a). 6.11 Zones of Ilerryniai) metamorphism in the Bohemian Massif and the Brno nn i (M. Soli, orig) i — Hercynian plutonites; 2 — low-grade metamorphism (predominantly chlorite and epidole isograrl*) ; 3 — very low-grade metamorphism (muscovite isograd and increased coaliFiration): 4 — medium-grade metamorphism (garnet, staurolite-andalusite and stanrolite-museovile isograds); .j — medium-grade metamorphism (-[-sillimanite and -f-K-Feldspar isograds); 6 — zones of high-grade metamorphism (predominantly cordierite-K-feldspar) A typical feature of the Hercynian metamorphism in the Bohemian Massif is its polymetarnorphic character, because the younger high-temperature Hercynian stage is usually superimposed on the Cadomian metamorphic assemblages or even earlier (Acadian) higher pressures phases (F e d i u k 1971a, Vejnar 1966a). The mutual influencing of the Cadomian and Hercynian metamorphic stages is exceptionally intimate and their relations are much closer than is usual e.g. in the zones where Caledonian inelamorpliism is superimposed on the Pre-Cambrian one in Scandinavia or of Alpine on the Hercynian metamorphism in the Alps. Characteristic overprinting of earlier assemblages with kyanite, stauro-lite and garnet by younger alterations with sillimanile and cordierite has already been described by W a 1 d m a n n (1927) and it is repeatedly confirmed in different units and on different rocks, such as granulites (Fediukova- Fediuk 1971), eclogites (Fediukova - Dudek 1979) or in cordierite gneiss. The formation of exotic rocks with saphirine (F i s e r a 1977) and corunduta (S u k 5.1o Donvil structures of km-order in the Moldamr-bicum of southern Bohemia (according to 1:200 (WHO map, Strakonice sheet) 1 — cordierite bintite mig-rnalite: 2 — pearl gneiss; 3 — binlile parugneiss; -1 — lem-ocratic gneiss; o — i v t rogrude-metamorphosed rocks; G — silliirianile-bio-lite paragneiss, partly mig-tnati/cd: 7 — Hercynian plutonites ''S š 0 30 SOkm i_i_i 6.14 Doinul slruelnres in lbe liohcniian Massif (0. Kumpera. orig.). Yolcano-sedimentaiy íloprc sírni i onncctcd wilh tliem are sliown in bl.ick / — Miinchherg zóne; 2 — Smrčiny Dome; Z — Säclisischcs (iranulitgcbirgc; 4 — Krušné hory domal systém: •) — Skokov cnpola: fi — teplá dome; 7 — dome of tlie Krkonoše and Jizerské Icn-y : ŕ( — dome oľ tlie Orlirliŕ boi-y and Ktod/ko; í) — Velké Vrbin) dmne: 10 — Kcprnik dome; 11 — Desná dome; 12 — Oskava dome; 13 — Rohle dome: 14 - .Nemilky domo; 1~> — domal systém of Kutnň Ilom erystallinc; Ifi — Oheb dome; 17 — Svratka iloine; /6' — Olesniee dome; .7.9 — Jildávka íloine; 21) — Dyje dome; 21 — eupnla in ihe ľVí/kv Jeseiii!i Culm et al. 1975). which appear sporadically in the crystalline complex of the Bohemian Massif, can also be accounted for by polymetamorphism. The Hercynian metamorphism is associated with regional migmali/.alion. The following types have been discriminated: a) the infiltration of rocks by granitic material is usually connected with technically predisposed zones. This can be exemplified by the formation of the granodiorile of the Kozlovicc type (with cordierite and transitions into agmatile-like migmalite), which is associated with the Klatovy fault zone (K o dy'm jun. -- S u k 1961): the Sazava type in the Central Bohemian Pluton, interpreted as tcctonically disturbed series of basic volcanites infiltrated by granitic material, in the zone of the Central Bohemian suture (P a 1 i v c o v a et al. 1967, Fig. 7.8); and the origin of some mignialitie orthogneisses in western Moravia (Dudek et al. !97/i). in the zone of the Moravicum and Moldamibicum. A foreign analogue are pelites and migmatites in the zone of the Bavarian Quartz, Lode: of tlir < Jiiluiniiin in. Uiiuorplium in the Uiyuov Mica *du»tj betwci n I In- unliforiii -ii in tun-* i>f tlx' InUi.it liiiliriiiuih I'lutou and llii- l-enlral Mas«if . As iu the cloture "I tlir I liTiv man iirogniv the entire pluie of the central ami •imtli. in 11.irt- nl iln< Itoltumian Massif hail Ireeti iiirliiinl to the north [) u • ■ I i- k - > ii k I !••'"• iIn l.t,-Is . N|iu»i'd hy denudation ul tin- present day nm-fate differ hy several kiUttiMttre* \eg. aix-urdinjt to the dip .if hin'aluuu the difference Ih-ihith the northern nnd southern margin* of the M'-ldiiioilo. on. amounts to Ul least I „' kill . mid the /one- id hitfher grade niet.lilioi pln-mi wi.l.n toward* $ and SW. At the »oullieiu margui of llie Muldaiiiihicum near I'imsu, for example, occur .ni.ile\iti'» with spinet, and musenviledmitilc gneisses prevail at it* northern margin The intensity of ruigiuuli/uluin nl-o increase* sou ill ward* and the individual irraniloid ho die* have a pronouncedly w ideiiiuu /our ..I cooinct mi'lamorpliifm at southern margin* (eg. in Central lloli.-iiiinii I'lutou. karloss \ firs mas*if, fiahslon ma**if. I.|"> 1 in. ii.l Imi. 1114; ni'ifii. ilitr lonUil Ivtsiw t«niilili*nili'|.|i n.\rni--hui|itr ni'telr flV l»>r lv|.r 11 (lie I enlr.it Itnhrtiuun I'liil.ui unit unm-ir* nl I In- MnliUttabiaa Vnrinl • •mti|i. >i.lllhcn«lr- 11 ii.iinini Mird- 1 lie cud o[ tlte I lerrs uinn oietiitu.>rphi»in the condition* in the initialing li|oik> liecimie markedly differentiated. While fly*ch depo*iti of the l-owrrr h dehxdrjiii.oi uiul gem>»t» of no|£iiimiir tenure* des Hoped lis inner migration id ,i|h»tauc."., u ithout Mipply of iniiterilil from out-id. S 11 k Kc d i u k O - * I - S 11 k I!I7!II; ......I.ill,-.limit of the material of U'lieoerulic guei*iie» with synchronous supply, ■ • l.nli i* known mainly from lite southern margin id the Oulral [lohenuaii I'lutou So ii. 1- k l!»7'i, - 11 k 11*7!» I In* type of iiuginnt i/ntioti if connected ipJilinlN with the etnptjoi-uieiil of iiuurmiititrt, hot the formiilion of iiupmulitc structure* in variably p rrerf led llie intrusion at a cerium ilcmidalioii level. iV.irl «iiii>«'» in loriue.l iieurer to llie granitoid, passing into handed migmatite l-iHicU the more remote /ones. Linked with ll*r*e processes is also llie migration ..( in.'l.il clement*. rsjH'Ciiilly imld (Hid uiunitnit, the eomeittrution* of which nrr very i.lirn ni Mi.- .....reins of the imuutitl i/alinn roue* Th*' /one* of Ih-resnian iiKrlamoqdii*m do not have a zonal course as have 1 lo- /onr> of the Oidomum me taniorphism. llie alterations are most intensive in I he doiiml ulrmitirc*. 10 phu e« of diapinc character lig. 'ill1. associated with granitoid* ami llliirnmtitc> I'im i, | j Ml ||,r Mohlm.iibictmt, tlir Krusiie liorv and -le-eoiks Ml*. Ilclwrcti the domi*% there are >ei|or« of lost erauidc mt-tuiuoi-pliUm. iii uhirh rather ulleiuliou* of fort'itoiug »tnne« are prevrte.l eg. relie* 1. 1 1». Ki.r e.irtldi.iith.......Im tVr.....Curlw.llltch.n. »1 ill* tMMMlUUl .\Uuif (s Skw toll I3TS/ / — «, i.»lu I >•«• .-I ...ul Urn) am J - ic'li', Imn <■ .il tilimilr -n >.il. .1 — .li-v'n.....I .o.ili!u»ii. incUinmrphic omdilum-, .nil o\i»led til other*. The ilthniilntion uf block* in which overheating Mill persisted in tin I il> I -mlmuift-not* inn) 1'ermiaii lm* been fncililuled liy ■ I ■ ■ - Mud v nf /one* *ln>w-11141 different degree, nf coidifiralion of organic subitancc* iDvuFák • Skoček Iffói Skoček 1076. Dvorak - Wolf 1I)7U|. In consiiaenn with lite inclination of tlíc I.i-Imiiii.ui Mn*»if tn tlio innili coalificalmn 111 lln-< ;m lnntiíerou> units nilei^ifns inward* the south (in the I'alneo/oie of Morn v in. Ill llie Uhnili e and floskiivin I nrruw-.. ulierr increased tempem! un- 1I0111I n.ile d •till in the 1'ertliinn . The irrealisl Ileal Now in the l prjer tjirbon derou* hat lu'i'ii determined in the western |uirl of ihe I pper Sih-síiin ha*in. where the loei.i......|>l.>. iii.i.lr .!.(11.11. K ....., from en*l lo we»l. and in the KruMié 11-«r> Ml. Hram|o\ . where all iucrru«cd heal flow ha» persisted up to dale. Various alleralinn type* were pmdueed h\ the ascent of linsir iniiiriim* 111 the Tertiary, in the Itohmio-Silesian volcanic arc thermal shock melnmorphtMU el Mo I'onliii 1». f.k million o| tpilm-iti'h and de*luo<.iles . I l[ rrliilivrlv wide ralitf< however, are also lite "anomalous" radiometric data, thus far mil uiterprrinhle, uliirh siurgosl a re-o|>enitui of the *y»lerns in the Tertiary tl< e g i e r * k i - Villi ě é e k tll'i'i, I i h a 11 e r - < i r ú 11 e n f e I d e r li)77\ *. Tectonic development Tlu< following fundamental gculectoitu' null* build up the region nf llir Czech Socialist KepuhJir: Tli'- oldest it llif Pro. ainbrinu basement ciui.olidulcd bv Caitomian folding It ...(i-i-i- of lln- Iti.....our Hniuovislulictiin . nod ....... parts of the Oystflllhte of the Bohemian Massif, incorporated into the I ler.- ynian -tun Inn- Besides the Cuduiiuan orogeny, also earlier, pn-l adominn |in«iv.«i^ I talslmidiun! contributed to the consolidation of tome parts of the Ma«sif. 'Hie Upper Protcro-znic in the Bui riuidmn and in 11■ ami* of I In Krkimnse Mt>. and the Km.lie liurv Ml. wns 011K affected l>\ the < .inhuman orogeny. Ill, l.i.iu-i l'.iliii-,,/tiii unit km consolidated jointly with the basement unit. I>\ Korcyuiau folding. The platform cover i. formed of the Mesoroir mid yoiuiU'T noil*, whiili wen-subjected onl\ to I lie Saxonian tectonic proccs.e-., Mie.e three geolectonic unit* are structural layers of the Bohemian Mns.if The projection* of the West (Jirpalhian*, extending- lo eastern Moravia, were consolidated by I lie Alpine folding; their cover iikiiiiIy m rupje. the iiorllient part <>f i In- \ n-iinii Initio. 7.1 Aj» nam tuple „t llmyaun f-il.ling Silurian nf tin lUrruatluui, Ituddany jock. IterniinV ■ VHitry W of I'mcac Photo by J. Itublo 7.1 The development of the principal geoteetonie units of the Bohemian Muss if 7.1-1 I'n * uiiihrtaii bane merit nf llic Mnhemiun —if The P r e c a m b r i a ii h a * e in cut of the Bohemiati Massif i« represented by the Brno unit Bruno* isiidicum and its equivalents incorporated into the Cadumian and I lric> niiui structure, such as the Moldnnuhiiui structural layer which, ui I lie opini......f .oine aiilhnr. i» ipute .eparnie or lite Upper Protero- jloir (inhuman structural layer. The Mr no unit displays a number of features which indicate thai il original!* belonged to the East Kuro|k-aii Platform, a projection of which it probably rvpreseuts I Fig. 2.3k Therefore, die eurliest \\ — K nod N — S trends are diiuhtiaul in its structure, being less common iji the voiiuger structural layers. These trends are also manifested in the deeper -trncture iejj. the N—S magnet-u auouuilv extending transversely to the surface structure between PohoMtoe and Svilnvy TTie jiluloaic rocks nod inelainorphic isograd* also have the E— W strike Kig. Ii.lt . The later hul still pro-Devonian ,\\V SE trend muinlv in fhiciiee* the distribution of the Palaeozoic sediriieuts, and the subsequent S\\ Ml and SSW — WE trending fault* disrupt the overall structure (after Dudek 1!Wtt,. The llmnosistidieuin forms the basement of the West 1 u [milium* and of the en.teru inargiii nf the Bohemian Massif, into which se- ;ral blocks of Lhe Brunovislulicum ave incorporated. These are, for example, e Brunides of Tišnov (.1 aroš - Mísař 1976), and probably some parts of '« e domal structures in the Jeseníky Mts. The Moldanubian structural layer is the most important Pre- .mbrian structural unit of the Bohemian Massif. According to Zoubek (1976) id Chaloupský (1980), it is older than the Upper Proterozoic of the Bar- ; ndian, and probably corresponds to the Dalslandian structural layer in Scandi- i\\a and its equivalents in France and Great Britain; its age would thus be !00—850 million years. In the Bohemian Massif it involves the Moldanubicum, I Inch occupies the Šumava and the Český les Mts., the southern part of central ahemia and the Českomoravská vrchovina Highland; in Poland the Gory >wic Mts,, and the Granulitgebirge in Saxony. The Cadomian (Baikaliau) structural layer, although fficult to date and differentiate stratigraphically, represents the tectonic svelopmcnt of the Proterozoic geosyncline with typical Cadomian folding, here the filling of intramonlane depressions with molasse sediments had ntinued until the Early Cambrian. The age of the Cadomian structural layer estimated at 850—550 to 500 million years and covers beneath the Hercynian mctural layer virtually the whole region of the Bohemian Massif, including its der reworked Dalslandian parts. Indisputable is the first intra-Proterozoic ctonic "Železné hory" phase (S t i 11 e 1958, Kodym, Sen. 1963), which stinctly separates the Proterozoic Spilite Group from the Eocambrian. The cond, infra-Cambrian phase separates the Eocambrian from the Lower imbrian. The Cadomian structural layer is characterized by the SYV— NE ends, discernible in the Precainbrian of the whole Bohemian Massif: in many ' ises (e.g. the Barrandian Palaeozoic) they are reflected in the Hercynian mctural layer. This influencing of the Hercynian structural layer by the tectonic ructure of its Precambrian basement is one of the most relevant features of e Hercynian orogen in Central Europe. A major tectonic line of the Precambrian basement of the Bohemian Massif the Central Bohemian suture trending NE—SW, which forms the boundary I slween the Moldanubicum and the Barrandian and is a component of Zoubek's •e-Moldanubian lineament. The granulite and ultrabasite zones in the Molda-ibicum, in whatever way they are interpreted, also indicate important tectonic les. The existence of the Cadomian nappe structure is questionable. Some iu-cations have been recognized in the Lugicum (F a j s t 1976) and in the roterozoic of the Barrandian (Kodym, Sen. 1926, P e r t o 1 d 1964), but eir interpretation is not unambiguous. > i 7.1.2 The Hercvnian structural layer The final character of the Bohemian Massif has been defined by its annexing to Meso-Europe: the Hercynian history in the Palaeozoic was closed by Hercynian folding associated with the emplacement of numerous plutons and extensive regional metamorphism. This folding had reworked the whole region and often obscured the earlier, Precambrian and probably also some Caledonian structural units. From this point of view, the Bohemian Massif has a tripartite structure, consisting of these vertical components: the Precambrian (Cadomian) basement, Hercynian Palaeozoic units, and the post-IIercynian platform cover. The presence of the Caledonian structural layer is still subject of discussion. In the area which should have been folded and consolidated by Caledonian orogeny, Chaloupský (1967), has proved that only the Hercynian folding was of primary importance. The Caledonian orogeny had caused mainly epeiro-genic movements, which resulted in hiatuses and facies changes. The end of the Cambrian and beginning of the Ordovician is demarcated by a hiatus due to the Bohemian phase. As it is shown by a slight unconformity, Kodym, Jun. --Suk (1961) thought it to represent the aftermath of the Cadomian orogeny. The end of the Ordovician and beginning of the Silurian are also indicated by a stratigraphic hiatus caused by the Taconian phase. In the Hercynian structural layer three main stages are differentiated (Maška in Bud ay et al. 1961). The lower stage involves the Devonian and older sediments and magmatites of the Hercynian geosyncline. In this stage the first phase of Hercynian folding, the early Bretonian, was active. In the central part of the Bohemian Massif and in the Jeseníky Mts. it was in places alpinotype and associated with regional metamorphism. The middle Hercynian stage includes the Carboniferous except the upper Stephanian. This structural stage was locally affected by the Sudetic phase between the Viséan and Namurian, and by the Krušné hory phase between the Namurian and Westphalian; it was closed by the Asturian phase in the lale Stephanian. Between the Bretonian and Asturian phases structural substages can be discriminated on the basis of orogenic subphases. The upper Hercynian structural stage covers, according to Maška (1961), the uppermost Carboniferous and the Lower Permian. As this stage is postorogenic and is represented by the fillings of intramontane basins of the Hercynian mountain range, the deposits of the Upper Permian can also be assigned to it (M a 1 k o v s k ý :1974a,b). On the basis of tectogenetic criteria we believe that this stage in Meso-Europe also includes the Lower Trias-sic in the facies of variegated sandstone, which lies on the Upper Permian without a distinct hiatus. In this Hercynian structural stage, which is characterized by gcrmanotype tectonics, there are in places manifestations of the Saalic phase between the Middle and Upper Rotlicgendes and of the Pfalzian phase ■I wee n tin' I (tIii*i Itnilieyendi - ami kurly Triassic. The filling nf inlraiiiontntif* I in —...... nl lliľ M. i. ^ m.m himiillAltl rail|fľ iii till' Hole lllillll >. I; i-—■ i f . i - 'I'- ti it i vely rinsed h\ 1I1- MiiiLUii.sinn ph..-.' between tin- Kurily anil Middle -ÍH*>iľ 'I'll. Inline míľ ľ i' i i f1 i i -*11 ill" HUMii- hnil Im, ii -llľil tľl.11,11- 'I ill lili It.-li''....... omíí m-iimlirirŕ tu (Im* poriilinn in the llercyiiiAii nni|ii ..ľ m.i«, - < ..Hurried wílb extensive remo- ILtntioti o f ihe fcrmiilic material Tbrre is » i-hAracleristic predominance nf it i forms (diapint) and a marked iuchnntinn nf tin.' whole block inwards \NK. ring |o which deeper levels had been exposed hy denudation in the touth-n part* than m tin' Nľ. margin Dudek - Suk I9U5'. Slíllv itOiíl) niíed lo tin■ Miildiiiiuhiľtiin exposed parts nf llm Assynlian block R5 it WU lirniiľd hy K «d y m , Sím. llfMi.lt, In thi* «nni.pt, (he AssyritÍAii block eludes. Írom W Ln K: tin- ]>miia>lii-e crystalline, tlir Teplá crystalline oomph-v irrandíwt, Lower ľnhino/oic of Hirudin! and the Illiiisku mne, and llm Kutná ;ira, CMfeVi Zrh'/m- bnrv and Svrnlka crystalline complexes 1 C h l ti p i'i ŕ r« Mfití , ii/, it r Mi-min up lo the Mnnivii-iini. Kudiin. Sen. thus differentiated e intensely nielniiuirphnwd Moldnnuhicum bluek nnd b»w-metamorphosed isynhan hhnk. \nturjill>. iln- j^itniiicrii of Mime minor I.d.rka at tlie mutaci the Middííhuliiaii .ind V—-l mN«m blocks with respect to the grade and intensity Mervyuinn i i it ne.ii m* is fpwsl inn able. Oil' tectonic* of ll»ľ Mohhiiiiihicum is poly phasic; in some pari* at many ai \ «i'll defined tectonic phuses run be i listing uished, which hnd developed iring two unigrmi- processes nl least, i.e. the ľadnminn mid tlcreyiiian. the fecit of which cannot be safely stated everywhere. I hi- inu>l -Inking -ilniilnn-i are synch'nes nil.I u nl nl i in'- lu.inv kilometres in *. Their ave. lii'inT/illy dip iivndr mlely to Xli, only in the Sunuivji Ml- and AMI neighbourhood of Zdar nnd Snrnvmi tlie strut-lures are hroutily vertical, ley nr»> predoiuiiuniib nl ni|iiitinui| lyjw mid lind developed hi the plastic ii»- nf mcks; planar elements prevail only in lower-grade nietaiuorpliie tiii.ru->ii*l-gneisses. Diaptr structure* increase hi amount mwiinli the more inleiiidy il'iiiji[i/'-iI part* uf I lie Mold.innhjeum. H e n e i 'MNi-íi diffi-nniliated five »>*Ii'Mih uf It as»» in the Muldiuuddeuin d i.'oinideft^l lbe oldeiil NK—S\V fty*ttiii in I,*- pře-(ladumian. lir found ilt iľhMDii min thľ iiľiuliliiiiiriii): units ntily in plače*, whiih be expbiiu^ by fteritanee of nLnio-tiiitti. In hú opinion, the foliíming -NW— SBl »>ftet)l Í» (a-iiiimi. and ílu- subseipnml did>.irii.ilľni late CuiIdiuuii tip to llercyiiitm. llie strátirmtliim » )Mirnllel In ílu- prinripiil ini-lniiiurpliii- H'hUtolity. Dutgoiml ike liJii been ohserved in mi.....ťrainihlei K u d v m . lun. litľ'J , A separate inner Mnirlure of large granulite bodies i» known from both the Bobemuii and \uniruiii puiť- "í tin- Mi.ldiiiiuliit'iim i'S e k « r b e r I Kodym, Jum |fl72i. 1.2 lt.iri/.u.i .1 ImI.I in \l|tet«tit unit*. Intrusion* of Htnfiites, more intdi*e mi|nnali«iticin, ehl«>rilixatinn and other alleralinns took plin-i- ;il..iii; lliom. The change* Ml ill'1 -iriki- of fnhntioti mid In iiiiiuiliiiii of nu'k bell*. liuHvi'tr, ii not of such a degree to subuonliuli' a [iresumplinn of tin nappľ structure. Some iteologist.- think it mure hkely ihut irraiiulilcs mid a$«piiHiil nl tin' ľiilrteii/iiie mul rilpiimlv |»- ilercynian folding. Towards N\\ ii passes inio llie Rhenohercynicum (the Harz Mts.}. In this region the latest Ilercynian phases were most intensive. The crystalline complex of the Krušné hory and Smrčiny builds up a compound anticlinal belt, which is divided transversely into several minor domes and anticlines: the Smrčiny Dome, Klínovec anticline. Měděnec anticline, Hora Svaté Kateřiny Dome and others. The overall structure of the anticlinorium is asymmetric. The southern limb is steeper, and towards ENE primarily deeper, more intensely metamorphosed units are exposed at the surface. The well defined zonal structure has been studied by Škvor (1975). He divided the upper structure into two layers. The upper layer which corresponds to the muscovile-chlorite zone, is characterized by steep folds, and by schistosity differing in strike from the original bedding. In the lower layer (biotite zone) there is usually bedding cleavage. In the overall structure a slight undulation with a slight curvature and amplitude of folds is perceptible. The mica-schist part (under the conditions of the epidote-a'mphibolite facies and amphibolite facies) is intensely folded. The folds show a great curvature and small amplitudes. The migmatite complexes are characterized by structures of cupola- to domal shapes, whose development were completed by the ascent of underlying granitoid bodies. The differences in the tectonics of the lower, middle and upper zones are also interpreted as structural discordances. The linear structure of the western part of the region was studied by Holubec (1966). The lineations (point of intersection of schistosity with cleavage, preferred orientation of micas and small folds) are usually parallel to fold axes and generally trend E—W, with inclination to the W . Holubec presumed on the basis of fabric analysis a structural discordance between the Cadomian and Ilercynian structures in the Smrčiny Mts. above the Arzberg group, but Skvor considers its existence as questionable. Sporadic observations provide evidence of a very complicated structure, comprising, for example, recumbent folds in the IlammerunierwicseMal limestone quarry and blocks of Ordovician (?) phyllites directly overlying the higher-metamorphosed basement near Ilermsdorf, Rehefeld and Vápenice. Nowadays, they are mostly regarded as transgressive, having a different orientation of B-axes than their basement. The Lugicum makes up the north-eastern margin of the Bohemian Massif and of the Ilercynian orogenic belt in Europe in general. Consequently, it shows some different features and a very complex structure with the Pre-cambrian baseH*e«t and manifestations of the Ilercynian folding as well. The oldest, Devonian phase is of primary importance. Stille (1951) assumed the principal folding and final consolidation to be Caledonian. The unit, however, is not a component of the Caledonian orogenic belt but. in our opinion, the revival of tectonic activity (Chaloupský 1967) and palaeogeograpluc changes in the Early Palaeozoic were doubtless a repercussion of the origin of the Caledonian orogenic belt in north-western Europe. The Krkonoše-Jizerské hory crystalline complex displays an asymmetric domal structure with the Ilercynian plutou in the core. The views on the structure of this unit are not unanimous. The alleged Caledonian nappe structure (K o d y in , Sen. - Svoboda 1948J has not been confirmed by recent investigation, but an unconformity between the Upper Proterozoic and Ordovician—Silurian units has been substantiated. The Cadomian folding and metamorphism gave rise to folds of N—S trend (Chaloupský 1967), and the later (Caledonian after Chaloupský (I.e.), and Hercynian, after C h 1 u p á c 1964) reworking produced structures with axes predominantly of E—W strike. The Orlické hory-Klodzko crystalline complex shows a well-defined domal structure. The core is formed of the rocks of the SIronie Group and associated orlhogncisses. In the W it is rimmed by the Nové Mčsto Group and in the E by the Staré Město mica-schist belt. F a j s t (1976) claimed a tectonic phase between the sedimentation of the Strónie Group and the Zábřeh Group but Domečka. Opletal did not find satisfactory evidence for its existence and regard the boundary between the two units as tectonic. The Strónie Group is folded isocliually with folds overturned to the E. The fold structure of the Nové Město Group is relatively simple, with flat-lying megafolds whose axes trend E—W. The principal NNE trend in the Staré Město mica-schist belt is parallel to the Ra'mzova overlhrusL. Th e M o r a v o - S i 1 e s i c u m underwent a different pre-Devonian development (the Upper Proterozoic basement was forming in a technically mobile zone) and the Ilercynian evolution as well (the Palaeozoic transgression probably occurred as late as the Silurian, the Devonian is of a typical geosynclinal development, and the Hercynian folding of the alpine type). Dvořák (1968) separated "L h e Sudeticu m'' as an individual geotectonic unit, and ranged to it those parts of Slille's Moravo-Silesicum that belong to the Hercynian structural layer. In this sense, "the Sudeticum" is a Hercynian unit, formed predominantly of Devonian and Carboniferous rocks; it occurs at the eastern margin of the Bohemian .Massif and in the mantle of the Brno unit (Brunovistu-licuml. The Moravicum builds up a strongly technically disturbed zone between the Moldanubicum and Brunovistidicu'm. whose original relation to both these units was completely effaced. The limitation against the Moldanubicum is primarily inet amorphic (C h á b - S u k 1977) but the inetamorphic boundary was considerably influenced by tectonic movements. Suess' opinion that the tectonic and metamorphic processes in the Moravicum are of Hercynian age, being connected with a vast, overthrust of the Moldanubicum on the Moravicum has not been accepted by the Czech authors. They think the Moravicum imetamorphites- to ho pre-Devonian. probably Cadomian. and do not exclude the Caledonian age either. The Moravicum occurs in the Svralka and the Dyje Domes, which extend to Austria. The Dyje Dome is overlain by the Brno igneous massif, and the strongly tectonized granite in the Svralka Dome bears relics of its mantle. The transgres-sive Devonian locally preserved on the Svralka granite is divided into two tectonic slices (J a r o s - Misaf 1976). The Bily polok unit (Inner Phyllites) sets on them tcctonically, and is followed upwards by the intrusive body of the Bites Orthogneiss and the Vranov-Olesnice Formation (Outer Phyllites). The boundary between the Bites Orthogneiss and the Bily potok unit is not tectonic. The Nedvedicc unit (thc Moravian mica-schisl zone) in the basement is primarily of a lower metamorphic grade than the Moldanubicum, and not its part altered by retrograde meta'morphism. The Moravicum shows two vergencies: the western. Cadomian or Caledonian in age and the eastern, which is later and affecting the Devonian. The Molda-nubicum/Moravicum boundary is often followed by later faults of different character ami genesis. , The SUesicurn has a similar tectonic position and structure as the Moravicum. It makes up two principal anticlinoria, the Keprnik and the Desna Domes: they are separated by the geosynclinal zone of Cervenohorske sedlo, which is a significant gravity boundary. The overall vergency is to the E, and the very intensive Hercynian reworking considerably obscures the earlier structures. In the region of thc Moravo-Silesicum (and "Sudeticum") the Hercynian tectonics affected most strongly the western part, i.e. the zone of Cervenohorske sedlo. The overthrust of the rocks of the Keprnik Dome was accompanied by a strong slicing (imbrication) of the Palaeozoic and its Proterozoic basement (Misaf 1960). The intensity of deformation decreases to tbe ESE. From the apex of the Desna Dome to the Sternberk-llorni Benesov zone (inclusive) the fold structures are of western vergency (with very few exceptions). The westernmost part represented by the Vrbno zone, was affected by low-grade metamorphism and very complex folding. Three deformation phases have been reliably discriminated (Orel 1975); they occurred before the sedimentation of the upper Visean (D v o f a k 1978a). The sizes of folds of phase I are of hundreds of metres to kilometre order and their axes trend NNE—SSW and usually dip to the NNE. Folds of phase 2 are coaxial with the preceding folds but only of dm to m dimensions, with almost horizontal planes. The youngest phase is represented by open folds of cm to dm dimensions and with rounded crests; their axes strike S\V— NE and dip moderately to the NE at the apex of the Desna Dome, and more steeply in the area of Palaeozoic formations. The level of folds rises westwards. f The eastern part of the Nízký Jeseník (Oderské vrchy Hills) is characterized by erturned folds of 'in- to km dimensions, with eastern vergency and eastern ination of the fold level. The more easterly coal-bearing molasse of the rava Group as far as the Orlová Fold shows a similar character of de-l3tion. East of the Orlová Fold in the basement of the Flysch Carpathians Palaeozoic complex is no 'more folded. The block of the Drahanská vrchovina Upland situated farther to the S is ,arated from the Palaeozoic of the Jeseníky Mts. by thc NW—SE trending ^hjrgt-like structure of the Upper Morava depression. The Konice-Mladeč anti-inorial zone (Devonian in limestone development) separates the westerly Bou-■V synclinorium filled with Lower Carboniferous greywackes and shales from larger easterly synclinorium in the northern part of the Drahanská vrchovina "tJphmd. s*»~The southernmost block of the Moravian Karst is folded less intensely (D v o -.§<ék 1973); a stronger deformation is observed in places of ancient fault zones * ft* the basement, which were active already during sedimentation (Dvořák et tfe 1976). At the western margin of the Moravian Karst the folds and thrust . ÍÉttlts show a western vergency and in the eastern marginal part an eastern one, tboth instances a strong axial-plane cleavage is locally developed. Devonian K jtestones between these zones are almost unaffected by folding. 'East of the Moravian Karst the Lower Carboniferous was not folded; it was brmed into two large Luleč and Olšany brachysynclines at the south-eastern átřbargin of the Drahanská vrchovina Upland. The term Bohemicum was used by M alko v ský (1979) to denote iflbe Assynlian structural layer. Proterozoic sediments of the Barrandian are fold-in the NE—SW to NNE—SSW direction, i.e. diagonally to the fold axes in Barrandian Palaeozoic. The main syncline lies in the area of Lower Palaco-jyplftic sediments and the anticline in the Teplá crystalline complex. The transverse ^pĚSeský les elevation bounds the Bohemicum in W. In the southern limb near £*4)avle. folds of hundreds of metres to several km amplitudes and with medium lf^~ip of limbs and a simall amount of transverse fractures are well traceable. In V^ther parls of the Barrandian the rock complexes are tectonically disturbed gapnore intensely. Particularly strong transverse schistosity related with the Central Bohemian ^"Suture is developed in tbe "Islets zone" and the adjacent part of the Bar-Wndian. There is no evidence available for extensive nappe structure whose indications ■, *«re described by Kodvm, Sen. (1926), Jindřich (1960) and P e r t o 1 d ,- (1961). * Holubec (1973) differentiated the tectonic history into four stages: in the 8t stage schistosity s, but no folds originated. Clasts became aligned, quartz Jf^ains were re-oriented and minerals arranged linearly. Metamorphism and the main crystallization occurred in the second stage, and folds and schislosity s developed. The original alignment was partly preserved. The third stage ;s characterized by post-crystalline minor faults and chevron folds. In the fourth stage the fold structure was completed; it appears to be the youngest although it was initialed in the second stage. Tile Železné hory region is tectonically very heterogeneous. The Proterozoic is divided into at least two sedimentary cycles separated by a hiatus and orogenic phase, which was accompanied by low-grade metamorphism. It builds up the southern limb of a complex syncline of WNW trend, in the northerly part of whi-li there are Palaeozoic complexes. The structure is strongly disrupted by strike faults, which caused substantially greater shifts in the Proterozoic members than in the Palaeozoic complexes (Fig, 7.8), and brought the blocks of different chemistry and metamorphic grades together. Under these conditions it is possible that same of the disconformities recorded (Urban 1.972) are in fact younger tectonic features (e.g. discordant folding or boudinage). The Hlinsko zone is limited tectonically against the surrounding crystalline complexes, it had been overlhrusl and the rocks are intensely mylonitized along the thrust plane. The structure consists of N—S trending, steeply inclined isoclinal folds with slight western vergency. The structure of the Záhřeb Group and its equivalents (Polička and Le to vice crystalline complexes) is little known because of an extensive cover. It has a synclinorial structure of WNW strike, being linked up with the structure of the Barrandian Proterozoic. 7.1.3 The IVeoidic structural layer The Xeoidic structural layer — the platform cover of the Bohemian Massif — is the uppermost structural element. Mai kov ský (1971b,c, et al. 1974, 1.976.1 discriminated in it besides Triassic (which are still a genetic component of the Hercynian structural layer) five structural stages of sediments. The oldest platform stage (Upper Jurassic) corresponds to the platform development of the West Carpathian region (Both 1977). The following structural stage (Upper Cretaceous; compares with the principal folding in (he Eastern Alps and in the Carpathians. The middle structural stage (Palaeogene) is distinguished by the peneplunation of the Bohemian Massif. Sedimentation did not reach great thicknesses, mainly after a slight folding in the Inner Klippen Belt of the West Carpathians (Eocene—Oligocene). A younger structural stage (lower and middle Miocene) was associated with folding in the Flysch Belt of the West Carpathians. The youngest structural stage (upper Miocene to Quaternary) represents the development of the platform cover after the close of folding processes in the Wosl Carpathians. I The platform cover of the Bohemian Massif is not fully developed because the ' j\Iassif was almost continuously rising during the platform history. Therefore it ^as for the most time dry land amidst the Mesozoic and Cenozoic seas or continental basins. It was flooded partly by epicontinental sea only in the Late Jurassic, Late Cretaceous and middle Miocene. Denudation during the Mesozoic and partly the abrasion of Mesozoic seas gave rise to the flat surface forms (K o -jjvni, Sen. 1963). The process of the rejuvenation of the relief of the Bohemian I Massif began al the onset of the Neogcne, when its close neighbourhood, viz. the Flysch Belt of the West Carpathians was the site of folding. The mega-elevation uplift of the Bohemian Massif and its block disintegration was intensified in the Quaternary. After the close of ibe Hercynian orogeny the Bohemian Massif became a consolidated block. The platform cover, which was formed by impersislent sedimentation of Middle and Upper Jurassic, Upper Cretaceous, Palaeogene, Neo-|ene and Quaternary deposits, covers only parts of the Massif and is not of such thicknesses and regular development as are some other European large basins on the platform. Nevertheless, it provides important evidence of the vertical movements of the blocks of the Massif and their lime correlation with folding stages in the Alpine-Carpathian orogen, mainly in the West Carpathians. The tectogenesis of the platform cover of the Bohemian Massif can be divided into two periods. There are very scarce data on the function of major faults (during the period of the Mesozoic—early Badenian; from the beginning of the Badenian until the Recent vertical movements on ancient faults created its present-day geomorphological configuration. Most of the faults plotted in geological and tectonic maps functioned in this period. However, we cannot conclude from this finding that the first period was tectonically at rest. Extensive marine ""■"transgression onto the Bohemian Massif in the Late Jurassic and Late Creta-cous, the ascent of neovolcanic masses, chiefly at the beginning of the early Miocene, for which there are no analogies in any other epoch, give evidence against it. Sedimentation which had been interrupted between the Permian and Triassic because of the Pfalzian phase of the Hercynian orogeny, was renewed in the Early Triassic in north-eastern Bohemia, in the Intra-Sudetic basin and in the eastern part of the Krkonose-piedmont basin. The Lower Triassic belongs to the southeastern part of the German-Polish basin, which was situated north of the ■Vindelic landmass. The Vindelic landmass to the core of which also the Bohemian Massif belonged, separated this basin with epicontinental marine and continental development of the Triassic from the Alpine-Carpathian sedimentary area. The sedimentation of the Lower Triassic was closed by the Montenegrin Phase, which affected the southern parts of the Eastern Alps between the Early 3nd Middle Triassic. The absence of younger Triassic and older Jurassic rock complexes indicates a continuing upheaval of the Bohemian Massif due to isostatic movements. This interval is a period of definitive consolidation of the Epihercynian platform. At the time of late Kimmerian phases, the Callovian and early Malm phases in particular, the north-eastern part of the Bohemian Massif was flooded by the ocean in the late Callovian. As a result, a connection of the epicontinental sea of the German-Polish basin with the Alpine-Carpathian geosyncline was realized. The late Kimmerian Deister phase, which separated the Kimmeridgian from the Portlandian, brought about the end of Jurassic sedimentation in these parts of the Bohemian Massif. The movements on the Lusatian fault and faults of the Blansko graben caused the subsidence of Jurassic sediments in blocks NE of them, and thus also their preservation. In the other parts of the Massif, Jurassic sediments of small thicknesses had succumbed to intense weathering and denudation already before the Cenomanian transgression. During this period of denudation vast nappe movements occurred in the Central Alps induced by the Austro-Alpine and early Austrian phases in the Early Cretaceous. They were responsible for the sinking of the Bohemian Massif; after the late Austrian phase at the Albian/Cenomanian boundary, its northeastern part submerged below the ocean level in the middle and late CenoTnanian. In the Late Cretaceous the emerged part of the Massif reached its 'minimum extent. The Late Cretaceous sea was most widespread in the middle Turonian, but towards the end of it and in the late Turonian the sea began shallowing or receded altogether from various parts of the Massif. In spite of this event, the sinking tendency in this part of the Bohemian Massif was maintained until the Coniacian (except for several marginal sectors) owing to the formation of nappes in the Central Carpathians and Limestone Alps in the late Turonian Mediterranean phase. Subsequently to orogenic processes in the Alps (in the Early Cretaceous) and the Carpathians (in the Late Cretaceous) the Bohemian Massif began again to rise. As a result of the Ilsede phase, one of the group of the Subhercynian phases, marine sedimentation in the Bohemian Massif was terminated between the early and middle Santonian. In the Palaeocene the peneplanation of the Massif continued, being accompanied by bloek disintegration of small intensity. It was a period of strong waethering, which produced kaolinic residues in the Karlovy Vary area and silicificati.on of the surficial layer of Upper Cretaceous sediments in the Mosl area (V a c h 11 1952), and in the Kadaň (Kamarád - Malkovský 1955), Teplice (Fencl - Záruba 1955), Zatec and Podbořany areas (M a 1 k o v s k ý 1979). Continental limnic sediments were deposited as late as the Late Palaeogene, probably in the late Eocene to Oligocene (Malkovský 1979). They are represented by the Staré Sedlo Formation in the Sokolov basin and its equivalents in the Podbořany area and the České středoboří Mts. The Lipnice Formation in the South Bohemian basins is thought to be of the same age. In the flysch belts of the Alps and Carpathians sedimentation began again in the Eocene and Oligocene. Whereas in the West Carpathians nappe movements began in the late Palaeocene, in the Northern Limestone Alps they occurred later, between the Illyrian and Pyrenean phases of the Alpine orogeny. In case the Staré Sedlo Formation is of late Eocene age, it had sedi'menled between these two phases, if it is of Oligocene age, sedimentation occurred between the Helvetian and early Savian phases (Malkovský 1979). In north-western and northern Bohemia the basins at the foot of the Krušné hory Mts. and the České středohoří Mts. were developing as tectonic blocks between the Palaeogene and Neogene, after the early Savian phase. Intensive volcanism was active within a zone extending through the whole Bohemian Massif from NE to SW, and the Underlying complex of clays and sands se-dimented during the Aquilanian (late Egerian) (Čtyroký - Fejfar - Holý 1964). During the late Savian phase between the Aquitanian (late Egerian) and Burdigalian (Eggenburgian) when the Subsilesian unit of the West Carpathians had been folded, the subsidence in the area of Krušné hory basins was temporarily interrupted and the Main coal seam was forming. The subsidence was renewed here towards the end of the Burdigalian, after the latest Savian phase. The Overlying complex in various facies developments sedimented in all Neogene basins in northern Bohemia, includijig the Zitava basin extending to Bohemia near Hrádek nad Nisou. Sedimentation was brought to end between the early Helvetian (Ottnangian) and late Helvetian (Karpatian) as a result of the early Styrian phase of the Alpine orogeny. Similarly as in the Late Cretaceous, the termination of the lower Helvetian (Ottnangian) sedimentation in northern Bohemia was followed by subsidence and by limnic sedimentation in the South Bohemian basins, i.e. after the early Styrian phase. It is uncertain whether it had begun in the late Helvetian (Karpatian) but it certainly occurred in the early Tortonian (this is the only instance when it can be well correlated with the lower Badenian of central Paratethys). At this time the fluvial-limnic Mydlovary Formation sedimented, showing traces of intermittent ingressions of the sea. Tectonic history of the South Bohemian basins is identical with the development of the Alpine and Carpathian foredeeps, whence the lower Badenian transgression extended to south-eastern and southern parts of the Bohemian Massif. Sedimentation ended in the latest Styrian phase between the early and late Tortonian (Badenian) when the marginal nappes were translated for the last time. The sea retreated from the foredeep, and the whole Bohemian Massif in its present surface configuration became a Iandmass in the late Badenian. In the late Miocene and in the Pliocene no orogenic movements occurred either in the Eastern Alps or in the Western Carpathians (M ah e 1 ' 1974). The development is characterized only by epeirogeactic movements and palaeogeo-graphical changes. Fluviatile and limnic sedimentation covered the region of the Bohemian Massif. Straligraphically younger than the lower Badenian is the Domanin Formation in southern Bohemia (nehdková 1909) and its sandy equivalents such as the Vrábeč Member (2 e b c r a 1907b). It rests on the silicilied surface of the Mydlovary Formation (Lipnice, Borovany). Most authors agree that the Domanin Formation may be of Sarmatian s.s. age (see also Fe j f ar 1974). This opinion is also supported by absolute age of moldavitcs, which occur at the base of the complex (moldaviles of strewn field). The age was determined as 14.7+0.7 Ma (Centner et al. 1967). From the palaeogeographic view, the presence of the Sarmatian s.s. in the South Bohemian basins is not illogical. With the Sartnatian are grouped the fluviatile sediments not only in the Alpine foredeep in the Federal Rep. of Germany and Austria but also in lbe Naab valley, where they are believed to occur as far as north of Schwandorf (T i. llmann 1964), i.e. at the same geographic latitude as the northern margin of the South Bohemian basins near Tábor. Sarmatian sediments also occur al places of the presumed discharge of the South Bohemian basins into the Eggeuburg area, not more than 90 km distant. The distribution of the Sarmatian in the Vienna basin in Moravia also fits in this palaeogeographic pattern (Špička 1972). The Pliocene, palaeontologically not well defined so far, is known from the Cheb basin (Vildštejn Formation) and from the South Bohemian basins (Lede-nice Formation). The oldest river terraces in the Ohře valley and in the northern course of the Vltava valley are indisputably of this age, too. In Moravia, Pliocene sedimentation spread from the Vienna basin into the Carpathian foredeep and farther on to lbe Bohemian Massif along lbe tectonically predisposed Upper Morava depression (Špička 1.972). The Quaternary is characterized by intensive tectonic movements, by a predominance of uprising over subsidence, which gave rise to the marginal mountain ranges (K opeck ý A . 1972, Malkovský 1975). The Mesozoic in the Bohemian Massif was. after the preceding Hercynian orogeny, an explicitly anorogenic period, free of volcanism and with only fault-tectonic manifestations. The Massif was an island rising above the level of the world ocean and its extent changed depending on orogenic phases in the Alpine-Carpalhian region. During the Triassic and Jurassic the reverberations of the unrest in the Eastern Alps affected the area of the Massif, and the Cretaceous folding in the Alps and Carpathians obviously increased the loading of ibis block outside its present-day surface limits and caused its general subsidence. Among the faults originated at that time, there are e.g. the Lusatian fault, the Jilovice fault and the Blansko graben (Triassic, Jurassic, Cretaceous), all of which are parallel to the Krušné hory fault. The Mesozoic tectonic structures are character- t ized by elements of NW—SE trend: lbe remaining strikes are of minor j importance. j In the Tertian- the Savian phases played an important role in the Bohemian I Massif, especially ihe early Savian phase between the Palaeogene and Neogene, f when further movements of flysch nappes occurred in the Alps. Beginning with I ihe early Savian phase ihe Bohemian Massif was again strongly uplifted as a whole and the individual blocks were affected by differential movements. This I intensive block disintegration with great vertical movements on major faults, |i accompanied by basic volcanism and genesis of a system of anticlines and |. synclines in the Cretaceous of eastern Bohemia has continued in essential up to date. In contrast to the Mesozoic tectonics, the most significant tectonic structures of the Cenozoic are of S\\ —NE direction, corresponding to the younger structural plan of the western sector of the Czechoslovak Outer Carpathians, j Tectonic movements have continued in the lalest stage of the Neoidic tectonic J , development. The isoliues of annual rates of the vertical component of recent i movements follow the pattern of the Neoidic block scheme. ! The horizontal component of recent tectonic movements has been evidenced i by shifts of young relief forms — the drainage network along three fault zones ':: of NW-SE trend. i The shift from the middle Pleistocene to the Recent is estimated from ihe size of sigmoids in river valleys at 6—10 km/690,000 years. Geodetic measurement of this component indicates that ihe Carpathians move away from the j Bohemian MassiT at a rale of 8—10 mm/year (Vyskočil P. - Zeman A . 1980), which is in agreement with the tendency established geodetically in ihe German Democratic Republic (T b u r m et al. 1977). Two lines of horizontal shift between Brno and Mladá Boleslav show, in addition lo the shifts in ihe j drainage pattern, a widening of the Boskovice Furrow from average 6 km to j 11 —18 km. The structures located between the lines of horizontal shift in the i eastern part of the Labe-Svratka block beneath the Cretaceous show indications of rotation (mentioned byPokorný-Sťovíčková 1980). These rotational structures are partly identifiable on satellite images. s j 7.2 Tectonic development of the West Carpathians on the Moravian territory j In the eastern part of the Czech Soc. Republic, in Moravia, the Western Carpa- thians are represented by the Carpathian foredeep and the Flysch Belt (part of the Outer Carpathian allochthon), on which the northern (Moravian) part of the Vienna basin is located. The principal tectonic elements of the Bohemian Massif submerge from NW to SE into the deep structure of these units. Their extension beneath the Outer Carpathians can be followed reliably on the basis of the gravity and magnetic fields up to the axis of the gravity low, stretching from the Vienna area in Austria to Hodonín. Valašské Klobouky and farther towards Kysucké Nové Mesto and Námestovo in Slovakia, and then to Poland (Roth 1957, 1980, I b r m a j e r -- Doležal 1959, Dl abač - Menčík 1964). This part of the deep structure belongs to the platform block of the foredeeps in Moravia (R o t li 1964). It is separated from the exposed Bohemian Massif proper by the Neo-alpinc fault-flexural margin of the foredeep, which broadly follows the line connecting Znojmo—Vyškov—Hranice and Ostrava (Dlabac - Menčík 1964). 7.2.1 The basement of the West Carpathians in Moravia The block of the Moravian foredeep comprises the structural units consolidated in the Asturian phase of the Hercynian orogeny, which are closely linked with the exposed part of the Bohemian Massif and experienced a cortfmon development with it still in the Palaeozoic. The crystalline basement belongs to the Brno unit — the Brunovistulicurn. The Palaeozoic, which begins prevalently with the Devonian transgression, is a constituent part of the Sudeticum. During the Mesozoic, the block of the Moravian foredeeps was, as part of the West European platform, flooded by the sea showing relations to both the Alpine-Carpathian geosyncline and the epicontinental platform. The spatial distribution of Mesozoic sediments on the Epihercynian platform in the block of the Moravian foredeeps attests to the influence of the NW—SE tectonic trends on their palaeotectonic position (Roth 1957, 1960, 1980). In southern Moravia (and the adjacent part of Austria) up to 2000 m thick T.iassic—Tilhonian sediments have been preserved in the sandy, carbonate and car-bonate-pelitic facies (Eliáš 1979). This Jurassic complex crops out at the surface only in the neighbourhood of Brno (Oxfordian—Kimmeridgian carbonates) and Olomucany (Callovian—Lower Malm), Younger Mesozoic sediments have not been preserved, Transgressive Albian calcareous breccia lying directly on crystalline rocks has been found near Brno on a very small area (K rysiek - Sa'muel 1979). The major part of the Jurassic basin is buried by the foredeep and the overlhrust Outer Carpathian nappes. It is composed of Liassic—Tithonian sediments, partly covered transgressively by Campaiiian—Maastrichtian marly facies (Ii e h á n e k 1978). The extension of the Jurassic basin from the NW to SE into the basement of the Outer Carpathians is indicated by the allochthonous position of the klippen of the Tilhonian limestones in the Pavlovské vrchy Hills, in front of the Ždánice unit. Their upper Turonian sedimentary mantle still demonstrates a palaeogeographic relationship to the Cretaceous of the Bohemian Massif. In northern Moravia the Epihercynian platform was flooded only by the Upper Cretaceous sea. Denudation remnants of glauconitic sandstones and conglomerates with Exogyra columba Lam. beneath the Outer Carpathian nappes near Oldřichovice and beneath the Miocene in the Opava are of early Senonian (the latter of the earliest Senonian) age; their development is similar to that of the Upper Cretaceous in northern Bohemia (Petrascheck 1928, Roth et al. 1962, et op. cit.). Except for this Mesozoic sedimentary mantle, the Hercynides of the block of Moravian foredeeps in the part adjacent to the Bohemian Massif remained dry land until the initiation of the Oligo—Miocene foredeep. There are no reliable data available on the preservation and nature of the autochthonous sedimentary envelope of the Hercynides in the inner parts of thifj block. Some authors admit the existence of the Mesozoic (mainly Jurassic) envelope series (Dlabač - Menčík 1964) or of "light sedimentary masses" saturated with fluids, as e.g. old molassoid sediments of the deep part of the foredeep (Tomek - Švancara - Budík 1979). From the analysis of the amplitude of the overthrust of the Subsilesian unit and from the stratigraphic assignement of clasts in its sediments, Roth et al. (1962) and Roth (1980) do not exclude that the outer part of the Subsilesian sedimentary area might have originally extended on the part of the Epihercynian platform that lies at present NW of the gravity minimum. The final pre-Tertiary structure of the block of Moravian foredeeps in the region linked with the Bohemian Massif is divided into three transverse segments. In the South Moravian segment the Dyje and Brno plutons and the preserved folded Palaeozoic (Devonian—Upper Carboniferous) complex are overlain with extensive Mesozoic sedimentary cover (Jurassic, Upper Cretaceous). The Central Moravian segment is characterized by the ascent of granitoids in the Zdánicc-Chřihy elevation from beneath the Palaeozoic of the Drahanská vysočina Upland, and of granitoids with ultrabasite bodies mantled with epizonal phyllites in the transverse horst of the Upper Morava depression. The North Moravian segment is distinguished by Palaeozoic sediments of a large extent, including the Upper Carboniferous filling of the Upper Silesian coal basin extending to Czechoslovakia. The crystalline basement of the Palaeozoic is built up of paragneisses and migmatites with sporadic granitoid intrusions. 7.2.2 The Flysch Belt (Outer-Carpathian allochthon) In the geotectonic history of the Outer Carpathians the block of Moravian foredeeps formed the primary Palaeo-alpine foreland bordering the area of the Outer Carpathian geosynclinal system (see also Roth 1980). Tlie modern opinions on its palaeogeographic and palaeotectonie configuration and the degree of its preservation in the present-day structure are based on different geological and geophysical criteria (A n d r u s o v 1958, 1959, 1.968, B u d a y el al. 1961, 1967, Roth 1980). The technically reduced or subducted parts of the outer Carpathian geosyncline of the Flysch Carpathians in the Moravo-Silesian region may be assumed to extend from the axis of gravity low (Námestovo line in the sense of A n d r u s o v I.e.) south-eastwards to the Peripieninian lineament or into the deep basement of the Central Carpathian structure (Roth 1980 et op. cit., R o t h - L e š k o 1971, 1975). The analysis of clasts of flysch sediments gives evidence that the basement of the predominant part of the Outer Carpathian geosynclinal system was the re-mobilized Epihercynian platform composed of plutonites, Cadomian crystalline co'mplex and Devonian— Upper Carboniferous sediments. Only the Bílé Karpaty unit, on account of its post-Palaeogene structural-tectonic conjunction with the Klippen Belt, shows that the inner part of the Magura Flysch sedimented on the Central Carpathian basement reworked by Palaeo-alpine orogeny (A n d r u s O: v 1930, Matějka 1956, et seq.). The diversity in the development of the Outer Carpathian geosynclinal system is manifested first in the relationship of the Jurassic and Lower Cretaceous sediments to the overlying beds. This sedimentation occurred continuously from the younger flysch only in the Silesian unit (Beskydy trough — grahen, Roth 1980). In the remaining units the Jurassic—Lower Cretaceous sediments are found either in redeposited clasts (or olistostrom.es) or klippes. Their lithofacies development indicates that the palacogeographical conditions were independent of the following development of the Upper Cretaceous to Palaeogene flysch filling. The facies development was most strongly differentiated, in dependence on the palaeotectonie history of the existing nappe units, in the late Senonian. At the beginning of the Palaeocene, the development concentrated into two principal palaeogeographical areas, which correspond to the Menilitic-Krosno group of flysch units and the Magura flysch group. In the Outer Carpathian geosynclinal system, the sedimentary areas were gradually rejuvenated towards their external 'margin. In the units of the Magura Flysch the stratigraphic range of the youngest sequence involves the upper Eocene—(? lower) Oligocene. Sedimentation in the Zdánice-Subsilesian unit ends in the Subsilesian part with the (? lower) Oligocene, and in the Zdáuice part it continued above the Menilitic Formation until the Egerian. Only in thc-Pouzdrany unit the stratal sequence also contains the lower Miocene, affected by alpinotype tectonics (S t r á n í k - M o 1 č í k o v á 1980). These conditions suggest a progressive folding of the outer Carpathian geosyncline. The older forms of folding can only be delimited as areas of denudation according to stratigraphic hiatuses or termination of sedimentation in single tectonic zones (Roth 1980). Only the younger forms of folding of the Outer Carpathians (in the old and young Styrian phases) permit to define the structural boundary between the outer Carpathian allochthon of nappes and their autochthonous foreland (Rolh-Leško 1974). The earlier forms of folding from the (?) Pyrenean phase are exhibited as redeposition of rocks of the denuded front of the Magura flysch into the conglomerates of the Zdániee-Hustopeče Formation. The pre-Miocene folding forms (? Helvetian—Savian phases) are preserved owing to the transgression and unconformable deposition of the Eggenburgian and Ottnangian onto the folded Magura flysch (the Rača and Bílé Karpaty units), at the margin and beneath the Vienna basin. In southern Moravia a moderate angular unconformity separates the denudation remnants of the lower Miocene-Karpalian in the southern part of the Hustopečská pahorkatina Hills from the folded basement formed by the Ždánice unit (personal communication of Z. Straník). ' The nappe movements of the Styrian phase showed themselves in Moravia in all units nf the Outer Carpathians by the overlhrust on the Oligo-Miocene filling of the Outer Carpathian foredeep. The intensity of the old Styrian horizontal movements increases from SW to NE along the Carpathian arc, which was accompanied in tectonic bodies by rotation of the original sedimentary filling of the Outer Carpathian foredeep. The intensity of the old Styrian arid Silesian units, including the frontal anticlinorium of the Magura nappe (the Hřiřa unit). From Hranice towards the NE continues the subhorizontal ovcrthruit (in late Styrian phase) over the inner margin of the lower Badenian foredeep. It has been also established in the Subsilesian, Silesian, Fore-Magura units and the frontal zone of the Magura unit. The old Styrian nappe forms (in the Sub-s;h"-ian and Silesian units) began to be destructed bya two-phase movement of this nappe system1. The differentiation of the Silesian unit into thé Těšín and Gódula nappe* (M c n č i k Í9rjt);f 1973$, dragging of parautochthonous Karpatiau slices into the nappe structure, and the covering of denudation remnants of the early Styrian nappe fronts by the lower Badenian (Jurková 1967, 1976) were other results of this event. In the core of the late Styrian Godula nappe there are conserved elements of the earlier folding, differing in direction from the late Styrian movement of nappes in the foreland (M e n ě í k 1979). The resulting structure of the Flysch Carpathians in Moravia consists of thrust nappes translated far from their root zone. Their internal structure is controlled by different competence of rocks, different maturity of tectonic style (Roth 1989! and by the total thickness of the nappe bod\ depending on the depth of the autochthonous basement. All the units of the Menilitic-Krosno group, including- the frontal Rača anticlinortum in the Magura nappe, whose autochthonous basement, rises nearer to the surface, are therefore distinguished by flat, platy bodies. With the increasing thickness of the Magura nappe (the Rača and Bystrica units] the inner structure of the nappes becomes steeper and is accompanied by the formation of a system of elongated anticlinal and synclinorial zones. The overthrusl of the Bystrica unit on the Rača unit is also sleep. The Bílé Karpaty unit with the Klippen Belt incorporated in post-Palaeogene times has a shape of flat plate body at least in the marginal part. The total amplitude of the nappe overthrust on the foreland is about 20—30 km, as evidenced by deep borings. With regard to the position of the interior margin of the block of Moravian foredeeps, which is indicated by the axis of gravity low, it amounts at least to 50 km. 7.2.3 The Carpathian foredeep Depending on the progressive folding of nappes the area of final sedimentation of the Outer Carpathians moved into the Oligo-Miocene foredeep. The oldest sedimentary group comprises the Oligocene filling of the Nesvačilka and Vrano-vice troughs, which P í c h a (1968) and Píchá - Hanzlíková - Cahe-1 o v á (1978) consider to be the filling of submarine canyons extending to the exposed margin of the Bohemian Massif. The lower Miocene sedimentation (Eg-genburgian, Ottnangian) was concentrated to the South Moravian segment of the block of Moravian foredeeps. The relics of lower Miocene sediments on the Zdánice unit points to the palaeogeographic connection of the foredeep with the lower Miocene of the present Vienna basin. The palaeogeographic position of the occurrences of lower Miocene on Jaklovec and in the Dětmarovice Furrow in northern Moravia is not clear. Longitudinal foredeeps following the margin of the developing nappe structure of the Flysch Carpathians, came into being only in the Karpatian and early Badenian. The sedimentary Karpatian filling occupies the interior partial basin in the foredeep, and the lower Badenian partial basin is situated at the external margin of the foredeep. Under the influence of the late Styrian folding the Miocene foredeep was translated into the foreland. The filling also contains sediments of upper Badenian in the Opava area, the foredeep of which occurred on the territory of Poland. In relation to the foredeep in Austria and Poland, the foredeep in Moravia was of etabryonic character, as concerns both the extent and thickness of sediments. Their maximum thickness of about 1000 m was attained in the Ostrava area in early Badenian. During the Neoalpine history, when the nappes were overthrust and foredeeps initiated, the block of the Moravo-Silesian foredeeps had become a lower structural layer; the pre-Tertiary relief of its structure and the newly differentiated depth position were only secondarily modified. The dominant elements of the new longitudinal and transverse structural forms are the longitudinal ones, which created the relief of the basement of the lower Badenian foredeep {Dětmarovice Furrow — Ostrava-Karviná ridge, the central lower Badenian depres- sion including the Bludovice Furrow in the Ostrava area — and the Slavkov-Těšín ridge, which limits the lower Badenian foredeep on the inner side). In contrast, the Karpatian basin does not show any regionally marked parts and its margin is not known reliably everywhere. It is probable that in general it does not exceed the morphoteclonic step which divided the Epihercynian platform longitudinally into a deep and a shallower part. In the surficial structure, this step is copied by the frontal anticlinorium of the Magura nappe. The ancient surface of the Epihercynian platform plunges from its interior margin towards the main gravity low to depths of 5—12 km. It is unknown to what extent the alpinolype nappe movement had affected the ancient structure of the block. Roth (1980) presumes that it had been secondarily incorporated into the Outer Carpathian nappes in the deep part adjacent to the gravity low. In the shallow part the translation of nappes caused only truncation and tearing off of minor surface blocks, which were then dragged as klippes along the base of the main overthrust surfaces (Krásná-1, Celadná SV-6 boreholes, see Roth 1980, Jurková 1981). 7.2.4 The Vienna Basin The Vienna Basin is an interior molasse basin formed in the structural elements of the Outer and Central Carpathians, affected by alpinotype folding. The Moravian part of the Vienna Basin is beneath the Neogene complex built up chiefly of the Magura group of Outer Carpathian nappes. The stratal sequence of the sedimentary filling begins with the lower Miocene (Eggenburgian, Ottnangian) to Pliocene in the marine, brackish to fresh-water facies with lignite seams. Palaeogeographic extent of the lower Miocene and partly also of the Karpatian differed from the modern shape of the basin, which began to develop during the Badenian. The gradual filling of the basin during the Miocene, the individual transgressions, regressions, hiatuses, angular unconformities and disconformities reflect the single orogenic phases, which took part in the development and forming of the Outer Carpathian system in Moravia (B u d a y et al. 1969). In Moravia the lower Miocene attained the greatest thickness in the Lužice depression, and the Badenian, Sarmatian and Pliocene sedimentation in the central Moravian depression. This evolution was affected by synsedimentary and postsedimentary radial tectonics. It formed the principal structural elements of the Vienna basin, such as the Rakvice block, central Moravian depression, the Hodonin-Gbely horst to the SE of it, and the Hradiště graben extending to the NE. This is one of the youngest parts of the Vienna basin, which were flooded as late as the Sarmatian and Pliocene. In the N, the Hradiště graben is separated by the Napajedla gap from the fresh-water Plio-Pleistocene filling of the Upper Morava depression, which closes ihe genelic cycle of sedimentation in superimposed basins in Moravia. One of the most important elements of radial tectonics in the Moravian part of the Vienna basin is the system of Steinberk-Stratenberk faults at the northwestern margin. The buried continuation of the Outer Carpathian nappes and their autochthon of the South Moravian segment of the Ilercynides with the Mesozoic sedimentary mantle sink deep into the Neogeue basement along them. 7.3 Opinions on the global causes of the origin and differentiation of the tectonic units The introduction of the global tectonic theory led lo a wide differentiation of opinions on ihe origin of the geotcctonic units. 7.3.1 The geosynclinal model The geosynclinal model is still currently applied to the explanation of the development of the Ilercynides in both the Bohemian Massif and the West Carpathians. The geosynclinal model for the Central European Ilercynides was elaborated by Slille (l!)'d), 1951J and Aubouin :(;l9Go). According to this concept, towards the end of the Devonian a cordillera had developed in Central Europe, forming the axial zone of divergence (Stille's "Alleman threshold"). In the Bohemian Massif it is represented by the Precambrian Moldauubian zone with the Cambro-Devonian mantle (Barrandides). This median.mass also comprises the Moravieum and Lugtctim, in which the Moldauubian zone terminates. In tins sense the Moravieum has its equivalent in the Arvenian-Vosgesian Massif, where the ovorthrust of the Cevennes is equivalent to the contact between the Moldanubicum and Moravieum. Towards the north, the Moklanubian zone is thrust over the Saxothuringian zone which, beyond the Bohemian Massif, is linked to the Rhenohercynian zone and the zone of llercynian foredeeps. The activity of the Hercynian orogen occurred with increasing delay towards the north to appear in the northernmost part as late as the end of the Carboniferous.'The metamor-phic gradient and intensity of granitic plulonism also decline rapidly towards the northerly zones. This model is a basis on which most of other interpretations have been developed, for example, the theory of Thiele (1971) who, however, regards also some parts of the Moldanubicum as Externides, or of Dvorak - Pa- proth (1069), who claim the termination of the Hercynian orogenic zones to be at the tectonic boundary of the East European platform. Inside the Bohemian Massif they delimited the Moldanubian zone (to which they range all Precambrian units of the Bohemian Massif), Saxothuringicuin, Barrandium. Sudeticum and Lugosudelicum (as intervening between the Labe and Odra lineaments) comprising both Precambrian and Palaeozoic structures. The Saxothuringicum and Barrandium occur as inner stationary 'minor gco-synclines (without polarity — Aubouin 1965) within the llercynian median mass, and end on the Labe lineament. In addition to the lack of polarity, a great thickness of the Lower Palaeozoic (including Silurian) and rudimentary development of the Devonian and Carboniferous, compared with the Rhenohercynicum and Sudeticum, are typical of these units. A foredeep filled with molasse is also absent (Dvorak 1968). The Saxothuringicum and Barrandium have a similar development as the i\W—SE trending geosynclinal furrow between the Labe and Odra lineaments (Lausitzer Schiefergebirge, and others). The Rhenohercynicum (NW of the Bohemian Massif) and the Sudeticu'm are uniaxially symmetrical external geosynclines, which border on the Hercynian forelands (the Nelherland platform in the NW and the pre-Carpathian platform in the SE). They have a prominent complete polarity and their outer part is rimmed by a foredeep filled with coal-bearing molasse. The polarity is gradually disappearing towards the SSW in the transverse blocks. In the NE the Hercynian orogenic belt is terminated by the Odra lineament (Dvorak 19(58, 1973a, 1981). From this lineament the mobile margin of the East European platform with predominantly platform development of the Devonian and Carboniferous extends up to the Tornquisl line. Between the Luby depression and the southern neighbourhood of Rügen there is a dilatational rift structure, filled with the Devonian platform sediments and coal-bearing Carboniferous. It runs parallel lo ihe Donelz aulacogen. At that time it probablly was an aulacogen or initiating rift structure. The SW vergency of most Hercynian structures located along (or between) the Odra and Labe lineaments provides evidence that the NW—SE trending marginal structures of the East European platform were thrust to the SW on the Hercynian orogen. In the transverse SSW-trending blocks of the Sudeticum and Rhenohercynicum. where miogeosynclinal (carbonate) development of the pre-flysch formations predominantes, the flysch is developed only rudimentarily. The molasse formation, however, sets on sooner and is often of a great thickness (e.g. tipper Visean conglomerates of the Drahanskä vrchovina Upland are up to 3000 m thick and contain pebbles of Moldanubian rocks as 'much as 2 m in size). The pebbles prove that at that time the Moldanubicum already suffered llercynian metamorphism. The late stage of the llercynian orogeny (Westphalian—Permian, in places from the late Visean) is characterized by the formation of intermontane depres- sions, which were gradually filled with terrestrial locally coal-bearing molasse (Holub-Skocek-Tasler 1975). The fundamental problem of all these interpretations is the mode of termination of the Hercynian orogenic zone at the north-eastern margin of the Bohemian Massif. S t i 11 e (1951) assumes an axial wedging out, but other authors, who issue frota Kossmat's original hypothesis explain it by arcuate bending and convergent structure of the belt. But this concept is at variance with the structure of the Lugicum and therefore A u b o u i n (1965) and Dvorak (1973a, 1975a) claim a tectonic termination on the Odra lineament and a divergent structure of the Hercynides in the Bohemian Massif. PA \ 7.4 Hypothetical configuration of the Central European Palaeozoic sea region (J. Chäb 1975). Dotted lines denote inlraplatform rift (on platforms also aulacogeu) systems (unlimited) and systems developed into half-opened marine areas (limited). The sea was closing by rotation of Central European plate relative to Fennosarmatian plate in clockwise direction. Modern meridional system is plotted B — Berlin, L — London, P — Prague, Pa — Paris, W — Warsaw 7.3 Correlation of European Hercynides and North American Appala-chides. Situation before the opening of the Atlantic in the Jurassic (J. Krause - M. Pilger 1977) , 1 — Hercynian geosynclines; 2 — margin of interior Hercynides; 3 — trends of folding; 4 — Subhercynian coal-bearing foredeeps and shelf areas with coal deposits 7.3.2 The subduction model Several subduction models have been elaborated for the explanation of the zonal structure of the Hercynian and Cadomian orogens in Central Europe. The subduction zones are placed in different places and different time intervals. The collision subduction sutures of the Precambrian (Cadomian) development stage can be traced, according to some views, in the Bohemian Massif itself. This idea is based on the fact that several rock masses show a character corresponding to the oceanic crust: for example, the Mariánské Lázně complex (after Cháb 1975), the Proterozoic volcanism of the Barrandian (according to Fiala 1978 and Jakeš 1978), or the Moravo-Silesian ophiolite belt (after M í s a ř 1974). In this case, the collision suture is identified with the "Peri-moldanubian lineatnent" which, according to Zoubek and Vyskočil, separates the Moldanubian zone from the Brioverian—Barrandian zone in the north. According to Cháb (1979), the Central European segment of the Upper Proterozoic--Cambrian tectogen may be interpreted in terms of a double beit divided by a crustal block of continental type: the northern belt is incorporated into the central collision zone of the Hercynides. and the southern belt extends along the inner margin of the Moldanubicum towards the NE. The suturation ist Hypothetical collision of three continents in the area of European Hercynides (according to J. P. Bard et al. 1900) 1 — margins of continents; 2 — overthrust; 3 — sulurcs. presumed: 4 — basic and ullrahasic nicks; ~i — Ccivlral European Hercynide continent (R): f> — North European comment (0 ; A — South European continent in the present-day central part of the Bohemian Massif was the most important process. Rerauek et al. (1981) presume the existence of the collision zone of continent continent type at the boundary between the Bohemian Massif and Bruno-vistulicum. They explain the so-called Moldanubian overthrust, the character of the Moravicum, the accumulation of metavolcanites and ultrabasites at the eastern margin of the Moldanubicum. and the anomalous suprucrustal structure in this area by the collision and subthrusling of the Brunovislulicum beneath the Moldanubicum towards the end of the Precambrian history. In the Palaeozoic the existence of a North European and a South European continent is assumed. In the intervening subduction zone the bell of European Hercynides originated. According to Laurent (1972) an Johnson (1973) the Saxolhuringicum (considered to be Lower Palaeozoic oceanic crust) descended beneath the North European continent in the present Rhenohercynicum, when the hypothetical Devonian—Carboniferous ocean was closed as a result of the collision of the two continental plates. There is of course neither palaeogco-graphic nor palaeontological evidence available for the existence of this ocean. B arret - Griffiths (1977) place the Hercynian suture with subduction in the Lizzard massif in southern England, in the southern part of the Bheini-sches Schiefergebirge and the southern part of the Harz. The Bohemian Massif would be in this case a component of the southern European continent and thus a projection of Gondwana (S c a t e s e el al. 1979). The collision zone of continent/continent type is also presumed to have existed south of the Moldanubian zone in the Armorican massif and the Massif Central frnncais, in which subduction may have occurred in the Devonian (Laurent 1972, Nicolas 1972). This collision zone cannot be proved in the Bohemian Massif either and the Cambro-Silurian ocean would have been of a very small size (D o r n -siepen - Zwart 1980). On an analogous basis B a r d cl al. (1980) differentiated two sutures in the European Hercynides, which separated three continents: the Iberian-South European, Meso-European (which includes, among other 'massifs, the Moldanubicum, Barrandian and the western part of the Lu-gi.cum), and the North European (Eig. 7.5). These continents were in the initial phase — from the Ordovician to the Visean — separated by two oceans. The sutures were closed in the Visean. These interpretations, however, do not agree with the distribution of the Hercynian magmatiles and with their inlraeontiiiental character within the whole range from southern England to the Bohemian Massif (Krebs - \Y a -chondorf 1973), and with the tectonlc-metamorphic zoning of the Hercynian orogeruc belt. G r c c u 1 a and K o th (1978) presume the existence of a subduction suture al the boundary between the Brunovislulicum and the West Carpathians along the Bfeclav—Zilina connecting line. It is thought to have formed by the subduction of the southern margin of the North European Platform benealh the Carpathian— Pannonian microcontinent during the folding oi the Outer C r-pathians. In the opinion of the above authors, the geophysical pattern of the structure of the upper pari of crust and the distribution of andesitc voleanism in Slovakia lend support lo this hypothesis. From the global viewpoint, however, the evolution of Central Europe may have been influenced above all by the relationships between the fundamental stable blocks (plates) — (he Scandinavian (Scandinavia—North A'mcricH, Lau-rasia) and African (Gondwana). They induced the formation of Palaco-, Meso-, and Neo-Europe, which implies the origin and course of the Cadomian, Caledonian, Hercynian. and Alpine orogenic belts in Central Europe. The global tectonic slyle of the Cadomides and Hercynides, however, must have differed essentially from that of the Ctrcumpaci.fic belt, which is a model for plate tectonics. 7.3.3 The subfluence model Since the evidence for the existence of the oceanic crust in Central Europe is not convincing and the tectonics of the Hercynides is characterized rather by vertical movements (e.g. dioptric gneiss cupolas) Krebs - Wachendorf (1973), YY e b e r (1978) and 13 e h r (1978, 1980) have elaborated a subfluence model for the development of the Hercynides. According to these authors, the whole process was caused by the subduction of the lithospheric mantle beneath the continental crust (this is termed A-subduction, Ampferer's subd.). Whereas B-subductton (Benioff's subd.) implies subduction of the oceanic crust, A-sub-duction provokes at depth an extensive subhorizontal transport of progressively higher and higher layers. In these, regional shear zones develop and are uplifted, 7.6 Arrangement of subfluence zones (A—F) and directions in Central European crystalline system during the Late Proterozoic to Early Carboniferous (H. I. Behr 1078) I — Rhenohercynicum, II — Saxothuringicum, III — Lugicum, IV — Tepla-Barrandian region, V — Moldanubicum, VI — Moravo-Silesicom; 1 — axis of presumed asthenolith, 2 — Moravicum—Moldanubicum boundary, 3 — mylonite zones, 4 — major deep faults parallel to the margin of European Platform, 5 — granulites and orthogneisses and folding of supracrustal type occurs in them even at higher levels. According to Beh r (1978) there are eight such zones in the Bohemian Massif, distinguished by granulite occurrences. (Ze'man J. 1980 and Vrana 1979 also believe the granulite bells in the Bohemian Massif to be indications of deep taults, along which the granulites, regarded as typical products of subfluence supracrustal processes, had been uplifted from depth, Fig. 7.6.) The subfluence model was applied to the Hercynides by Dvorak (1980). In his opinion, the pressure gradient was caused by the movement of the two iiercynide forelands against each other. In the most mobile sectors at the contact with earlier consolidated core of the developing median mass, external rapidly sinking geosynclines were forming. The subsidence gave rise to an extensive system of heat convection. In the pre-Flysch stage general subsidence predominated, being accompanied by effusions of the spilile-keratophyre formation and by sedimentation of an up to 1000 m thick reef complex. Once the total compression had attained higher intensity, differentiated 'movements at the median mass/geosyncline boundary began: the blocks at the periphery of the median mass rose rapidly and the adjacent zone of maximum subsidence was sinking. At this time the flysch formation originated and, in result of a steep thermal gradient (in the median mass up to 250 ° per 1 km), the Variscan granitoids penetrated into the rising blocks of the median mass. Volcanic-plutonic formations were produced. The products of terrestrial subsequent intermediate to acid volcanism were rapidly deslructed by denudation and the fragments and pebbles of this material got together with luffites into the flysch formation. Its amount increases steadily upwards, being the largest during the deposition of coal-bearing molasse. The granite layer of the earth's crust beneath the rapidly sinking zones of maximum subsidence of geosynclines was melting due to the steep thermal gradient. The migration of melt beneath the rising blocks of the Hercynian median mass caused in some blocks large intrusions of light granitoids and an increase in the thickness of the crust, especially of the granite layer. The blocks consolidated by granitoid massifs were in their following history always in an elevated position in contrast to blocks which had not been markedly consolidated towards the end of the Proterozoic. Therefore, they do not contain major intrusions of Hercynian granitoids and from the Cambrian to the Tertiary they had rather a sinking tendency (higher mobility, e.g. the Tepla-Barrandian block). According to J. Dvorak the "Ampferer's subduction" need not be postulated. The zones of 'maximum subsidence, being filled with flysch sediments migrated froitt the median mass to the foreland at an increasing rate, consistently with accelerated deposition of elastic material (Famennian—Namurian — Dvorak 1975b). The deformational wave migrated parallel with the zones of maximum subsidence. In the late Visean the innermost zone of the previous geosyncline was at least deformed and metamorphosed. It was rising and became the main source of clastic material for the youngest zones of 'maximum subsidence to be filled with flysch sediments (f) v o f a k 1978a). 7.3.4 The block model The eoncepl of block structure found favour with many geologists. It assumes the Bohemian Massif to he an independent block of continental crust, which was divided by deep faults (''lineaments") Into a mosaic of blocks which have undergone a more or less autonomous development. However, the deep faults, their significance and the characterization of an independent development of the blocks are not easy to interpret. Basically, there exist three concepts of the block structure of the Bohemian Massif, i.e. geophysical, geologico-teclonic and geomorphological. T h e geophysical model issues from the interpretation of sub-crustal and also superficial anomalies, established by geophysical methods. It reveals mainly the vertical boundaries of deeper (buried) parts of the earth's crust, which are often wrongly connected with inadequate geological boundaries ".i Principal !'aull systems in the territory of 111 o Czech Sue. Uopirbiir (M. Suk. with llui use of M. Minkovsky's map, 1979) ' — Jáchymov lineament, la — Předbořice zone, lb — Slropnice graben; 2 ~ Krušné hory faiill: -j — l.iloiiiěi-ice fault; 4 — Lusatian fault; í> — Železnú hory fault system; ti — Blaníce Furrow, (in — Kouřim fault, Gb — Kaplice fracture; 7 — Lhcnice fault system; S — Šumava Fault: !) — Darnel ice fault; 10 — Klatovy fault; 11 — Bohemian Quartz Lode; 12 — Aš Ouarlz Lode; 13 — Přibyslav zone; 14 — Boskovice Furrow; J.J — line of Moldanubian overthrust; 16 — Vranov fault; 17 — Blansko fault zone; 18 — Oskava fault zone: lil — Rnm/.ovi fault zone; 20 — Ilau.'i fault zone; 21 — fault system of Moravian Gate; 22 — Závist thrust fault: 23 — Prague fault; 24 — llnmov-Poríčí fault; 2-j -- Zililc graben at the surface. However, they are of essential importance for the characterization of the earth's crust and its history (Fig. 2.3b'). The most significant boundaries in the Bohemian Massif are the limits of positive and negative zones (Fig. 2.36), the boundaries of the Bohemian Massif 7.8 Block structure of the Bohemian Massif (according to A. Zeman 1978) 1 — block boundaries (deep weakened zones); 2 — pre-Neoidic boundaries of blocks affiliated to another block in Hercynian time; 3 — mobile zones affiliated to the blocks in the Palaeozoic; 4 — blocks mobilized in marginal parts, direction of inner structure indicated; 5 — boundary of Neoidic activation. Sialic blocks: 1 — Moldanubian, 2 — block of Český les with the Smrciny sub-Mock (2a), 3 -• West Sudetic block (a — Krkonoše-Jizerské hory sub-block), b — Orlické hory sub-block); '4 — Krušné hory block. Simatic blocks: 5 - Brunia, 6— Teplá-Barrandian block, 7_ — Labe block (as part of the Labe lineament), 7/8 _part of the Moravian block, which was incorporated into the Labe block in Neoidic time, 8 — Moravian block, 9 — Silesian block (a — Jeseník sub-block, b — Upper Odra sub-block), 10 — Upper Silesian block, 11 — Palaeo-Carpathian block and the West Carpathians derived from seismic data (the Lednice zone and Peri-pieninian lineament), the Central Bohemian suture, the Přibyslav zone and Litoměřice fault. They separate the main crustal blocks of the Bohemian Massif: the Teplá-Barrandian, the Krušné hory-Krkonoše, the Moldanubian, the Moravian and the Silesian blocks. ■ 1.•, i-rlhííitt in ljunrry Kl.i i.e.ir Kutn imi»y I'M,.-., 1.1 I ''í ,.(.., '» Tliľ iiKiliili* tj«liľ ióne i» nit important element of t Im- divininn hul il doe* nul form a reparole block. ľ d .• ŕ ■• <• I <> u i ( i I 1 « i I i.....> " d " I i- l'.ľ-.il ,,n il-..- k'i-i't-m« dm m-.' lbe I'lihieo/nie in the Bohemian \lu«-.»if In eniwt-slrtiei' villi I h in ideu I he younger fault* are iiirrrnsinglv more prominent ninl more frequent I t-"tg*. 7.7 (<■ 7.S . The (jiďuiimu nr earlier -ij.'0 \> • ť terttiinable only for several fault*. In the Prccatnhrinn unit* many bell* of nteti-Vulrnuiti-s iiidirute ancient fault /onei e.g. the .lilové /one. |ielt of I lie Hite* (inns- id, 7..... iiiini«ive tľi-loriiľ--." in the niaitlle of lbe iiortb-eitsleni put of lbe í •-Mirul Ihiheiuiait pltiton. the llliiiftkn /one nud the South Bohemian granoble belt . wbjdl acted a* their channel-, of *upply M isař 1974. Pá* I i v r n v ň - > f o v f č k o v a 10689 . They inumlly trend SW-NE to SSW—WK, which i* rharnrteri«lic of tbe ľnenmbrion structures of lbe Bn-Iteiniaii Mussif, or pcriH-ndiciilmly in (hi* direction (lbe .Irirhyninv ximt-i. Tow.mU lb. el.we nf the Ilerevnorogeny the NW —SIC trending fnult* (Danube fjiolt. SiuiiHMi fin ill. t hli.i liiieiiuieni nr'urinated: they were partly *yiľ-meljiiii.ii pln. I Hľliľi Tro|| lí>7,'l. V r A n a IWkT and partly late tevlnniľ ľ h I e I e l'H.J III.n-k> nf n .mailer ihickncs* of tlie crn*t and larking ItUljor hudie* nf I Ii-iia iniin (írmiituid-. were -.1111111}; no these fault* l.aler . 111. (rhi.fl-, during tin- Slephnni-ui— Permian, narrow grnben-i were formed nu ancient faulu, e-ipľfi.ilU mi iln,«.1- striking NNE—SSW. Whet-en* iLarhoiiifcmii-i and Pepituiin -cdiinents in mnj<-r htnlir* within lbe Tepki-Hiirriiiiilian block and the ■talie btork nre nuly «ligblly altered, rnctuuiorphixni in narrow furrows nllniii* even the nnthraeilc *la«e D v o ř á k * S k o ŕ e k 1975). In tlie liilni-Sudetk deprewnn n rapid subsidence begmt n* early n* lbe tnle \ i-i'an (T í »I e r et nl. 1979i, Ih-íiuj mtiipeii-ialed by sedimentation ub-*iileiii-i- „;|, inteii*ivr I ti rit it nodded ■> •Imrl-time iiigrcssmii from lbe north. In the I p per Carboniferous, coal-bearing mohuaoid* predominated, paising upward > int.. m-,| ImiI- I'enuiani. lbe scdiineuUry area moved within an anrient N—S Irrtiding |..i,,uii /one i j i frofll \ lo S. ílt lili' unii lllTIl CXtrlmoll ní lili* /Olli' IIhTC I» M Mlllkeil bloťk nf Ucvoniun nud CarliiiiiiliTiiiis nuk- umí' lirntli-ľ Králové \epusiec. (.lilu-|. .i •'■ - / i k m u n •) u v á IÍI7H, Z u k a 11» v ä I97Ö.I. The altrralion of organic mal Irr i» verv low II vorn k ■ Wolf JÍI79'. The Krkonoše |iliilon diitvd by K Ar iiuthoil íit Mu uiljiiin* ihr liilra-Siidelic de|ire**ioii in ihe vvr*l Slcphn-niiiii. U ľ r n n r <1 - K I o in I n * k y IÍI75). Th>» posiiion »ugge-u n highly intensive liiermal iiuiviM tum ImIwiio tlie miifhlnuiriiig risiiig und -inking block* ■ hiriiig ihr (jirbonifcrtMU. t Mier fiuilt systém* orqtiiiaird .nul llie oblrr unes wer« repivenaled tluríng tne Sa\ouie teelonie interval f M a I k o v s k ý I!I7!) The g r o in o r p h o I o g i c n I tu o i] e I | Tlie Neoní u loclonic slrnctiire i< rrficclcd in (hr jteomorpluilogtcal di vision inln block» Z. Iloili. |>ersuunl rom-iiniiiKíilion ; il i> pre-umr-d lhal ihr Bohemian Mas-if liecame in ihr latrsl Min-cene unil Quulernar> n uniform |ihilform rlrvalion rumpu-cd nf block* whieh werc nffeľled by autonómnu* inoviuiicul*. u Tlie western part of ihr Bohemian Massif north-west of the Zatec-Utirničricc fault /o||ľ. hi'twi'ľii ihr I Inh-I IniniiXii «' Ir.uuth .Hni lln' I -ic-ril i.ni -líh iv iľľ f.iillt COlVe, is rnngcd |o llie block lhal rau hr ih'ooti-il as ihr Sa\o|boriiigicOlll hlock (M alko v .ký 19791. h The iiorth-eatlcrii i»urt of lbe Bohemiím Ma»*if \K of the |.ii*oiinn-,lilovicc fault /nur run) lbe Kyiperk-ZabKli fimlt /noc lulntig* lo tlie Sudelte block. It cxlľiuls soiithe.iHiwarib. up lo lbe I arp.illiian innrem of ihe philfonn. far beyoml tlie boumlars of ihr Bohemian Massif. e1 The wrstermm.st pari of lbe If• riai.iii Mits»if. \\ of lln i b. |..|)......i/li.r Iroimli i* cla-iM-d «Uli lbe block of ľ rutikemvald. d ľhr central part "f the liuhrmiuii Ma**if lalniig* to lbe fundamental I ahc< Morava bl'ii k i oriMsiitu: oľ ihr "Boheinkiim" and tlie norlhcrt» pari of tbc Moravu block. Ii i* limited m ihe W by tlie t lich-Dioiuižlirc graben, in the N l.v ílu /ad c l.itouii iue. I.u-uliau-.1 ílu vice and Kysperk-Zňhh-h fault /mir-. The triuiheru btMtlldlll j is lormed by the Klatov y Závist and Poděbrady- Zelc/nč luny í.,ulr /oues. I- the **K tbe block exteudft 10 tlie *......lla m innrem ol lbe plulform, viz beyoud ihe houtldary of lbe Bohemiím MhsmÍ. - ihr -outherii part nf ihr Bohemiím Mavsif helougs lo lbe Moldnnubjctiitt-Dyjc block Ľonsisliiiii of llie Moldaiiubicum and llie southeni part of llie Morava hluck. It i- -ilunlrd S of tlie Klatovy /jivi-l and Poděbrady-Železné hory fault xone* and ex. t end* ugam lo ihr Alpine-tjirpalhian margiii of the plalfmtii in the SK. Kxcepl for |hi- fiiuib.....ut al labe M'h.ivn block, all f iin.lalll.'lil.ll l»|... k- extend beyond the Itofietiuun Massif boiiiidaric* in tlie territory of the Gteeh Soe. Be-poblie In.toi i-o.- ilu'> :ire in contriist to ihr Bohemian Mossif as a whul«) Umítej by fault Kone* alomr tbrir ubole prriphery. 8. Neoidic geoniorphologictal developraent — Tlie Nruidir pílime nf Ific >;>>'iii.ri (ílmiiik'h «1 liL«tuľ> uf ihľ Ihihiinian \tu-*il hegni, in fml .ilninl> aflet ih< rlmc nf I lereMiiuii nrogcuy l>> rMníHVi' druudntinn uml !>••« ir*| ilti f i .-■ t h > M TI i«" ehiirarler tií ľeriiirel .arhuiiiferiuis m.idiuiriit» nn licntes tlmi de-uiidation proceiOM** oeeiirred in médium Iniiiud and M'imarid cljmate. The centrál pnrl ■•( Ihe lU.jh'im.ifi Md.-if .mu dnring tlie early Menuvoie wjw a dr> laud nf-leeted by l-uiťĽľ-iiuj: driitnhition m> ihul tdrendy in Jnra iiiniii .Mn*»if Wtt dcvelopiug on tlie Tclliydimi -lielf I lifti 1K79): tlie cliiirui lír of lU hci-itl tedinu'iiU shoi** llint Ihe)- fillnl deprc&aíoiu in o fnirK |e\rlleij reliéf lli. -.mne eonehiAiou mit\ 1»' drrived f m m u Jjo-k nf p*ep)uLic h-dit.....n> uliiiii pmxiile* evidt-iire for mivmifed peiieplunalinii of tlie iiir- rntii ulitu; uminlnud K o d y m in B n d n y et nl. 11HHI . ľhe -en f|n«ded n wrll levelled tarth s nurfnrr nlwo in ihe linictlour iirens of ihe Mnnnian K;ir«l (K O U -t e k lľ'J7 Tlie hcginiiing of the Meno/oic — ľulnetigi-ur cluhal pencpluiit i* (d*o plnei-d in thu- time inlrnnl. I In- i-limate wni wunu with lumiid mul dr\ n»ril-lal in ns lS I ti r r et «1 l!tm*W kvehailíc wMtltttriiijr uf Ibe < ■rhn.ilnni* iriimn iipeit pli ai fl.rm BHta ■ n itkr Mieri «n'a Ptxiitu liv J. ■»i..|ŕ.PJJ U. U (rt'hiCťOuH 'llie K-dji iiintti I pland logether with inoorpamteii Jurn^ii: -rdinient* renuined drv hi■ kI eveit in tlie Ktirh Cretaceoti» and peucpliiunlion mul towertng of tlie n lief eoiiliiiiľd in tht: »hole región. Jurassic uedíiiiciiU ol rnllier niuill thtr.k-ikKB for tlio in. .m |mri Mii-ľuniried in iiiliMiiiv i* knolinite-lntrrilir wralheiiiie. »«ld d*......latinu I) t. o r u k I' • ■ |lt b<>1 ,,m| i.....ml iliihil' llucr-di.d reliéf reflnleil prartirallv tlie difíerenren in renittJini'e nf ihe rnek- nuly: depres-imi" ileve]o|ied espeetnll) in ihe tediineiihirv filliim> of the ľer*iio4!nrlionifemu» nHMWi At ihe Mirfíit'i nf uoiľľiirhniiale meks n rnllier lliiek neulliering uumtle lind drvelnped. It «'i» rriiMiNed lis denud.'ilinii <elmeoii» %eu »o thal nuly ihe lm>.il purt* nf |irnfili;s ha* e lierll |ire«*r\ed. tlie lune ľiirlMiiuite* were e\|MiM>d to intciise Muíiruil karstifieatimi. "Iiuli «i--ii|H«'ilid hy lii^li teinni-ralure and |>re< í|ntulion nf ul«ive 8tMI— l'JtMI mm xenr. Tlie evinteuee of kio>.l depre^wm*. sinklmh1* and poľ kel« filled wiili t eiiomaniau •nliinrnt* wn» proveil al the niirľaľ** of the Bnrrurnlimi ľnlai-n/on liiiie-l.'i.i> Knn*ky 1ÍWJ8, T n r nos- e e 1980* a* uell nf tl.....;irhnrialr« in ihe \f,.r.ivu,ii Kor,t K r y « t e k HCrfl, K e 11 n e r 1!W!0. U o > ň k 197«, etc.l. Al lliidiee Mornviiiu Knr»l tlie kftr*liricftlion rem-hes |n n depth nf \W m. \ncienl pre-Miuceiic valhvs m itn- same urči lji/tink> v alley and tbc hosrr pun «f the ľunkvn »y*4cnt — S c Ii ü l c n e r n v o - Havelkovi líí.Vti «.«.. reed n depth uf IDO m. Tlie »iimiuil level of knr»t relief with Ihr overlying Oito- iii.iiiiiin . íl -1 - ■ i r- v.u in Imlli llie Itei.....ik.i-rner \ .illrv .nul I lie llmliee arm ill altitudes of {SO—.MMI m a.*,I. Mcihiii j: l!«7!» im nbr* llie saute lige to tlie fossil »mliMring of Devonian IřMieslows near Waestrin in Westphalia, whom-surface lies ni similar elevations, \ -.unplc couipiirixiu mmlil mdiciilc that nl many [iliii-i■* m Central hunt|te no major Nroidic movement*. orctlffM «nee llie I ,i|r i Trial ľ...... ľossil karstlfitnlioti is mil rvicpi muni, as >■<, iilem cd by ihr on urn-nivs .1 fi-"il fin in- m lli<- Imi:i*mc of I'nlnnd T y c £ y ti s k n l!l."W or kni*l frnlurci m i.....ipaming hnuxile deposit* in I n per birnsiir liiiH'»liuirs in .nulluni 11 Ungarn, diih'il again a* Kurls ( n-liiei-niii *< r n Ii «• lítJVH'. Preservation of kursl form« prove* ílmi nu e|itnanior|iliogenelir rlimigr. which would lead l<> their ď-tructioii. f I mvurred before their hnriiil ľ y rňŕ e k I.MiJ TIm* rontilHuHiHii uf the |N-nrphiiu l*eneiill( llie srd........larv ro\ci of th> < Jtrpulltinn forederp iiud flysch iinppe* »n. deiiioiislrilled nl tlie SK margin of tlie lliilieniiiin Al,i*sif between Ostrava. Hrno und /no/mo i/rtiinn \ . 1!lf*ll . Intensive cheuiienl weathering produce iw.i I\pr* nf relief. Kftoliuilie residues or llu'ir root /our. have lieen preserved predominantly <>n frmole mul jjoei.-. plulcmi* mul Dill elev nlioiis. Mu ihr I >.\ .un.oi ,nul . I • i r .-»*.*.!•■ curhouutes SK of Brun tin- existence of rone karst is assumed • M e / v o d o v íi - Z e m a ti A PJS ! . which i» probably au miniii^iii- .if IIm- fus^il forms originated by knrsli-fiention of Mľv.iiiiiui limestone* nctW IIroniee 'Tyraŕek MNíl! , nt Siipíknvtce fC * u d e k - l> e m e k I !»7> the pindiu-l«. nf chmurni w <-.illicriiiji ;. 1 —.....v»lcm >.f .....-n-.il valleys li.o. Ih-i'ii preserved nt tlie buried surfaře. They probably benan lo de-veUip nl tbc oiimH nf Ute (irelareou*. u s ľi idenced b\ J.owcr (Telnreous dimeiii« uf ihľ I Jirpalbtiui lv|»e" found nl llie uuttťiu of lbe \etvtieilkn trongb n«ir Kuřím K r y « t r k IflT'J . 'Iliw vnlley* inched into lbe Mesnzoir—ľa-Inci.igi-iie pcncpl.iin diow tbc rliimirler "f Iriiitglin on tlie sunken pbitforui. «bcri'Ji» m I lie upper , ||H'\ Jin- imiiulK linked In nnrienl prc-Mim......" í.illcx, .-v Imme«! nl lbe SK iiiiirpin of the Bohemian \ Ins* if i/. em an A . li'HO . In lbe tlstnivn nn-ji llii* rim icnl ■.\*|ein »\«- nb*iuiisty n precursor id .|. ľ "ebiiimel*" eul into the Ijirbouirerou» Ululerlving llie Neognw iilltnj: of the < Jirpalbiiui inredeep I.i'iicm. .if the viillcv*. more thill) KMMI m deep, reilluiin itiemu'liisive parlieubirly ns the disparity between lbe |h>mtihited absolute alti lode of llie sin fur. mni \\t<- depth of incision und lbe p*>siluni uf the base level «if cm.i.m nrr concerned. In lbe lop piuit id the burietl reli"f variegated weallirriug renidlle* esi«t litlainiiut n tbieknes* of up to I ."til m Jurku v ii l!itbi'v are n|of Al the beginning nf the Upper Cretaceous llic Bohemian Upland underwent a substantial change. The area of the landinass of the Bohemian Massif existing over the greater part of the Mesozoic was decreasing in the Cenomanian and fluvialile and lacustrine deposits began to sediment in the depressions. Their distribution indicates a distinct dependence of sedimentation on the palaeorelief [Malkovský et al. 1974). In the remaining part of the Bohemian Massif intensive weathering and denudation continued, in the Late Ceno'manian the predominant part of the mainland was being gradually flooded by shallow epicontinental sea extending far into the Bohemian Massif. Higher lying parts of the original peneplain (Bílina crystalline complex, part of the Unhoší-Tursko ridge, lydile tors, the Lužice-Krkonoše and Jesenice islands and Kutná Hora crystalline complex) rose from the sea as islands, around which typical conglomerates and hioclastic limestones were deposited. The initial marine sedimentation of Cenomanian and partly of the Turonian was still dependent more on the palaeotopography than on the tectonic adjustment of the basin. The shoreline was greatly articulated because of the atectonic development of the sedimentary basin, especially in the areas of Čistá-Jesenice massif, Říčany granite, Křivoklát-Rokycany and Jílové zones, etc. (Malkovský et al. 1974). The Cretaceous sedimentary basin obtained its definitive form by syusedimentary subsidence along faults during the Middle Turonian, when a partial transgression (Müller in Malkovský et al. 1974) flooded even most of the islands mentioned above. Marine sedimentation continued during the later Cretaceous; the sea began to retreat from the eastern part of the basin during the Coniaciau and in the early San.toni.an it left the area of the Bohemian Massif definitively. The lithology of Cretaceous sediments suggests a levelled surface oi the neighbouring landinass, only the facies of coarse-grained very thick-bedded quartz sandstones developed under the influence of tectonic activity in some source areas, in the Lužice island in particular. The uplifts enabled a mass removal of less weathered detritus, which was deposited in the north-western part of the hasin (K 1 e i n - M ii 11 e r - V a 1 e £ k a 1980). Cretaceous transgression is usually explained by the subsidence of blocks or parts of the land below the world-ocean level. This explanation, however, can hardly be applied to the worldwide Cenomanian transgression (supposing a roughly constant amount of water on the planet) which flooded extensive parts of continents lhal experienced the most varied geological history and occupied various tectonic positions. The predominantly atectonic development of older Upper Cretaceous complexes, controlled rather by pre-Cenoimanian relief than hy subsidence movements is also in variance with the above interpretation. The oscillation character of transgression, the nature of basal sediments and the configuration of the sedimentary basin in its initial stage indicate that other causes might have been involved. Recently, there is a tendency to explain the Cretaceous transgression by the rise of the world-ocean level and this, in turn (consistently with an abrupt decline towards the end of Cretaceous), by expansion and following contraction of oceanic ridges. This concept, of course, does not exclude the influence of local tectonic movements or tectonic control of local basins or their parts. In southern Bohemia drained at thai lime to the S and SE, a shallow limine basin developed towards the end of the Cretaceous, in which Senonian freshwater sediments were deposited. The development of the basin provides evidence that the Cretaceous transgression never crossed the Cenlral Bohemian threshold, which even before acted as the main watershed of the Bohemian Massif. The shallow basin was of a through-drainage type and lenient streams of lowland character brought, the kaolinilic weathering residues into it at the beginning. The rapid rate of subsidence or the upheaval of the Bohemian Massif indicating the retreat ot the Upper Cretaceous sea (or probably acceleration of the lowering of the world-ocean level, or climatic change?) induced a rejuvenation of streams, increase in the transportation capacity and thus a supply and deposition of coarser clasts of kaolinitic sandstones and conglomerates. During the Senonian, presumably a little later than in the Bohemian Cretaceous basin, sedimentation was interrupted in the South Bohemian basins, and since the early Sanlonian the whole Bohemian Massif has been a landmass again. 8.1.2 Tertiary In lbe parts of the Massif non-flooded by the sea, continental development and denudation continued from the Cretaceous to Paleogene, but under somewhat changed conditions. The planation surface originated usually by the conjunction of pediments and of cutting plain with outjutting outliers and knobs of more resistant rocks. It seems more appropriate therefore to characterize the Paleogene planation surface rather as pcdiplain than as typical peneplain (D einek et al. 1965). At the margins of the Cretaceous basin, especially in the SE, the ancient pre-Cenomanian peneplain was partly exhumed and remodelled. Towards the end of the Paleogene the development of the global Mesozoic—Paleogene peneplain culminated, the Bohemian Massif being the constituent part of it. It displayed a very flat relief and did not reach higher altitudes above the sea level (about 200 m — K o d y m , S en. in B u d a y et al. 1960). Paleogene planation was accompanied, mainly at the beginning by intensive kaolinization. The released Si02 formed the silicified layers and crusts (duri-crust, silcrcle). It is assumed (Roth - Hanzlíková 1982) that also a part of Si02 in menilitic shales was produced by this process. Very typical is the silicification of the upper part of the sedimentary complexes culminating by the formation of a quarlzitc horizon (Třeboň basin and most of the "dinas quartzite" in the North Bohemian basin) in the top part of the profile. In the tropical climate of the Palaeogene (mean temperature 20—30 °C in the wannest summer month — S t o r r et al. 1978) the karstification of carbonates continued. Under favourable conditions the development of the cone karsl (tower karst in places) was nearly accomplished, as evidenced by the forms on Devonian limestones hidden beneath Neogene sediments at Hranice in Moravia (T y r á č e k 1962) and on the Jurassic and Devonian limestones SE of Brno (Bezvodová-Zc-man A . 1981). The formation of the oldest karst cavities in the Bohemian karst is also placed in this period, before the Miocene tectonic events (L y sen-ko - Slancik 1981). During the Palaeogene the streams of the drainage pattern in the Bohemian Massif discharged their waters into three basins. Central and south-western Bohemia was drained into the North Bohemian basin and from there farther northwestwards into the Leipzig bay of the Oligocene sea in the German-Polish basin, which encompassed the Bohemian Massif in N and NE. According to Kopec-k ý A . (1972) the predominant part of the Massif belonged to this drainage area. Southern Bohemia was drained into the South Bohemian basins and farther into the flyseh sea lo the S and SW. The streams of northern and eastern Bohemia and whole Moravia discharged their waters into a vast flysch sea in the E. Part of it was the Nesvačilka-Vranovice estuary, extending to the Sub-silesian-Zdánice sedimentary area. Although there are relatively few reliable data available, it is obvious that persisting planation was accompanied by tectonic block disintegration of small intensity. There is no evidence for major differentiated tectonic movements that would disturb !he mature peneplain, on which only the most stable products of intense weathering — quartz and kaolinite — have been preserved. Shallow lacustrine basins developed later between the early and middle Oligocene but their origin had nothing in common with the present-day fault system. Compared with the younger, Miocene basins, tire older ones were substantially more extensive. In the Oligocene through-drainage lakes chiefly psa'minitic sediments were deposited, like the Staré Sedlo Formation in the Cheb and Sokolov Basins, the Lipnice Formation in the Třeboň basin, and their stratigraphic equivalent — the Podbořany Sands. Relics of these sediments also occur beyond the limits of the present-day basins, e.g. along the elevated margins of the Karlovarská vysočina Highland, the Krušné hory Mts., Chlum nad Ohří, beneath the Doupovské hory slratovolcano and in lbe Podbořany area. Sandy sediments near Abertamy in the Krušné hory Mts. are probably also correlative with them. From the Třeboň basin they extend lo Lhe S and SE into Austria. The highly varying lithology indicates that in the basins sedimented on the one hand the washed weathered material transported over short distances from the close neighbourhood, and well-worn deposits of long streams, on the other. A substantia] part of the Bohemian Massif was drained into sedimentary basins having the character of shallow through-drainage lakes. One of the Oligocene basins was in lbe Plzeň area, whose through-drainage lakes were probably connected by streams through the Rakovník area with the environs of Žatec. This initial stage of Tertiary sedi-'menlalion was interrupted in the late Oligocene and a greater part of deposits succumbed to denudation. After the early Savian phase, between lhe Palaeogene and Neogene, the dynamics of tectonic activity had risen in the Neogene; in contrast to earlier opinions, two phases have been distinguished in it (M alko v ský et al. 1974): the older (Aquitanian—Burdigalian) is characterized by tectonic disintegration of the Palaeogene peneplain, and the younger (lower Helvetian—lower Badenian) by a progressive subsidence of large parts of the Bohemian Massif below the level of world oceans. The first phase opens the neotectonic stage in the history of the Bohemian Massif (Kopecký A. 1966); the tectonic movements are accompanied by intensive volcanism and formation of lakes. The Doupovské hory stratovolcano separated the Sokolov basin from the North Bohemian basin and České středo-hoří Mts. caused the separation of the Zitava basin (M a 1 k o v s k ý et al. 197/i). According lo the most recent interpretations, the origin of the North Bohemian basin might be the result of the volcano-tectonic subsidence, viz. gravitational sinking of blocks into spaces in the upper mantle vacated by the ascent of volcanic material to the surface (M a 1 k o v s k ý 1980). Typical of the second phase is the sedimentation of lacustrine and 'marine deposits. This sedimentation was a result of lhe subsidence of a major part of the Bohemian Massif, which enabled the lower Badenian sea lo penetrate through ancient valleys far into the Bohemian Highland and into the South Bohemian basins. The different character of Miocene lacustrine sedimentation in southern Bohemia is accounted for by occasional sea ingrcssions. The development of Neogene basins appreciably affected the development o( the drainage pattern. The North Bohemian basin was fed by rivers draining large portions of central and south-western Bohemia, as evidenced by relics of Miocene sediments in a belt exlending from Klatovy across Plzeň to Rakovník, and from Prague lo Rakovník. The basin was drained northwards probably in places of present-day Jirkov. The divide of the South Bohemian threshold separating the drainage area of the Alpine-Carpathian foredeep from the remaining part of the Bohemian Massif still exists, but in the Wr it extends beyond the borders of the Republic (M a 1 k o v s k ý et al. 1974). The rivers flowing from S and SK carried their waters into the Zitava basin, and the rivers draining the area S of the South Bohemian threshold emptied themselves into the South Bohemian basins. At that time the Bohemian Massif was losing its geomorphological monotony and due lo continuing tectonic disintegration became divided into structurally and morphologically articulated areas. The diversification of the relief led to the 8-6 QuRrifJto bonWnn oriffb-tad by diiintcfralioR of •ilcret*. RoU* i«c«f ^Kwlon ^ ^ d-stritctiou of a thick withering trmulJe and to U* irdciwuiiion into the frv*h-water basin* or adjacent Tlie Me»*oic-Pjdneogeiic peiw.iJaii. assumed the a.7 f.i»pi» »."f< .-.li Uie mrfar* uf De»'uni»B Umaalnncn, Mranirp iii Mors vin I'b(*t« by J. Tvraiea W V West Carpathians te isj l> ti rt it 8 It ti o tl f. character of denuded stripped basal weathering plane. In the eastern edge of the Bohemian Highland the weathering residue was also removed by abrasion activity of the Miocene sea, although no typical abrasion platforms had developed there. In the Carpathians, the early Savian phase provoked large-scale 'movements and shifting of nappes towards the NW. At the beginning of the Miocene, part of the Outer Carpathians emerged above the sea level and the folded mountain range was gradually levelled down (e.g. the neighbourhood of Hranice ~ De-mek et al. 1905). Kaolinitic products about 12—20 m thick were developing on sandstone complexes. The lower Miocene planation surfaces have also been indentified in the Vizovická Highland (Zeman A . et al. 1977) whereas in the Vienna basin they form the substratum of its Neogene filling. These planation processes were probably synchronous with those occurring in the Bohemian Highland, where they created the so-called post-basalt denudation level (cf. Král 1976). The eastern margins of the Bohemian Highland facing the Carpathian fore-deep, were invaded by the Miocene sea, which left its sediments on platforms and in deep pre-Miocene valleys. Owing to post-sedimentary tectonic movements some sediments were raised to altitudes of up 600 'm a.s.l., young uplift being evidenced by their denudation relics found in the Nízký Jeseník Hills. Sand and gravel deposits cumulated at that time are correlative with abrasive processes that occurred in a narrow belt along the Bohemian Highland (D e m e k et al. 1965) and at the south-eastern margin of the Carpathian foredeep (surf zone facies around the islands of the Hranice Devonian, traces of marine abrasion in the Pavlovské vrchy Hills). The south-eastern margin of the Carpathian foredeep was formed by the Pavlovské vrchy and Chřiby Hills, summit parts of the Bílé Karpaty Mts. and to a small extent by the Moravsko-slezské Beskydy Mts. Sedimentation was closed in the Carpathian foredeep in the youngest Styrian phase between the early and late Badenian, when the marginal nappes were moved. The sea receded from the foredeep and practically the entire territory of the Czech Soc. Rep. became dry land. In the Bohemian Massif this movement was responsible for the separation of block mountains at the periphery of the Bohemian Highland (K u n s k ý 1968), although the most intensive uplifts occurred much later (Kopecký A. 1972. Mai kov ský et al. 1974, M alko v ský 1979). In the Carpathians, the Flyseh Belt was upheaved and denudation processes were revived. According to Kopecký A . (1972) these movements opened the neotectonic stage there, during which the fundaments to the modern morpho-struclures were laid. As a result of intra-Badenian movements, the sedimentary area of the Vienna basin originated between the megaanti.clines of the Chřiby, Ždánický les, Bílé Karpaty and Malé Karpaty ranges. The lower Miocene does not represent therefore a genetic and tectonic component of the basin filling but, 8.a MurpJinlcrv iicN.vnl. nnit*. of 111* C**k* ilrnJolioH Ml*. - P»1» B»»*mi*» — J-*k** ' l'lmio ky J. Rubin fnnu this point of view, belong* to its. basement. In ihe I'liu.enr. sedimentation ■till niiiliiuii'il mill linn cmrtils nil fault* tti'rc revived- Towurds ihe end of the Undeiiinn. in the disserted relief of the Bohemian llighlnnd I hi foundations were laid lo I he modern drainage |mltern. when thr ancient prr-Mioccne valleys »to o»ruiii employed h> many slreoms. The uplifl of mountain ranges. c#pccUlly in the NE and SW prompted .vleiiMve deslrmliun of the Mr*o*uic-Ptilneogene peneplain and Lit remodelling into the elchplaiu. Tin* lull of moldavites in southern Bohemia and in Mora*in. which paused thr ..niriiv id tm iinlcY Imri/oii. i* llmiighl lo hove occurred to this period. In soothe.,, Ih.h.'on.. I--rn-iriiil i.M-.ilr,| sediment . Iiarni-trristi* «>f downwOsh and fltt«h sedimentation, were ilejHisiled YrAhec Member, rrl ill IHI 01 n\»>\>- \\v river MaUe — Z*> \> <■ r ,i l!».7h The Vridier Memlier wn* duled with ihe use of luoldnviles ut 14.710 7 million year* (Centner e» til. l!"<7 This member link* op willi I In- Dom.iiiin Kormiiti.in. which t> v«"'J!«'r ralii> for the dating of fluvial deposit» in llie pirilinuut of the Krkonoše nud (hlirkc liory Ml*, lies near Zcle/nv I trod in llir Ji/era river valley. According to KoQiilová ii:»7.i. those w diluents (rrl. alt. lift*—14(1 m nre Miocene hi age. In i!«n.-rrtl. I In- iiruvel rrlu-s h( the north-eastern mnritin of the I rclareoui basin h.-iwccn thr river* lucru and Cpu nml the piedmont of Oriirké hory Ml*, ni llir ..liiiiol.- ní IJII liill in, ,|„.» iin- rhnrorirr of remains of vast pmluviat-fliis. iI -<-iluiu-uU, ",,ii.,| 11..In'......lir rrlici of fluvial sednn. ul\ piu-iirulaHy in the Bcmun- k.i run valley between K.irUtejn and Sulavn rel. all. 120—140 m> nnd ut the junction of id. Urn-uiik.i .«11■ J \liiivii river, re|. nil |f>0—ISO ui correspond to i he «• railed Klínec stage nnd arc pi need in the upper .Miocene. Tin' 1'i.il'ih depression was a| lluit (uiir an nrcu of confluence of se\'era| rivers and »tr.itiii* coming from the NE, SW and S. The rocks from the liurraadian. Ml. kuzikov, the KrkoiioM> Mu, nod their pieiluioni u* wr|| m from the M.ilil.iuuhniiiii .if MHilhrrn llohrmiii lend support lo thiv ootleulion. loWiir the posl-Mioeene teclonie«.. particularly the peripheral mountain iaugr> nml some hasitu and depressions like the (3ieh hnsiit iViliUtejn l.ln\» »r the I'pper Moravian Imsin (v it negated serie*). 8.1. 3 Quaternary In the Qulernary the processes influencing the configuration of the relief changed radically. The climatic fluctuations, which represent the basic factor controlling the geological events in the Quaternary, intensified, being responsible not only for glaciations and oscillations of the sea level (and thus the base level of erosion) but also for erosion, denudation, or sedimentation. In the area of the Bohemian Massif, located in the periglacial zone, the Quaternary period represents a continuous succession of most varied geological events, caused by multiple alternation of erosion, sedimentation and soil-forming cycles (Lozek 1973). Their effects, enhanced by the geographical position of the Massif during the cold intervals between the continental ice sheet in the N and mountain glaciers of the Alps, as well as in the transition zone between the oceanic climate in the \V and the continental in the E, resulted in intensive modellation of the relief. Although the fundamental features of the region developed in earlier periods, the present relief of the Bohemian Highland and the West Carpathians is for the most part a product of the Quaternary morphogenetic processes. At the onset of the Quaternary, better to say at the Tertiary—Quaternary boundary interval, which period was until recently considered as latest Pliocene, the climatic fluctuations were not so striking. Even though this assumption is 8.9 Pyroclastics of Quaternary volcanic rocks, Komorní hůrka near Cheb Photo by J. Rubin partly based on restricted evidence, it is supported by deviations from the classical Quaternary forms, such as shallower channels of streams meandering and anastomosing freely over flat plains, different lithology of sediments, minimum vertical intervals between individual levels of the upper terrace group, formation of different soil types, and a lack oi typical periglacial sediments. Three principal opinions on the position of the Pliocene-Pleistocene boundary exist. According to the first one the boundary is placed before the Mindelian glaciation of the Alps and the Elster glaciation of the North German Lowland. Palaeomagnetically it would correspond to the inversion between the Brunhes and Matuyama epochs, i.e. to the radiometric age of about 0.69 Ma (recently mostly accepted for the Old—Middle Pleistocene boundary). The second interpretation assumes the Plio-Pleistocene boundary to follow the base of Calabrian, which would be palaeomagnetically coincident with the Gilsa event. The radiometric age of its base (of ca. 1.79 Ma) agrees with the resolution of the 18th International Geological Congress in London. According to the third alternative the boundary is placed at the base of the Villafranchian, i.e. between the Astian and Piacenzían with typical faunas of lower Villafranchian and so-called Souril-lon. Palaeomagnetically, it includes the upper half of the reverse Gilbert event or the base of normal Gauss epoch, some 3.4—3.5 million years ago. Towards the Pliocene the fluctuations are less contrasting, and the transition interval shows minor climatic changes. This fact is the main cause of difficulties in precise determination of the Plio-Pleistocene boundary; the previous opinions on a continual cooling of the climate from the Tertiary to the Quaternary is not valid. The oscillatory character does not also permit to regard this boundary as a single episode. The problem concerning the stratigraphic position e.g. of the Vildšlejn Formation in the Cheb basin or of the variegated series in the Upper Morava depression are a direct result, of this uncertainty. Quaternary volcanism in western Bohemia and northern Moravia falls in this period. The prominent high terraces of the Labe river at Stříbrník near Ustí nad Labem bearing the proboscidian Archidhkodon meridionalis are ranged to the earliest Pleistocene, too. However, no relevant stratigraphic conclusions can be deduced from this fact because the conditions of the find are unclear. Towards the end of the Tertiary, the predominant part of the Bohemian Massif was a relative monotonous peneplain. Nevertheless, the peripheral mountain ranges and the highlands and uplands in the interior were morphologically evidently well defined, although the final uplifts of some blocks convincingly occurred as late as Quaternary (Krušné hory Mts. — Malkovský 1980) and the uplift of others is presumed (Vyskočil - Kopecký A . 1974). Even if the morphological conditions for more intensive river activity existed there, the supply of coarse clastic material was small on account of weak mechanical weathering and insufficient solifluction. The meandering streams redeposited therefore the older deposits and the weathering residue, thus producing predo- 810 Iiitm and Ununified dshru (of «rly Pleistocene p(«. in two livwrr lliinli witli ľ.r->il wilt) uu a Jurauie Idippe naar Kurvvico (ttursvis) PIk.I-i by P. ftitvlUVk oí pridusinl M'ilhin ni- au- de|»oiÍted griiduig dowiistroam into tbe highest Irr-/.■ui" In Sdesia and tbc Clich hasia ihc nminíc-luuou!. of Uie tlnrd souugcsl noo-vulcanic plmir fadrd oul (Kupecký A. in 5 vo bod a rt «1. 1906, Si* br n v u • II a v líc e k 1980). Tbc iwovolcuniles of llie Cnké slfvduhoH and Pmipmskč bnry Mtí., espeeially isolatcd bndies. vvrre mu ruinhiiig Ui destruclion. *lopc depositx were accuniiiktliiig, and p|iuf»rtu and in ibe ľMp nr*ui {Z e h e r n lítľJ . whiťh implirs n ftinilaiueiiial rhauge uf idea* on tbc history of tbc inlenor of Bohémi*, most slill bc verifiod. Only later, during the typical Kiirly ľlei*tncene tbc river* beg n n lo ent tlnír beif» derper liehu* tbe levcl nf tbe ptnnalion nurface. nwing to tbe inrreadog •tiiiirmlly fine-grained arcumuhiliiius ad the highest terraces of meat thickness and men] extent Al I be eastern margin of tbe )Soh«*n>ian Mci-sif the braided stream*, owing lo ii higher relief of the Ceskmiitiravskc vrchovina 11 ig Id mid, carried coarser elastics and dc|ptisi(ed them mi tbe (hit plain* of tbe Carpathian foredeep in the form of extensive flat gra\c] cones (older gravel sheet — Zcmun A, et aj. I'f-tr . Sedimentary area- >.»f mine h.e-in- mid hikes -mimm'-I I" tie' earliest I'leispiiene The seipniin-s dating from that time include the Vilditejn Formation up l» Kin in thick in the Cheb basin; upjicr part of the varicgnled series in the I pper Moniv.i depression M a c o u n - K A i i e k a I0*i7 ; sediments nf a lucid busin near Kumvicc (Central Moravia — Kovindl et al. 1082); probably equivalent fluviohiciislrinc sediments in the Zdoiuik^ trough, in the llrndiste trough {southern Murnvin — H avlfcck I*. 1080) and in the projections of the Zaliorxkii lowland, and the pn-glncial sediments M a co u n I9SO preserved nt the base of the Quaternary in depression* mid tectontcidty sunken valleys nf the nndeul slreaiu pattern in the Hpnva area. Al the foot of rniiiuitain ranges Krusne hnry. lleskydv and SK uuiigui ..f ihe Chriby the oldest accumulations Sit Ktlium..) •iititurfacc |>«rl »t nnwoleanii- d'wtrrmr wiih a -TP***1 '*H'1 I^Jf**"* flip M-ll ľ1""" 1 5v ,l l-.vjíiiiuro in ih« S> etlt". Inli-n-in- hn-l «riillii'iiiiii in ndd inti-rvul- sitpporlt-d tli,- mu**. njitluijT nf ihr mrk n»u«Mf» nud mrk dnhri* *n> Irnnsdi-rřod und« irniviiv, manily by tali-riin-lHrii, tuto lín' iln-um války v n-mirkn! ni lii,- w.-iter i*iivimnm«>Ht ninl lnul dnwn in lln* form of k-mtcr«. Uli lJn' phiií......- ■•[ ihr Carpnthinii fomlecj» nud in ihr Vyíkfiv l.ntt? tli- nvr-r- (J,-}io»it,-,| (In: youn#er pravd shcet (Z «in n n \ . rl ni. lí*KU iiinl probiihly lln* stnilicrnphicnlly cquivnlrnl iiigh irrrna'* in ihr I |i(riT Mortiva depraránn. in thc Monivinn (inir und 1*1 Ihr fnui of ihr Vi/ký JWuík tnul Beskydy Mu. Tli,- m-Usork ní -Ircmi- i|isM.-rli'i| thť fllll rrltrl ..imI I lir I m-l- ;i|u' h i|Mifrr,'ipll bi-r;iniť umři' vin i,-,I. A lii(fiu-r rdicf rnerjry und a mor* difh'n.-iiluiU'd cliRfnctťř of i-. lh Lnul »fii lypirul nf i Im« rr^ioiud unii* iliiit nriginritrd by ínlriuivr tdnsi>,- ,TM»i*r lH'vf-)í. nf rroniuii. a* f«r vMiiuph', thr mar-finnl |uirli of thr <"V*kř »trrdnhuH Mit., wlien* rvm tubtuirfnťtt part* of Nenidir vnUiuiiK'- hnve brní expowd. In llw moimliiinou» nnd hilty nrvas ihr fir*l |ih;ise* nf ťrvoplnnntiwn prwesffs «?t on undcr thr influriice of [k?righicinl diiuati* and Aubryunir furn» of fmsi rliff« apjwntrd On tífirprr MjfMfc S»di-utoti nud * lul tmí plirimun-nn werf inUmsive. lil Worin period* »lrun#1y wCAlher-Míits of braunldmt ty pr d«vdn|H'd on lues*. and lerra fiisra and oř ftiTťlu formid mi pariKMuUe rtn>k» !S ni a li k « v ň - 7, *? m n a A. 19S2). Truvrrtini-n IWire fonuiiiK ni «lütnble pltires iKoknn . LIS rrvufFnic f«altirr' lha »urfjira ni narl> liilomu* lluii.tiil« m-iIi IIM'Til« llrl><» <%-riMi* M',1 PHnto by A. iVnun During the <■'• M inli-rglueial the Druhnny ncotectoitic pirns* affected the area «>f the Carpathian ffiredcep ami brought nbout a change in the ttn-nm pattern Zrntan A. If W?7. H>~|i Sihrava (1981) connect* with this phase the to J_ L SJ4 Map •howing ihr r*tcnl of ntuwnlot gUrialioo ia Ac OJm inn (»<■ .iinlinjf to V Sihnva in J Mnn.un rt ul KXKi) I — fulm of th* Bolivtnina Mrmit, 'J — flyw-h of the W>i| Cirpalliintt*; J — Mf-npnie of lh« CnriMlttun inrt«U-c|>; 4 — inleiml boundary ul Fltiter niacin MO*} & — uifr-mjd kmun-lniry of SmIp ffUt-intioa (mutation .if (j.-|iri-'.M>>i!'. and nverde.pened vnhV> * in the North I'm!■ • |" 111 Lowland .nid in Austria, and atstunvs that these movements preceded the I'.r.o.h. - Miitnyama inversion. At the Licgium'iig of the Middle Pleistocene, which is at present placed in the I ifiiiae — Mmdcl iiilergtnnal, pelilic and psammitic sediments were depo«-in-d m floudpliiin< ami ox hnu lake* Přc/lclir*) and karat pockets were being filled in (C 7t'J, rave IV in the Bohemian Kuril) in the warm humid climate. 9 I i Moravian K*nL Otirav. linlli.dr rwnr It-lurlu (**v« PVolu by I. Ilulifn The following Mi ridel glacial caused changes in the development of wum >i'i'iur» id ihc Midientiiiii I I14.d1l.1nd I'lie l\l«1er ire-sheet penetrated into northern Bohemia and northern Moravia. leavinc behind it- ulnrinl depn»ii-. fee-dammed hike* wen- funned ill front of the continental glacier. At the lime of maximum extent of gincirUiou in northern Ihdiemia. ihe melt water fbuved through ihe Jilruva siddle into lie- I'heutuire-river valley. An extciiMV <- through-drainage lake dev4>h>|M'd in tin' I ppcr Mnravian depression and n nimilar »nr in the Tre-Imu ba«in The formation of river terrace* continued both in Moravia and Bohemia; the channel #if the river Ylluva wa« transferred In the rail of flip 11*31 and at ii- fool a lake prohahly originated. A minor lake bii-un impounded by • huuUlidc in the Ih'lina river valley near Teplii r. .in-1 :n,.-ilier mie on th-.4 river l.,il.e near Dehnie. \l the foot of hill -dope* prnlnvinl ilV|i-»*it* accumulated at a great thickness; today their relic* cover the water-died* in the urea* at the fool of the K.i'-.i- horv and HrikMlv Mtv Itorkfull;- Here frvipirnt on >|eep Inwards the end of the Mindcl the ice sheet retreated, leaving behind relict hike* (Opavn— Illuffn, Opnvn—Oldricbov mid Stonava lakes,, which were rapidly ? In lib. iDdnvi-il 'ftliuirnli id l-.Ulrr cl.e'mlinn in «ti« !m«m .it itm hv« Pt«>u*Jnicc. koiilh nf .litrava MildU I'hutu by A. A-unn 8.1? Mu Rneky uutcmtn ot *u,n" ryp« w **foli*«ian «lom*>, Peltovy kar. mv in the Krkono** Photo by J- Itubln enough filled wilh clay, sand and organic 'matter. The lakes in the Upper Moravian and Třeboň basins ceased to exist and a normal system of younger terraces developpcd in their filling. Gravels of the older accumulation of the Mam terrace were laid down by Moravian rivers as well as their stratigraphic equivalents in the Bohemian Massif. Mindel loesses sedimented in the Prague depression (Sedlec, Letky, Zalov) and in Brno depression (Červený kopec). In the warm Mindel-Riss interglacial strongly weathered soils developed and paludal organic sediments w-ere deposited (Muglinov, Skrečoň, Dolní Lutyně). Some lacustrine sediments and peats (Stonava) and travertines (Tučín, Zelato-vice) belong obviously to its younger warm phase. Rivers already cut their channels to the level of the modern floodplains. The following cold Riss interval caused reinvasion of the Nordic ice into the Ostrava region. Simultaneously with its approach, the younger accumulation of the Main terrace was deposited. The ice-dammed lake covered virtually the whole Odra part of the Moravian Gate and its impounded waters flowed through the Poruba Gale into the Danube drainage area. It is the period of drastic hydrographic changes. The river Odra with its tributaries flows southwards into the Black Sea, the Ohře transfers its channel from the Bílina valley to the present course, and the Morava begins to deposit first terraces in the Hradiště trough, (although it had moved frotti the Vyškov Gate probably earlier). Towards the close of the Riss the Morava migrates from lbe Senice lowland north-eastwards, and the junctions of the Dyje with the Jihlava and the Svratka also move. At the end of the Riss, wast through-drainage lakes extended in Lhe Dyje-Svratka depression and Lower Morava depression, which communicated through the Dolní Věstonice Gate. Denudation relics of sandy-clayey lacustrine sediments overlie today the Riss terraces (Z c m a u A . et al. 1980). The rivers of the Bohemian Massif deposited lhe group of lower terraces. The river Labe leaved the Urbanice Gate and moved its channel to the S. At the foot of mountain ranges proluvial sediments cumulated, forming extensive outwash fans and dry deltas. The České slředohoří succumbed to intensive destruction; accumulations of slope deposits around the exposed pipes and feeders formed striking volcanic pseudocones. In the hilly areas the cryoplanation process and formation of pediments, frost cliffs, pseudocirques, and boulder fields continued. Loess sheets and drifts in sedimentary areas levelled depressions in the bedrock creating a characteristic slightly undulated loess relief. The extension of the ice sheet up to the foot of the Krkonoše Mts. caused mountain glaciation of this range. The R YV interglacial with average annual temperature of ca. 13 °C was distinguished by the development of soils of parahrown-carth or chernozem type, and deposition of fresh-water carbonates, fn lhe floodplains the rivers deposited flood loams and abandoned channels and oxbow lakes were filled in. Favourable cli- :■•))' 4-R0ZUM0V- ■ ■ * .'A 71.. ' .j 31 " .. ______ in 0 8.19 Territory of the Czech Soc. Republic in R/W inlorglaeiaL slago (A. Zeman, orig.) 1 — surface of floodplain and floodplain soils; 2 - floodplains in cunyon-like reaches of river valleys; 3 — areas wilh a predominance of parabrownerde; 4 — hrown earths and parabrownerde; 5 — mountain soils and areas wilh podzols (depending on substrate); 6 — stony syrosem soils; 7 — palynologically evaluated floral finds; 8 — Middle Palaeolithic (R/W interglacial and early Würm, when true Mouslerian was developing); cave locality marked by a semicirclet above symbol; 9 ~ interglacial associations of Banatica fauna; 10 — finds of Homo sapiens neanderthalensis 8.20 Cirque below Mt. Klínovec (F. Králík 1969, orig.) 1- cirque limits; 2 - young erosion gully; 3 - stone and block streams; 4 - impart of passive moraine; 5 - rocky outcrops; 6 - outwash cone; 7 - loamy-stony debris, S — floodplain; 0 — sandy gravel of higher terraces 821 IluiiMcr fintil, Čertovi »tfna in lim Vluva-rivcr satiry I'hiilo by J, Riillii Cirui»« tuk*. Čertovo jerem in iko Sumsv* Mls. Phnlo hy J. RiiMn male nbv tfupiKirlcd the cvoluitou of Mao; tlu: river valleys aud coves became reloti\ .-!> ill mcly populated. lu lite Last filarial tin- cuntinculal ice extended again southwards and the Last intense growth of mountain glaciers touk place in the Alps. Mimuloin glacier* also occurred in the highest parts of the Krkonosc Mis. I, snowline at 1200— lot HI m r the £iiiuava Mis. snowline nl UHNI IHMI o> as!, and the .levniUy. .Average annual lemprraltire varied uIhoii ±IJ 'C. In On li'i-luvukiii ihe Last Glacial it the most thoroughly investigated pari of the Pleistocene, thanks lo completely preserved luc*s covers in the areas of Prague, Lilorni*fiix\ kiiltiu llora. in southern Moravia and in ibe Moravian Gale, Their ma\mniin thickness is up to 20 in. In llie higher-lying areas the loess loams occur, which formed mostly by decalcification of loesses owing to more humid climate. Wind-blown sands are also joined with the cold climatic phases. In Bohemia and Moravia they follow the eastern margins of valleys of N—S direction, in the form of drifts and dunes. Their relationship to loesses indicates that the youngest accumulations formed towards the end of the Last Glacial. Slope deposits of 1 — 15 m thickness accumulated under periglacial climate and partly in warmer phases. Proluvial sediments of this age are known from the area of Znojmo, from the piedmont areas of the Beskydy, Jeseníky and Krušné hory mountain ranges and from the marginal parts of the South Bohemian basins. Fluvial sediments formed the thalweg terrace and in some areas (e.g. in the Labe valley) constituted two lowest terraces above the floodplain. The thickness of accumulations attains 10—15 m. Lacustrine, 2—5 m thick, sandy-clayey sediments are known from the neighbourhood of Znojmo. They fill a shallow basin covering about 10 km2. Glacigene sediments in the Sumava Mts. dam two cirque lakes, interrelations between sediments of different genetic types within the accumulation cycle of the Last Glacial are complicated. The formation of fluvial and proluvial sediments probably falls in the middle part of the Glacial, after the deposition of the oldest loess. Towards the end of the glacial period, lacustrine sediments, the youngest loess and eventually blown sands are deposited. The evolution of vegetation indicates that during the Last Glacial there were l,oth cold and warm oscillations. In warmer interstadials deciduous trees predominated and in cold periods herbaceous vegetation of a continental steppe character prevailed. The development of molluscan fauna presents a similar picture of the palaeoclimate in periglacial regions. The Late Glacial is a transitional period between the retreating Glacial and beginning Holocene; the greatest accumulations of blown sands were deposited in this time span. In the territory of our stale the presence of Man during the greater part of the Pleistocene is documented mainly by the finds of Palaeolithic implements. Of the oldest age are so-called pebbles industries of the Bohemian and lleidel-bergtan passing into the classical Clactonian, or Abbevillian, Acheuléan and Mouslerian industries. The world-known locality Předmostí near Přerov belongs to the youngest culture. The evolution of Palaeolithic Man continued even during the Last Glacial under severe living conditions (ice cover in the north, mountain glacialion of the Alps, Krkonoše, Sumava, Jeseníky and Tatry regions). In the Late Glacial, not long before the onset of the Holocene, approximately ten thousand years B.P. a fairly marked warm oscillation — Allerod interstadial passed in the non-glaciated area into Holocene without a conspicuous cold oscillation. A permanent prominent warming up of the climate began only in the Preboreal. It has been precisely determined in marine sediments that this 8-24 t'ulhnle* in tlie rorky bod at lliit nwr Vvilrn nmr SrftI in lb* £>imavn Mia,, Prilily niioiif u( tlir MciMitnuliiafi PUtlMI Phnlu l>y J. FUrta rlmilK1' •""k plaiv alwtlt &H»0 vi-ars B.t*. < »n ao-nunl of lh< i'\mirrir<- nf .1 ninlic /on.tIn- rvnlolioti of tuituri' in ilit- I'liM^l.irinl has nowbrrr been uniform. In Central luiropc ihrce. Such touv* have been established. The /one above ihe |.|.'"'lll 'l-l', lllllhl'l lllll' 111- »]||1«II -■ l|llil'l 1 I* -L • 1. .[ ►! Hr | . i II,.. | !||,,;,(,.' Iiplillllllll ill tlti- innl-l Inhume implied a rise of llie limberline by in above lite nresnil ullilude niiil tliun uerupied ihe trrealer purl i.f ihe modern Siihulpiue .|;^r I In 4;*\ ihr- fore* I /our, which extended from ihe timber line and dewnnlnl {« lowlands where lln- ehuiute wn* sufficient I > humid as, fur example in the Ostrava area or in tmiihern IW hernia (Lo*. ek 1977:. iNnlidogicnHy, it it characterized hy u prciliiiuuiaiice of brown fun-i » nl>. which inciv lie snore iir les* pb&Mtiictl The \ n predominance chcrrio/rinic. ■wiils nnd xemlhrnnal elrmenls, dt*plu> a ipiilr different pirlnr*. On account of lilt' climate .mlI ■oilMrulc (In -ii-ppea survived f<«i ll.r lonm-i turn- ..ml luai-iiiliiir.il >i'Mli'inciii uppt'iirfil there fir».i Nmdiihie'i. L:ili'i mi Man tiradutdly occupied additional m> fur wnsle MM and |n'i»i«triited i'U'ii inln mountainWilli increasing settlement Ibe effects of humiin activity iiilii^ifi.-fiin ur ihluv ii i-flttv ml *<-c. Ilicir effeil* inrn-ast-d in llie hit- Bron/e Ain- in I lie dry inlervtl of tlit- Suhlnireol. Ttie eluin»ti> in Ihr < onfnjiirutiou of land^eape liernme so inli'imvc and nf siieli exleul ihnl tbey can be compnri'il wilh lln»i' ri»ullint! frorn I'lllltV Jlliilll nf lll'll ll'uioMS in lllr Muhllr Aitet. Tlie llol.nror is n prrioil of Iwu rr-volulions in tbe rrhilnui* b«»lween hliriliLii turii'h .mil iiiiliirr 111 ihr Nrolilhir, \lnii h'liriiril In irinmlrl lint Iter hy 'illa^. and pafclunn*:. wlneli I■-• I lo |hr development of cultural laiid«rup«* willi 1 iuuli portinn of areas wlirrr hi mum activity was combined with natural events. Ikuli of 1 him 1. however. «lill played llieir own rtdrs in I be developnirnl of ibi-•-iiv irunmelll. Tlir .rrontl n-utw!, inllril ihr Mirnlirii tirhniinl revolution, occur* nowaday* The nalure is briiu; snppre**eil over steadily inereasin» ureas and the ehiiiute* of oliimxiims cbarnrlrr uiMiim .1 ifhdiul scalr. Tbe iiupslinn arises what will ihr oov ironniriil |.».k like if I he pre»i'lil Irrinl will eontinue. We do nol ftillv null/,. 1),;,1 11. >|, „-,.„,• ,» 11 u.uin ,>rtioi| npiivabut to Plewtitrcne inler- glacials, differing from them only in the effects of human activity. Actuogeolo-gical considerations and applications require of us to apprehend how fundamentally the Late Holocene and Recent differ from the earlier epochs. Human activity has afflicted the nature with such intensity that the present conditions are quite unnatural. Vegetation cover and the loosening of the surface by tillage correspond to glacial conditions, whereas climate, especially precipitation and their distribution, correspond to an interglacial. The actuogeological observations can not be therefore applied directly to the geological past. References Ad asii Z. - Beránek B. - Weiss J. (1979): Contribution of deep geophysical ininstigations to the problem: Solution of the contact between the Carpathians and the Bohemian Massif. — Czechoslovak geology and global tectonics. Proc. of the Conf., Smolenice, May 10—21, 1976, 237—268. Veda. Bratislava. Adámek J. - Dvorak J. - Kalvoda J. (1980'): Příspěvek ke geologické stavbe a naftově-geologickému hodnocení nikolřicko-kurdějovského hřbetu. — Zem. Plyn Nafta, •2,5. 4.41-474. Hodonín. Ambrož V. (L995): Studie o krystaliniku mezi Týnem n. Vltavou a Hlubokou. — Spisy přírodověd. Fak. Karl. Univ., 136. 1—44. Praha. — (1942) : Periglaeiálm zjevy u Jevan. — Zpr. Geol. Ost. Cechy Mor., 18, 219—230. Praha. — (1947): Spraše pahorkatin. - Sbor. St. geol. Ost. Cs. Republ., 14. 225—280. Praha. Andrusov (L930): Příspěvky ku geologii severozápadních Karpat. V. Příspěvek k poznání tektoniky a paleogeografie severozápadních Karpat. — Sbor. St. geol. Ost. Čs. RepubL 9, 235-300. Praha. — (1958): Geológia československých Karpát. I. — 1—304, Slov. akad. vied. Bratislava. — (1959): Geológia československých Karpát. II. — 1—376, Slov. akad. vied. Bratislava. — (19SS) r Grundriß der Tektonik der nördlichen Karpalen. — 1—1SS. Bratislava. Andrusov D. - CortiA 0. (1976): Ober das Alter des Moldanubikums nach mikro-fforislischen Forschungen. — Geol. Práce, Spr.„ 65. 81—89. Bratislava. Angenheister G. (197'i): Anomalien der vertikalen Komponente Z des Erdmagnetfeldes im nördlichen Alpen-Vorland und in den Ostalpen, gemessen längs Profilen 1058—1973 (Profilmontage). — Münchencr Univ.-Sehr., Fak. für Geowiss., Ser. B, 5. 2. 10—36. München. Ära po v A. et id. (1965): Prognosní mapa Cech a Moravy 1:100 ODO'. — MS Geofond. Praha. Arnold A, et al. (L974): Rb/Sr-AItersbestimmungen an Orlhogneisen und GranuKten des südböhmischen Moldanubikums. — MS Ostř. úst. geol. Praha. A u b o u i n J. (L9GÔ): Gcosynclines. 333 pp. Elsevier. Amsterdam. A u g u s t y n i a k K . - G r o c h o 1 s k i A . (1968) : Geological structure and outline of the development of the Intra-Sudetie depression. — Biuletyn (Inst. geol. Warszawa), 227, 87-120. Warszawa. Balatka B . - S I á d e k J . (1962): Terasový systém Vltavy a Labe mezi Kralupy a Českým středohorím. — Rozpr. Cs. Akad. Věd. R. mal. přír. Věd. 72. 11. 1—02. Praha. — (1976): Terasový systém slrední a dolní Ohře. — Acta Univ. Carol.. 2, Geogr.. 1—26. Praha. Bard J . P . - Burg J . P . - Matte Ph. - R i b e i r o A . (1980): La chaíne herey-nienne d'Europo occidentale en termes de tectonique des plaques. ■ Mém. BRGM 108, 2'3 JGCr C. 6.. 233-246. Paris. B n ľ [ Ii Y . (:U'Ü3): \ ariský geosynklinální vulkanismus v Hrubém a Nízkém Jeseníku n jeho vztahy k tektonice. — Sbor. Prací Univ. Palackého {Olomouc), Geogr. Gcol., 14, ■1-117. Praha. — (l[K>'i): Kaciální vývoj vulkanického komplexu v jižní části konicko-mladečskébo devonu na Drahanské vrchovine. — Sbor. Prací Univ. Palackého (Olomouc), Geogr. Geolo., 17, 6. 13—67. Prahn. — (1966) :The initial voleanism in the Devonian of Moravia. In: Paleovolcanites of tlie Bohemian Massif, 11')—125. — Přír, fak. Univ. Královy. Praha. Balík P . - S k o f e k V . (1981): Litologický" vývoj paleozoika na východním okraji dyjského masívu. — Vest. Ústf. Ust. gcol.. 56, 6. 337—347, Praha. B e h r H . I. (I9'78): Subfluenzprozesse im Grundgebirgsstoekwerk Mitteleuropas. — Z. Dtsch. gcol. Gesell.. 12Ö, 283-318. Hannover. — (1980): Subdiiktion oder Subfluenz im mitlclciiropäischen Varistikum? — Berl. geowiss. Abh., R. A, 19. A. Wegencr-Symposinm, 22-23. Berlin. He h r H. .1 . - F r i t s c h E . - M a n s f e 1 d L. (196.)): Die Granulite von Zöblitz im Erzgebirge als Beispiel für Granulitbildung in tiefreiehenden Scherhorizonten. — Krystalinikum 3. 7—29, Praha. Beneš K. (IÍXi'i) : Structural analysis of Moldamibian—Assyntian boundary area at the ~SE margin of the Moldamibian core. — Rozpravy Cs. Akad. Věd. Ř. mat. přír. Véd, ?4. 2, 1-80. Praha. — (I'97.1): Flow and fracture fabrics and their relationship in some granitic bodies of the Bohemian Massif. — Krystalinikum. 8, 149—166. Praha. Beránek B. (1971): Hlubinné seizmické sondování v CSSR. — Geol. Průzk., 13, 10, 289-293. Praha. Beránek Ii. el al. (I'J72): The orůstal structure of Central and Southeastern Europe based on the results of explosion seismology. In: Czechoslovakia.. Geophysical trans., spec. ed. 87-98. Budapest. Beránek B . - 1) u d e k A. (1972): Results of deep seismic sounding in Czechoslovakia. — Z. angevv. Geophys., 38. 411—427. Wurzburg. — (.1981): Osnovnye zakonnmeinosli stroenija kory zon perechoda v varisskom i íďpijskom orogeiiaeh. — Malerialy XI Kongressa Karpato-Balkanskoj geologičeskoj associacii, Geo-fizika. 13—20. Nauková dumka. Kiev. — (1981): Geologický výklad tíhových transformovaných polí v Českém masívu a Západních Karpatech. — Sbor. geol. Věd. užitá Geofyz.. 17, 47—19. Praha. Beránek B. - Budek A. - Zoun ková M. (1973): Rychlostní modely stavby zemské kůry v Českém masívu a Západních Karpatech. — Sbor. geol. Věd. užitá Geofyz.. 13. 7-20. Praha. Beránek B. - 1 b r m a j e r J. (L976): Gravimetrie a výsledky hlubinné seizmické sondáže v CSSR. Tn; Sbor. referátů 7. celost, semináře „Problémy současné gravimetrie", LibUoc. 1—23. - Geofyz. úst. ČSAV. Praha. Beránek B. - Suk M. - Weiss J. (1980): Geological sections through the Variscan orngcue in the Bohemian Massif. — Sbor. geol. Véd. Geol.. 7—29. Praha. Ber á nek 15 . - \V e i s s J . (1970): Geotcktonické řešení postavení Českého masívu a Západních Karpat, fn: Tektonické profily Západných Karpát, Smolenice 1978. 25—29. — Geol. úst. D. Štúra. Bratislava. B e r á n e k 13 . - Z o u n k o v á M . (1070) : Principal results of deep seismic soundings. In: Geoiknninie investigations in Czechoslovakia. 105—111. — Veda. Bratislava. Bernard J. II. (li)7S): Paragenetic units in relation lo the deeper structure of the Bohemian Massif. — Sbor. geol. Věd. Geol.. 31, 13—20. Praha. Bernard J. et ul. (1982): Endogenous mineralization in the Bohemian Massif in relation lo global-tectonic concepts: confrontation of geophysics and metallogeny. — Sbor. geol. Věd. užitá Geofyz., 18, 11—52. Praha. Bernard J. II. - Dudck A. (1967): Sur le magmatisme et tes mineralisations hydrotherapies du Massif dc Bohéme. — Mineralium Depos., 1. 2, 63—79. Berlin. Bernard J . - K 1 o m í n s k ý ,1. (197Ó) : Geochronology of the Variscan plutonism and mineralization in the Bohemian Massif. — Vest. Ústř. Úst. geol., 50, 1, 71—82. Praha. Bernardova E. (1965): Těžké minerály proterozoika v severozápadním křídle Barran-dicnu. — Vest. Ústř. Úst. geol., 61. 5, 335—339. Praha. B e z v o d o v á B . - Z e m a n A . (1983): Paleorcliéfy na jižní Moravě a jejich kolektorské vlastnosti. — Sbor. gcol. Věd, Geol.,, 38, 95—140. Praha. Blížkovský M . et al. {1981): Odkrytá tíhová mapa Českého masívu na základě revize huslotních dat. — MS Ústř. úst. geol. Praha. Blíž kov ský M. - Pokorný L. - Weiss J. (1975): Structural scheme of the Bo-henvan Massif based on geophysical data. — Vest. Ústř. Úst. gcol., 50, 1, 1—8. Praha. R 1 u m c 1 P . - S c h r e y e r W . (1977): Phase relations in pelitic and psammiúc gneisses of 1he sillimanite-potash feldspar and eordierite potash feldspar zones in the Moldanu-bicum of the Lam-Bodenmais area, Bavaria. — J. Petrology, 18, 3, 431—459. Oxford. Bosák P. (1978): Rudieká plošina v Moravském krasu. Část III. Petrografie a diagenezo karbonátů a silicitů jurského reliktu u Olomuŕan. — Cas. Morav. Muz., Vědy přír., 63, 7-28. Brno. Bouček B, (1933): 0 silurské fauně od Stínavy západně od Plumlova na Drahanské vysočině, — Cas. Vlaslen. Spol. mus., 48, 3—4, 129—138. Olomouc. ■ (1953): Biostratigrafic. vývoj a korelace želkovický-ch a motolských vrstev českého siluru. - Sbor. Cslř. Úst. geol., Odd. paleont.. 2;>, 421—484. Praha. Bouček B. - Kudy m 0. (1938): Geologie, T. — Nakl. Cs. akad. věd. Praha. Bubeníček J . (1068): Geologický a petrografický vývoj třebíčského masivu. — Sbor. geol. Věd. Geol.. 13, 133-164. Praha. Bůčková M . - R ú ž i č k o v á E . (1967): Proluvial and fluviatile sediments of the south-west em margin of the České středohoří Mts. — Sbor. geol. Věd,,, Antropozoikum, 1. 30-69. Praha. D u d a y T. el al. (106í)): Teetonio developmcnt of Czeehoslovakia. — 1—232, Os t ř. úst, geol. Praha. 1} n d a y T. ct al. (IOG3;: Vysvětlivky k přehledné geologické mapě ČSSR 1 : 200 00O M-33-XXX Gottwaldov. — Ústř. úst. geol. Praha. B u d a y 'ľ . - C i c h a 1. - Sene š J. (1965): Mioziin der Westkarpalen. — 1—29,1, Geol. úst. D. Štúra, B.atislnvíi. Búda;- 'ľ . - D u d e k A . - 1 b r m a j e r J . (1969): Některé výsledky interpretace gravimetrickú mapy ČSSR v merítku i : 500 000. — Sbor. geol. Věd, užitá Geofyz., 8, 7—35. Praha. Burret C. - Griffiths J. (.1977}: A ense for Mid-European oceán. In: La chaine Varisque il'Europe moyenne et occidentale. — Coll. iiilern. CNRS. 243, 313—328. Rennes. Bůžek C. - Kvaček Z , - F e j f a r O. (1979) : Nová paleontologická data o stáří neo-vulknnisimi v severních Cechách. — Cas. Minerál. Geol., 24, 1. 103—104. Praha. C a d e k J. (1066): K paleogeografii chomutovsko—mostecko—teplické pánve. — Sbor. geol. Věd. Geol.. JI, 77-114. Praha. Cech S . - K 1 e i n V . - Kříž J . - Valečka J . (1980): Revision of the Upper Cretaccoiis stratigraphy of lbe Bohemian Basin. — Věst. Ustř. Vsi. geol., 55, 6. 577—296. Praha. Čermák V. (1980): Mapa tepelného toku v Evropě: Poznámky k její interpretaci, odvozené mapy hlubinných teplot, tepelného loku na rozhraní kúra-plášf a mapa tloušťky litosféry. in: 7. celostátní konference geofyziků. Sbor. referátů. — MS Geofyzika. Brno. C háb T. (L973): Fosilní oceánská kůra a svrchní plášť na dnešním povrchu souší. — Vest. Úslř. Cst. geol., 48, 5, 303-310. Praha. — (1.97.5') : Jnlruzívní horniny strukturního vrtu Berhlín u Roudnice nad Labem. — Sbor. geol. Věd, Geol., 27, 55-82. Praha. — (1076): Kadomský vývoj ve střední Evropě z hlediska globální blokové tektoniky: pracovní hypotéza. In: Zborník referátov vedeckej konferencie ..Československá geológia a globálna tektonika". Smolenice 1976. 69—72. — Geol. úst. D. Štúra. Bratislava. — (1978): Návrh liloslratigrafické a biologické terminologie pro svrchní proterozoikum te-polsko-barrandienské oblasti. — Včst. Cstř. Cst. geol., 53. i, 13—60. Praha. — (1979) : Svrchní proterozoikum Českého masívu a jeho význam pro vývoj evropského kontinentu. In: Seminář k OD. výročí založení UOG. — MS Cstř, úst. geol. Praha. C h á b J. - Bernardova E. (1968): PräassynSische kristalline Schiefer- als klnstisches Materiál in jungprolerozoischen Grauwacken im NWTeil des Barrandiums. — Geologie. 17. 6, i. 753—775. Berlin. C h á b J . - B o u S k a V . - Jelínek E . - P a č e s o v á M . - P o v o n d r a P . (1980): ľetrology and geoehemistry of tlie Upper Proterozoic Fe-Mn deposit Chvaletice, Bohemia, Czeehoslovakia. — Sbor. geol. Věd, ložísk. Geol., 2,3, 9—68. Praha. Ch á b J. - Fiala F. (I97l),l: Proterozoické paraslepen.ee na lludlicku (severozápadní křídlo Barrandienu). — Včst. ľstr. Osi. geol., 45, 70—86. Praha. C h á b I . - Pele Z . (1973): Proterozoické droby severozápadní části Barrandienu. — Sbor. Cstř. Üst. geol.. Geol, 25. 7—84. Praha. Cháb J.-Suk M. (1977): Regionální metamorfóza na území Cech a Moravy. — Knih. Ustř. Üst. geol., 59, 1—156. Praha. Cháb J. - Vrána S. (L979): Crossite-actinolite amphiboles of the Krkonoše—Jizera crystalline complex and their geological significance. — Vest. Üstr. Üst. geol., 54, 3, 143-150. Praha. Chaloupský J. (1963): Konglomeráty v krkonošském krystaliniku. — Sbor. Ustř. Üst. geol.. Odd. geol., 28. 173-190. Praha. — (1965) : Metamorphie development of the Krkonoše crystalline complex. — Krystalinikum, 3. 31-54. Praha. — (i 90S): Kaledunská a variská orogeneze v ještědském krystaliniku. — Sbor. geol. Věd, Geol, 10. 7—37. Praha. — (1967): Problematika kaledonského orogénu v Českém masivu. — Čas. Mineral. Geol, 12, 2, 165-170. Praha. — (1973): The basement of the Cretaceous and the Permo-Carboniferous of northern Bohemia. — Geol. Rdsch.. 62, 5S1—~>94. Stuttgart. — (1975): Prekambrieká tektogeneze v Českém masívu. In: Sborník přednášek k 30. výročí osvobození. — MS Ustř. úst. geol, 26—29. Praha. — (1977) : Stratigraphie du Precamhrien du Massif de Bohéme. In: La chaine Varisque ď En rope moyenne et occidentals — Coll. inlern. CNRS, 243, 17—32. Rennes. — (!978): The P.e.-ambrian tectogenesis in the Bohemian Massif. — Geol. Rdsch., 67, 1, 72—90. Stuttgart. — (1981): Návrh stratigrafiekého členění jednotek krkonošského krystalinika. — MS Ustř. úst. geol Praha. Chaloupský J. et al. (1968): Geologická mapa Krkonošského národního parku 1 .- 5U 000'. — Cstř. úst. geol. Praha. Chlupác 1. (1961): Orientační výzkum některých menších výskytů devonu na Drahan-ské vysočině. — Zpr. geol. Výzk. v Roce I9601, 89—95. Praha. — (1962): Zur Biostratigrapbie und Faziesentwieklung der Devon/Karbon-Grenzschichten im Mährischen Karst. - Geologie, 11, 9, 1001-1017. Berlin. — (1963): Orientační palentologické výzkumy ve slabě metamorfovaném paleozoiku Ještědského pohoří. - Zpr. geol. Výzk. v Roce 1Ö62, 107—109. Praha. — (1964): Nový nález fauny ve slabě metamorfovaném paleozoiku Ještědského pohoří. — Cas. Mineral. Geol, 9, 1, 27—35. Praha. — (L9S5): Fortschritte in der Stratigraphie des mährischen (ostsudetischen) Devons. — Geol. Rdsch., 54, 1003-1025. Stuttgart. — (1906): The Upper Devonian and Lower Carboniferous trilobites of the Moravian Karst. — Sbor. geol Věd, Paleont., 7, 1—143. Praha. — (1968) : Devonian of Czechoslovakia. In: Int. Symp. Devonian system, Calgary 1967, 1, 109—126. — Alberta Soc. Petrol. Geol. Calgary. — (1975): Nové nálezy fauny v metamorfovaném devonu Hrubého Jeseníku a jejich význam. - Cas. Mineral Geol., 20. 3, 259-271. Praha. C h I u p á č I . ([075) : The Bohemian Lower Devonian stages and remarks on the Lower —Middle Devonian boundary. — Xewslelt. Slratigr., 5, 2—3, 168—169. Berlin — Stuttgart. — (1977): The Late Devonian and Karly Carboniferous trilobite faunas of Moravia, In: Symp. Carbonif. Stratigr., 305—313. — Ustř. úst. geol. Praha. — (1981a): K slratigraíii a fauiálnímu vývoji metamoríovaného paleozoika sedlčansko--krásnohoi-ského ostrova. — Věst. Cslř. Üsl. geol.. 56, 4, 225—232. Praha. — (1981b): Strntigraphic terminology of the Devonian in central Bohemia (Barrandian area, Czechoslovakia). - Vest. Vsli. Üst. geol.. 56, 5, 263-270. Praha. — (I9Ö2): Preliminary subcommission for Lower/Middle Devonian boundary stratotype in the Barrandian area. — Cour. Forsch.-Inst. Sickenberg, 31. S5—96. Frankfurt a. Main. C h 1 u p á č f. et al. (19/6): Xávrh regionálně geologické klasifikace Českého masívu. — Cas. Mineral. Geol, 21, 1. 1—27. Praha. Chlupať I . - Jaeger 11 . - Zikmundová J. (1.972) : The Silurian—Devonian boundary in the Barrandian. — Bulk canad. Petrol. Geo!.. 20. 1. 104—174. Calgary. Chlupáí I, - Kump era O , (1972): Stratigrafický význam profilu spodním karbonem ! u Opalovic na Hranicko. — Vest. Uslř. 1st. geol.. 47, .1. 147—154. Praha. Chlupať I. - Lukeš P. - Zikmundová ,T . (1979): The Lower/Middle Devonian boundary beds in the Barrandian area. Czechoslovakia. — Geoiogica ct Palaeont.. 13, 125—156. Marburg. C h 1 u p e I . - S v o b o d a J . (1963): Geologické poměry koiiieko-mladeěského devonu na Drahnnskč vrchovině. — Sbor. L'slr. Üst. geol... Odd. geol.. 28, 347 —386. Praha. Chlupať I. - Zikmundová J . - Z u k a 1 o v á V . (1968) : Relationships of Devonian and early Lower Carboniferous faunas from Moravia. — Rep. Sess. 23. Int. Geol. Congr. Czechosl. 1908, Proc. Sect. 9, 63-71, tjstř. úst. geol. Praha. C h m c 1 i k F . ct al. (I960): Vysvětlující text k základní geologické mapě 1 : 25 000 M-.'i.i-l 07-H-a /.borovice, M-33-107-B-b Kroměříž, M-3t3-107-B-e Zdounky a M-33-1117-B-d Kvasíce, — MS Geofond. Praha. C h li r k i o M. - Carter C. - Johnson B. R. (L977): Subdivision of Ordovieian and Silurian lime scale using accumulation rales of graptolilic shales. — Geology. 5, 452—450. Boulder. Cicha I. (196.1j : Slraligraphieal problems of the Miocene in Europe. — Rozpr. Üstr. Üst. geol.. 3.5, 1—136. Praha. C ichn 1. cl al. (I9Ö5): Eise neue tektonisehe Einheit der äußeren Karpaten in Siidmähren. — Geol. Pr'-ce. Zpr.. 36. 85—104. Bratislava. — (1775): Rioznnul division of the Upper Tcrliitry basins of the Eastern Alps and West Carpathians — Proc. of Olli Congr. RCMNS, Ustř. úst. geol. Praha. C i c li a 1 . - C t y r o k á J . - Jiříček R . - Zapletalová I . (1975): Principal bio-zones of the Late Ternary in the East Alps and West Carpathians. In: T. Cicha et al.: Hiozonal division of the Upper Tertiary basins of the Eastern Alps and West Carpathians. - Proc. of 6th Congr. RCMNS, 19-23, Ustř. úst. geol. Praha. Cicha 1 . - F c j f a r O . (1975) : N'on-marine .\eogene of the Bohemian Massif, the West Carpathian ľ'orcileep and the Vienna Basin in Czechoslovakia. — Region. Comm. on Mediterranean Neogene Stratigraphy, Gtli Congr., 7—35. Veda. Bratislava. Cicha 1. - II aga II. - Martini E. - Absulon A. (1974): Das Oligozän und Miozän der Alpen und der Karpaten. Ein Vergleich mit Hilfe planktonischer Organismen. — Verne Cong .-es du Xéogěne Mediterran úcn, Lyon, septembre, 1971. Mém. Bur. Rech, geol. min.. 78. 377—386. Paris. Cicha I. - Mnrinescu F. - Seneš J, et nl. (L975): Correlation du nčogŕne de la Paratcthys centrale. — IUGS UNESCO, Project No 2.5. 5—3-1. Üstr. úst. geol. Praha. Cicha I. - Papp A. - Sen eš J. - Steininger F. (1975): Marine Ncogcne in Austria ani Czechoslovakia—Excursion "A". — Kegion. Comm. on Mediterranean Neo-gene Stratigraphy, 6lh Congr.. 6—%', Veda. Bratislava. — (197'3): Badenian — Stratotypcs of Mediterranean Neogene stages, vol. 2. 43—49. CMNS. — Veda. Bratislava. Cicha I. - Stein inger F. (1975): History of the Neogene nomenclature in the Central Paratethys, In: I. Cicha el al: Biozonal division of the Upper Tertiary basins of ihe Eastern Alps and West Carpathians. — Proc. of Cth Congr. RCMNS, 9—1.0, Ustř. úst. geol. Praha. Cicha I. - Zapletalová I. (1974): Problémy slratigrafic mladšího tercíéru ve slřcdní části Karpatské předhlubně. — Zem. Plyn Nafta, 19, 3. 453—460. Hodonín. Cogné J. (1972): Le lirioverien et le cycle orogénique cadomien dans le cadre des orogěnes fini-préeambriens. — Coll. Agadir. Rabat 1970, 193—218. Cohee G. H.-Glaessner M. F.-Hedberg H. D. (1978): Contribution to the geologie lime scale, A. — Assoc. Petrol. Geol.. 1—388. Tulsa. Ctyroký P. (I98Í)): Nová hiostratigrnfická data pro stáří vltavínonosných uloženiu u Sukován a Suchohrdel na Moravě. — Přírodověd. Sbor, Západomorav. moz. v Třebíči. 11, 151-158. Třebíč. Cl y rok ý P.-Fejťar O. - Holý I. (1962): Neue paläontologischc Funde im Unter-miozän des nordliölimisehen Braunkohlenbeekens. — Neu. Jb. Geol. Paläont., Abb., 119, 2, 134—156. Stuttgart. — (lüol) ; Nové paleontologické nálezy ve spodním miocénu severočeské hnědouhelné pánve. — Zpr. geol. Vý/.k. v Roce 1963 , 201—203. Praha. C u t a J . - M í s a ř 7. . - V á I e k M . (1964): Interpretace tíhového pole severovýchodního ok-a je Českého masívu. — Sbor. geol. Věd, užitá Geofyz., 8, 7—35. Praha. Czudek T. (1976): Pianation surfaces of the Czech highlands. — Sbor. Cs. Společ. zeměp., 81.1. 16-1 S. Praha. Czudek T. - D e m e k J. (1970): Pleistocene cryopedimentation in Czechoslovakia. — Acta geogr. lodz., 24, 101—108. Lódz. D e m e k J . (1981): Nauka o krajině. - 1-234, Univ. J. E. PurkynČ v Brně. D em e k J. et al. (1965): Geomorfologie Českých zemí. — Nakl. Cs. akad. věd. Praha. Dlabat: M . - M e n č í k E. (1964): Geologická stavba auloehtonního podkladu západní části vnějších Karpat na území ČSSR. — Rozpr. Cs. Akad. Vŕd, R. mat. pŕír. Věd, 74, 1. 1—60. Praha. D o m e č k a K . - Opletal M . {1974}: Graniloidy západní části orlicko-kladské klenby. — Ada Univ. Carol., Gcol., 1, 75—109. Praha. — (1081): Metamorphosed Upper Proterozoie tholciites of the NE part of the Bohemian .Massif. — Krystalinikum, 1,5. 53—80. Praha. Dom s i open U. F. (1970): Rb-Sr whole rock ages within the European Hercynian. A review. — Krystalinikum. 14. 33—50. Praha. Dudek A. {JäôD): Krystalické břidlice a devon východně od Znojma. — Sbor. Ustř. Úst. geol.. Odd. geol.. 26, 101-142. Praha. — (IÍ)Ij2): Zum Problem der moldamtbischen Uberschiebung im Nordteil der Thayakuppel. - Geologie. II, 7, 757—791. Herlin. — (1963i): Boilrag zum Problem der moldanubisehen Uberschielmng (Misslitzor Horst). — Sbor. geol. Věd. Geol.. 1. 7—20. Praha. _. (1971): Chemical composition of Moldanubian eclogites and of their garnets. — Krystalinikum. 7, 167-181. Praha. _ (19805: The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulicom. - Rozpr. Cs. Akad. Věd, R. mat. přír. Věd, 90, 8, 1—85. Praha. D u d c k A . - F e d i u k F . (1055): Skalní stěna v údolí Vltavy u Kralup nad Vltavou. — Acta Univ. Carol., Geol., 1, 1S7-22S. Praha. Dudek A . - F c d í n k o v á E. (.1974): Eclogites of the Bohemian Moldanubicum. — Ne,,. .71). Mineral.. Abh., 121. 2, 127-159. Stuttgart. D i, d e k A. - M a t č j o v s k á O . - S u k M . (1974): Gfohl orthogneiss in the Moldanubicum of Hohcmia and Moravia. — Krystalinikum, 10', 77-78. Praha, Dudek A. - Melková J. (1975): Radiometric age determination in the crystalline basement of the Carpathian Foredeep and of the Moravian Flysch. — Vest. Ústř. Úst. geol.. 50, 5, 257—264. Praha. Dudek A. - Suk M. (1965): The depth relief of the granitoid -phitons of the Molda-nubicum. — Neu. Jb. Geol. Palflont, Abh.. 123, 1-19. Stuttgart. — (1071). Melamorphic facies scries in the Precambrian of the Bohemian Massif. — Acta Univ. Carol.. Gcol,. 1/2, 67-78. Praha. Dudek A. - Weiss J. (M>3): Západomoravskó krystalinikum. — Sborník referátů 14. sjezdu Společnosti pro mineralogií a geologii., 5—18. Brno. Dvořák .1. (1036): K rozšíření jurských sedimentů na Českém masívu v okolí Brna. — Yěst. Úslř. Cst. geol., 31, G, 284-285. Praha. — (1958a): Vývoj stratlgrafie křídového útvaru v oblasti Českého masívu. — Knih. Ústř. Ost. gcol., 30. Praha. — (1056b): Zásady faciálního a Filologického vývoje devonu a karbonu na Moravě. — Sbor. Vlastivěd. Mu/... Odd. A. 3.. 23—40. Olomouc. Dvořák ,1. (1968): Tectogencsis of the Central European Varl seid es. — Věst. Ustř. Úst. geol.. 43. li, 465—471. Praha. — (1969;): Geologie des oberen Teiles der Myslcjovice-Schichlenfolgü am östlichen Rande der Drahiincr Höhe. — Čas. Morav. Muz., Vědy přír.. ,54, 45—60. Brno. — (1973a) : Problem concerning the north-eastern closure of the Variscan orogeny. — .Neu. Jb. Geol. Paläont.. Mb, 8, 449-454. Stuttgart. — (1973b) : Synscdinieiitary tectonics of the Palaeozoic of the Drahany Upland (Sudeticum, Moravia. Czechoslovakia). — Tectonophysics, 17, 35—39. Amsterdam. — (197.5a) : Interrelations between the Sedimentation rate and the subsidence during the flysch and molassc stage of the Variscan geosynelinc in Moravia (Sudeticum). — Neu. Jb. Geol. Paläont., Mb, 6, 339-342. Stuttgart. — (1975b): Model evropských variseid. — Cas. Mineral. Geol.. 20, 1, 25—30. Praha. — (1977): Inversion structures of the European Variscan orogeny. — Vest. Üstr. Üst. geol., •5*2, I, 55—58. Praha. — (I£>78a): Geologie paleozoika v podloží Karpat jv. od Drahanské vrchoviny. — Zem. Plyn Nafta, 2:1, 185-203. Hodonín. — (1978b): Protcrozoischer Untergrund der variszischen Geosynklinalc in Mähren (CSSR) und ihre Kntwieklung. — Z. Dtsch. geol. Gesell., 129, 383—390. Hannover. — (1980): Geoloclonie conditions of the forming and extinction of the reef complex, notably in the Devonian of Moravia. — Věst. Ústí-. Ust. geol., 5,5, 4, 203—208. Praha. — (1981): Beziehungen des variszischen Orogens zur Osteuropäischen Tafel in Mitteleuropa. — Z. angew. Geol... 27. 186-188. Berlin. — (1982): The Devonian and Lower Carboniferous in the basement of the Carpathians south anl southeast of Ostrava (Upper Silesian Coal Basin, Moravia, Czechoslovakia). — Z. Dtscli. geol, Gesell.. J33, 551—570.. Hannover. Dvorak J. - Frey er G. (1961): Die Devon/Karbon-Grenze im Mährischen Karet (Südted des mährischen Sedimentationsbeckens) auf der Grundlage von Konudonten-fauiieu. — Geologie. 10. 881—895. Berlin. — (1965') ; Der hculigc Stand der Stratigraphie und Paläogeographie des Devons und U'nler-karbons (Dinant) im südlichen Teil der Drahancr Höhe (Mähren). — Geologie. 14, 4, 404-419. Berlin. — (1966): Příspěvek k řešeni sirat igrnfic paleozoika na střední Moravě. — Zpr. geol. Výzk. v Koce ÍI-XT), 129-130. Praha. — (iíKkS): Das Paläozoikum im mittleren Teil der Drahancr Höhe (Mähren). — Geologie, 17. 703-719. lierlin. Dvořák .1. - Friáková O. - Lang 1.. (1076): Block structure of the old basement as indicated by [be facies development of the Devonian and the Carboniferous in the Moravian Karst (Sudeticum. Moravia. CSSR). — Gcoiogica el Palaeont., 10, 153—160. Marburg. Dvořák J. - Pap ruth E. (1969): Uber die Position und die Tektogenese des Rheno-hcr/.ynikums und des Sudetikunis in den mitteleuropäischen Varisziden. — Neu. Jb. Gcol. Paläont., Mb.. 2. 65—88. Stutlgart. Dvořák .1. - Přichystal A. (1982): Lamprofyry stefanského stáři janovsko-artma-novského anliklinoria vc Slezsku. — Sbor. geol. Věd, Geol. 36. 93—113. Praha. ■J v u ŕ i k J. - P t íi k J. (l'lUi'i) : Geologický vývoj a tektonika devonu a spodního karbonu Moravského krasu. — Sbor. geol. Věd. Geo!.. 1. 49—84. Praha. Dvorak J. - Skoček V. (1796) : Reconstruction of the palaeo-heat flow regime in two areas of the Varisctin orogeny. — Neu. Jb. Geol.. Paläont., Mh.. 9, 517—527. Stuttgart. [ I Dvorak J. - Wolf M. (19/9): Thermal metamorphism in the Moravian Palaeozoic (Sudetieum. CSSR). - Neu. Jb. Geol. Paläont., Mh., 10, 596-607. Stuttgart. McElhinny (1975): Paleoinagnetism and continental drift. — 1—343, J. Wiley. New York. { Eliáš M. (19713): Poznámky k paleogeografickému a paleotektonickému vývoji flyšových Karpat. In: Československá geológia a globálna tektonika, Smolenice 1976, 43—53. — I Geol. úst. D. Štúra. Bratislava, — (1981): Facies and palaeogeograpliy of the Jurassic of the Bohemian Massif. — Sbor. geol. Věd, Geol.. 35, 75—155. Praha. Eliáš M. - Uhmann J. (1968): Hustoty bornin ČSSR. — Ustř. úst. geol. Praha. Elznic A, (19<)6): Lomské souvrství — nejmladší litofaciální jednotka terciárních sedimentů severočeské pánve. — Zprav. Severoŕes, hnědouhei. Dolů, 4—5, 1—31. Most. Fajst M . (1976;: Vztah zábřežské a stroňské série v prekambriu Západních Sudet. In: Korelace proterozoickýeh a paleozoických stratiformních ložisek, IV., 85—95. — Üst. geol. věd přírodověd, fak. Univ. Karl. Praha. F e diu k F. (1958): Staropaleozoické basické vulkanity v Rýchorských horách. — Práce Kraj. Mus., Sér. A, 1, 2—5. Hradce Králové. — (1959): Krystalinické valouny ze staropaleozoického slepence od Rožinitálu. — Věst. Ustř. Üst. geol., 34. 6. 436—442. Praha. — (1962) : Vulkanity železnobrodského krystalinika. — Rozpr. Ustř. Dst. geol., 29, 1 — 116. Praha, — (1967): Permokarbonische Vulkanite unter der Böhmischen Krcltlelafel. — Ber. Dlsch. Gesell, geol. Wiss., R. Jí, 12, 173-179. Berlin. — (1971): Cordieritc in the Moldannbian gneisses. — Krystalinikum, 7, 183—204. Praha. — (1976): The Bechyně "orthogneiss": an anatectic type of Moldanubian orthogneissoids. — Acta Univ. Carol., Geol., 3, 187-207. Praha. F e diu k V. - Röh lie h P. (196 J) : Hasálni vrstvy ordoviku v Praze-Trojí. — Acta Univ. Carol., Geol., 1, 75—93. Praha. Fed i u ková R. - Dudek A. (1979): Almandinové eklogity centrální části Českomoravské vrchoviny. In: Sborník příspěvků ke geologickému výzkumu jihozápadní části Českomoravské vrchoviny, 20—38. — Jihočeské muzeum. České Budějovice. Fed i u ková Ľ. - F c d i u k F. (1971): Moldanubian granuli tes of the Písek—Týn area. — Acta 1,'niv. Carol., Geol.. 1—2, 25—47. Praha. Fed i u ková K. - Suk M. (1979): An example of migmalite origin by dehydrating metamorphism. — Rull. Géol. Sue. Finl., ,51. 1—9. Helsinki. Fe j far 0. (1961): Survey of Czechoslovak Quaternary: Review of f ttinlernarv verlebrala in Czechoslovakia. — Prace Inst, geol., 34. 109—118. Warszawa. — (1965): Die uníer-mittclpleistozäne Makrotiiammalier-Faiina aus Dohrkovice, Südböhmen. — Be;-. Geol. Gesell. Dl«*. Demokr. Rcpubl. geol. Wiss., 10, 1, 57—65. Berlin. — (1972): Die Wühlmäuse (Microtidae, Mammalia) der alteren Sammlungen aus Stránská skála bei Brno. - Anthropos. 23. 12. 165-174. Brno. — (1976): Plío-Pleistocenc mammal sequences. — Proj. 73/1/24 Quaternary Glacialions in I he Northern Hemisphere, Rep. No. 3 . 351—366. Bcllingham — Prague. Fe j far O. - Č tyro k ý ľ. (1977): Fosilní obratlovci a měkkýši tretihor Chebska a Sokolovska. — Sbor. 8. celostátní paleontologické konference v Sokolově 1977. 17—19. Sokolov. Fe j far 0. - Heinrich W. I). (1980): Zur hiostratigraphiseben Abgrenzung und Gliederung des kontinentalen Quartärs in Europa an Hand von Arvicoliden (Mammalia, Rodenlia). — Čas. Mineral. Geol,, 25, 2, 1S5-189. Praha. Fejfar O. - Horáček I. (I983): Neue Faunen an der Grenze Villányium-Biharium auf dem Gebiet der ČSSR. - 7.. geol. Wiss., 19.2:1, 332-345. Berlin. Fencl J. - Záruba Q . (1956): Geologické poměry okolí Lázní Teplic v Čechách. — Sbor. Ustř. Üst. geol.. Odd. geol,. 22, 427-484. Praha, ľ i a 1 a F. (1.948): Algonkickč slepence ve středních Cechách. — Sbor. St. geol. Üst. Cs. HepuhĽ J 5, 399-612. Praha. — (1951): Příspěvek k poznáni tzv. algonkických slepenců ze severozápadní části Železných bar, — Sbor. Úsfr. Üst. geol., Odd. geol.. 18, 117—135. Praha. — (197:!): Silurské a devonské diabasy Barrandienu. — Sbor. geol. Věd. Geol.. 17, 7—S9. Praha. — (!'S)7ln;: lbe Upper Proleiwoic and Lower Palaeozoic geosynclinal volcanism of t lie Barrandian area anil lbe Železné hory Mts. — Krystalinikum, 8, 7—25. Praha. — ('97lbj: Ordovický diabasový vulkanismus a biotilické lamprofyry Barrandienu, — Sbor. geol. Věd, Geol,, .19, 7—97. Praha. — (l3'/2,i: Konglomerate jungprolcrozoisrher Flyschfazies im nordwestlichen Flügel des Barraiuliiims. — Věst. Ustř. Ist. geol.. 47, i. 1—12. Praha. — (I9i0): The Silurian doleritic diabases and ultrabasic rocks of the Barrandian area. — Krystalinikum. 12, 47—77. Praha. — (1977) : Proterozoický vulkanismus Barrandienu a problematika spilitů. — Sbor. genl. Věd, Geol.,. 30, 7-247. Praha. — (L978): Proteiozoic and Early Palaeozoic volcanism oí the Barrandian—Železné hory /.one - Sbor. geol. Věd, Geol., 31. 7/-90. Praha. — (1983): Valouny grauítoidú ze spodnokambrických íiteckých slepenců. — Čas. Mineral. Geol,, 25. 4, 351—368. Praha. Fiala F. - Svoboda J . (1956): Problém subkambria a subkambrického zalednění v Železných horách. - Sbor. Ustř. ľ st. geol., Odd. geol., 22. 257-304. Praha. — (1957): Geologicko pel rografické poměry algonkia mezi Telěieemí a Týncem n. L. v Železných horách. - Sbor. Üslr. Üst. geol., Odd. geol., 23, 2, 475—532. Praha. Fischer G. - Troll G. (I973): Bauplan und Gefügeentwicklung metamorpher und magiriatischer Gesteine des Bayerischen Waldes. — Geologica bavar., 68, 7—44. München. Fišera M. (1977): Nález safirín-flogopil-pyroxen-pyrop-cordioritové skaliny v moldaiiu-biku. - Cas. Mineral. Geol., 22, V 428-429. Praha. F r a s 1 f,. - Scharhcft G . - W i e s c n e d c r H . (LÍIC6): Crystalline complexes in the smi them parts of the Bohemian Massif and in the Eastern Alps. — int. Geol. Congr.. Sess. 23. Prague 1963,, Guide to Excursion 32 C. Wien. Austria. Friř A. (1871)—UIO'I): Fauna der Gaskohle und der Kalksteine der Perm-Formation Böhmens, T—IV. — Praha. — (191-2): Studie v ohoni feského útvaru křídového. — Arch. přírodověd. Prozk. Cech, 15, 2. Praliu. Fuchs G. (1976): Zur Entwicklung der Böhmischen Masse. — Jb. Gol. Bundesanst., 119, 45-61. Wien. Gabriel M. et al. (1982): Mioeen ve vrtu Vidnava Z-l. — Sbor. geol. Věd, Geol., 3Ü, 115-137. Praha. Galle A. - G li lup ač 1. (U)7Ö): Finds of corals in the melamorphie Devonian of the Ještědské pohoří Mts. — Vest. ÜslP. i'st, geol., 51, 2. 123—127. Praha. Gebauer D. - Grünen Felder H. (I !>74): Vergleichende l'/Pb- und Rb/Sr-Alters-beslimmtmgeii im bayerischen Teil dos Moldanuhikiims. — Fortsehr. Mineral, 50. 3. Stuttgart. — (1077): U—Pb systematica of delrital zircons from some unmetamorphosed to slightly metamorphosed sediments of Central Europe. — Contr. Mineral. Petrology. 05, 29—37. Berlin — New York. Gc iiiner YV, - Klcium a n 11. - Wagner G. A. (1007): New K—Ar and fission-track ages of impact glasses and teclonites. — Earlb planet. Sei. Lett., 2. 83—$6. Amsterdam. Goldbii (diová Z. - Svoboda .1. (11)33): Zpráva o nálezu graplolilů v siluru Železných hor u Vápenného Podola. — Věst. St. geol. Úst. Cs. Republ., 6, 4—6. Praha. G o r o c li o v I. M. ct al. (!977): Bb-Sr vozrasl porod kaplickoj gnippy moldamibiknma v juinoj Čechii, in: Opyl km-reljaeii magmatifcskieli i metamorfičeskich porod. 73—80. — Nauka. Moskva. Grauert B.-Haenny R.-Soptrajanova G. (1973): Age anil origin of detriíal zircons from the prc-Permian basement of the Bohemian Massif and the Alps. — Contr. Mineral. Petrology, ■VI. 105—130. Berlin — Xew York. Haakc T! . (1973): Zur AItersslclhing der Granodiorite der westlichen Lausitz und angrenzender Gebiete. — Z. geol. Wiss., I. 1669—1771. Berlin. Hanzlíková E. (1.976): Bioslrnligraphy of the Cretaceous and Palaeogene Flysch in the borehole JaroSov-1. — Vest. Ušli-, tJst. geol.. 51. 3. 153—162. Praha. Havlena V. (1964): Geologie uhelných ložisek, 2. — Nakl. Cs. akad. věd. Praha. — (1976): Late Paleozoic paleogeography of Czechoslovakia and the Pizeň Basin. — Folia Mus. Rer. nadir, iiohcni. occiilcnl.. Geol., 7. 1—31. Plzcii. Havlena V. - Pešek J. (L9SÍ)): Slrnligrafic, paleogeografie a základní struktury členění lininického pcrmokarboiiu Cecil a Moravy. — Sbor. Západočes. Muz.. Přír., 34, 1-144. Plzeň. II a v-len a V . - Satlrmi V. (1978) : Problémy středoevropských variseid. Ovaha n.id sborníkem Frnnz Kossmat—Symposion 1976. — Cas. Mineral. Geol.. 23, A, 337—348. Praha. Havlíček P. (I9£W): Vývoj terasového systému řeky Moravy v hradišťském příkopu. — Sbor. geol. Věd. Aiitropozoikuni, 13, 93—123. Praha. Havlíček P. - Zeman A. (lí)80): Kvartérni poměry mezi Kobylím, Brumovicemi a Čejčí na jihovýchodní Moravě, - Sbor. geol. Věd, Antropozoikum, 12. 31—55. Praha. H a v I í ě o k V. (1971): Stratigraphy of the Cambrian of central Bohemia. — Sbor. geol. Věd. Geol., 211 7—32. Praha. — (1977): The Palaeozoic (Cambrian—Devonian) in the Rožmitál area. — Věst. Ostí-, tjst. geol., .V2, 2, {íl-<>4. Praha. — (198')): Vývoj paleozoiekých pánví v Českém masívu (kambrium—spodní karbon). — Sbor. geol. Věd. Geol., 34. 31—65. Praha. — (!!)81): Development of a linear sedimentary depression exemplified by the Prague Basin (iJrdovician—Middle Devonian, Barraudian area — central Bohemia). — Sbor. geol. Véd, Geol.. 35, 7-43. Praha. — (I982): Ordovician of Bohemia: Development of Prague Basin and its communities. — Sbor. geol. Věd, Geol.. 32,. 103-136. Praha. Havlíček V. - Marek L. (L973): Bohemian Ordovician and its international correlation. - Cas. Mineral Geol.. .1,8. 2. 225-232. Praha, Havlíček V. - Snajdr M. (J : 0 slřednokambrieké a ordovické fauně Železných bor. - Věst. Čslř. Csl. geol., 2(3, \. 293-308. Praha. — (195r>M: .Něklcré problémy paleogeografie středočeského ordoviku. — Sbor. Lsiř. Tst. geol.. Odd. geol.. 21. .1. 449—518. Praha. Havlíček V. - V a n ě U J. (1'Mi'G) : The bioslraligraphy of the Ordovician of Bohemia. — Sbor. geol. Věd. Paleolit., 8.. 7—67. Praha. Holub V. (1.%')): Permokarbon v podloží křídy na Mělnicku. — Sbor. geol. Vod, Geol., 9, 89-98. Praha. — (1-972): Permian of the Bohemian Massif. In: II. Falke: Rolliegend, Essays on European bower Permian. 13i —188. — E. .1. Brill. Leiden. — (I97"3.i: Late Paleozoic deposits underlying the Bohemian Cretaceous Basin in the northeastern part of the Bohemian Massif. — C. R. 0e Congr. int. Stratigr. Geol. Carbon.. Sheffield 1!W7, 937-948. Maaslricht. II o I u h V. - K ii z ii r H . (llWLa): Die Korrelulion des Rotliegendeii Europas. — Geol.-Paliionl. Milt.. 11, 5. 195-242. Innsbruck. — (1981b): Revision ciniger Coiichostraceen-Faunen des Rotliegendeii und biostratigraphische Auswerlung der Conchostraceen des Rolliegenden. — Geol-Paliiont. Mitt., 11, 2. 39—94. Innsbruck. 1] o 1 u b V . - K o z li r II . (1981c): Revision einiger Tclrapodenfiihrten des Rolliegendcii und biosüatigraphische Auswertung der Tetrapodenfährten des obersten Karbons und Perms. — Gool.-Paläont. Mill., IE. 4. 149—193. Innsbruck. Holub V. - Pro ii z a V. - Tá sl er R. (11)05): Neue lithoslratigraphische Gliederung des Oberkarbons im böhmischen (5W-) Flügel des Innersudetischen Beckens. — Čas, Mineral. Geol.. 10, 3, 331-336. Praha. Holub V. - Skoček V . - T á s 1 e r R. (1981): Nová litoslratigrafická jednotka perm-ského stáří v permokarbonu středočeské oblasti. — Věst. Uslř. Üst. geol., 56, 4, 193—201. Praha. H u I ii b V . - T á s 1 c r R . (1978) : Filling of the Late Palaeozoic continental basins in the Bohemian Massif as a record of their palaengeographical development. — Geol. Rdsch. G7. 91—109. Stuttgart. Holubec J. (1966): Stratigraphy of the Upper Prolerozoir in the core of the Bohemian Massif (the Tcplá-líarraiidian region). — Rozpr. Cs. Akad. Věd. R. mat. prír. Věd, 70. 4. Praha. — (1973): The tectonic units in the core of the Bohemian Massif. — Shor. geol. Věd, Geol., 2fi. 105-111. Praha. Horný II. (I9j6): Nové poznatky o bioslratigralii skutečsko-hlinského siluru. — Vest. Tsti. Úst. geol., 31, 2, 128-131. Praha. — (19Ü2) : Das mitlelbülimische Silur. — Geologie. 11, 873—916. Berlin. — (19*31): .Noví gruptoiiti z metamorfovuného siluru v Podkrkonoší. - Cas. Nár. Muz., Odd. pří.odověil., 130, 1—224. Praha. Hrdličková I) . (1966): fgnimhrite voleanism in the Broumov area in north-eastern Bohemia, in: Paleovokanítes of the Bohemian Massif, 191—200. — Univ. Karlova. Praha. Horník S. - Prokš M. (11)77): Původ deformací niiocenníeh vrstev u Duchcova v severočeské hnědouhelné pánvi. — Cas. Mineral. Geol., 22, 1. 49—56. Praha. I brní a je r J. (1078; : Tíhové mapy CSSR a jejich geologický výklad. — MS přírodověd, íak. 1'niv. Karl. Praha. 1 b r in ii J e r J . - I) o lei al .1. (ül'ri)): Zhodnocení gravimetrických měření, provedených v československé čásíi Vídeňské pánve. — Geofys. Sbor., 1938, 72—98, 133—145. Praha. Jäger E. (1971): The history of central and western Europe. — Ric. Soc. ital. Mineral. I'clrologia. 27. 2, 211—247. Milano. — (1977): The evaluation of the Central and West-European continent. In: La chaine Varisipie d'Europc moyenne et occidentale. — Coll. intern. CNRS, 243. 227—239. Rennes. Jahn J . J . (1806): Uber die geologischen Verhältnisse des Kambriums von Tejřovice and Skiej in Böhmen. — Jb. K.-Kön. geol. Reichsanst., 45, 641—791. Wien. — (1898): O silurském útvaru ve východních Cechách, — Vest. Král. Ces. Společ. Nauk, Tř. mat.-přírodověd., 13, 1—25. Praha. Jake*, P. (1973): Ofiiility: tektonicky z ocoiinického dna nebo netektonieky z ostrovních oblouků. — Věst. Uslř. Üst. geol.. 48. li. 359—3114. Praha. Jakeš P. (19/8): Paleovulkanity Českého masívu a petrometalogeneze. In: Teoretické základy prognóz nerostných surovin v CSSR, 34—39. — Přírodověd, fak. Univ. Karl. Praha. Jakeš P. - Zoubek J. - Zoubková .1. - Franke W. (1079): Greywackes and uiotagrcywackes of llu; Teplá—Barranilian Prelerozoic area. — Sbor. geol. Věd Geol. 33. 63-122. Praha. Jaroš J. - \l í s a ř Z. (1963): Slraligrafické postaveni vápenců na Tisnovsku. — Věst. Usli-, Üst. geol. 43. .1. 0—13. Praha. — (1974): Deekenbau der Svratka-Kuppel und seine Bedeutung für das geodynamische Modell der Böhmischen Masse. — Sbor. geol. Věd. Geol.. 26 . 69—82. Praha. - (lí)7G): Nomenclature of the lectonic and lithoslraligraphic units in the Moravian Svratka Dame (Czechoslovakia). - Yost, lístí-. Üst. geol., öl, 2. 113—133. Praha. J e n č e k V. - Dudek A. (1971): Beziehungen zwischen dem Moravikum und Molda-nubikum am Westrand der Thaya-Kuppcl. — Vest, Üstr. Üst. geol., 46, 6, 331—338. Praha. J en č c k V. - V a j n e r V . (1963): Stratigraphy and relations of the groups in the Bohemian part of tlie Mold;miibi™m. — Krystalinikum. 6. 105—124. Praha. Jindřich V. (IftOJ): Príkro vová troska buližníkové jednotky středočeského algonkia na Kladensku, u Žiliny a Lhotky. — Cas. Mineral. Geol., 5, 4. 467—469. Praha. Jiřiček H. (.J79,i: Diskrepanlni vývoj severní vetve alpinského orogénu. — Zem. Plyn Nafta. 24. 4. 5(>G—~>67. Hodonín. 1 o h n s o n G . (1973): Closing of the Carboniferous sea in western Europe. In: Implications of continental drifts to the earth sciences.. 2, 843—850. — Academia Press. London. Jones B . G . - Ľ a r r P . F . - Wright A . J . (1980) .- Silurian and Early Devonian goiiclironology — a reappraisal with new evidence from the Bungonia Limestone, — Alrhcrings. 5. 197—207. Sydney. ( u r k o v á A. (19")©'): Nové poznatky o morfologii karbonu a miocenních bazálních klastikách v závislosti na tektonickém vývoji Ostravska. — Sbor. prací konference o geologii OKR, 173-178. Ostrava. — (I97G;: Stavba karpatské piedhlulmě a flyšových příkrovii na sv, Moravě. — Cas. Mineral. Geol., 21. 4, 349-362. Praha. - (1081): Strukturně stratig -afický vrt Celadná SV-6. - Sbor. GPO, 23, 57-83. Ostrava. Jurková A, - Novotná E. (1974): Facie a stavba karpatu na sv. Moravě. — Sbor. GPO. 7, 73-88. Ostrava. Kadlec E. - Odstrčil J.-Salanský K. (1978): Souhrnné zpracování geofyzikálních podkladá 7. oblasti jihočeských pánví. — MS Üstr. úst. geol. Praha. Kalaše k f. cl al. (i «KS:};: Vysvětlivky k přehledné geologické mapě CSSR 1:2©0'OOQ M-!Í-\XIX Urno. - Iľslŕ. úst. geol. Praha. K a m a r á d I. . - M alko v s k ý M . (:U3u) : Zpráva o geologickém mapování v okoli Krásného IDvnreiHui a Hokíe. — Zpr. geol. Yýzk. v Roce 1954, 70—74. Praha. Kapounek J . - K r ö I 1 A . - P a p p A . - T u ninvsk ý K . (1965): Die Verbreitung von Oligozän, Unlcr- und Mittelmiozän in Niederöslerrcich. — Erdöl-Erdgas-Z., Si, 4. 10!)—lid. Wien. Kelt ne ľ R. (I90J): .Morfologický vývoj Moravského krasu a jeho okolí. — Cs. Kras, 12. -H-84. Praha. Kellner lí. - Dudek A. (19,5(5): Vosilieké slepence ve skryjsko-lýi-ovickéni kambriu. — Sbar. Ústř. Úst. geol.. Odd. gcol., lil. VSI—13!. Praha. Kellner R. - Remeš M. (1935): Ubjev silurských břidlic s graptolitovou faunou :ia Moravě. — Vésl. Král. Ccs. Spoleě. .\auk, I ř. mat.-přírodověd., 1 — 11. Praha. Kheil J. (1905): Plcistoccnní oslrakodi z travertinů v Turíně u Přerova. — Věst. Ustř. Úst. geol., 40. (j. 409-417. Praha K 1 á p o v á II. (1977): Petrochemie a metamorfóza melabazitíi strá/.eckého moldanubika — MS přírodověd, lak. Univ. Kari. Praha. Klein V. (1978): Stavba a morfologie podloží křídy západne od Hradce Králové. — Věst. Ustř. úst. geol, 5:1. (i, 357—372. Praha, Klein V. - Müller V. - Valečka J. (1971)): Lithnfazielle und paläogeographische Enlwicklung des Böhmischen Kreidebeckens. — Aspekte der Kreide Europas, IUGS Series A. 6. 435—446. Stuttgart. Klom in s ký .1. (['961): .\áhv alkaficko-syciiiliekýeli hornín s k.inkrinitem v čisterkém masívu. — Věst. Ústř. Úst. geol, 36, 6, 355—356. Praha. — (1963): Geologic čisleL'kého masivu. — Sbor. gcol. \ŕd. Geol., 3, 7—29. Praha. — (IW6J): Krkonošsko-jizerský granitoidní masív. — Sbor. geol. Věd, Geol, 1.5. 1—134. Praha. K lo minský .1. - Bernard .1. H. (197'ij: Segmentation of the Bohemian Massif in the light of \ arisean magtiiiilistn and melaUogcny. — Věst. 1 siř. Úst. geol, íl). ■'!. 149-158. Praha. K I o m í n s k ý .1. - Dudek A. (1978): The plulonie geology of tbc Bohemian Massif anil ils pnibleius. — Sbor. geol. Věd. Geo], 3J, 47—69. Praha. Knob loch E. (1962): Paleogcnni flóra z Českého Chloumku u Karlových Var. — Sbor. Ústř. Úst. geol.. Odd. paleont, 27. 101—158. Praha. — (1965): Hlavní rysy středoevropských plioeenních květen. — Cas. Mineral. Geol, 10. ■í. 416-467. Praha. — (1971): iNciic Pflaiizenfiinde aus dem böhmischen und mährischen Cenoman. — Neu. .Ib. Geol. l'aläotil, Abh, 139, í, 43-56. Stuttgart. K o d y m (.)., Jun. (1972): Multiphase deformation in the Blanský les granulite massif (South Bohemia). — Krystalinikum. 9. 91—105. Praha. K od y m O.. Jun. - Suk M. (1961): Příspěvek k poznáni original itizacc moldanubika nu Klatovsku, — Vest. Úslř. Úst. gcol.. 35, 3. 135—140. Praha. K o d y ni O., Sen. (1963); Geologie Československa. In: Bouček B . - K o d y m O.. Sen.: Geologie. II. 299-621. - Nakl. Cs. akad. věd. Praha. K od y m O., Sen. - Svoboda J. (1948): Kaledonská pŕikrovová stavba Krkonoš a Jizerských hor. — Sbor. St. geol. Úst. Cs. Republ, 15, 109—160. Praha. K o d y m o v á A. (1977): Occurrence of pink (Archean'.') zircon in the pre-Cambrian of c:nlral and western Bohemia. — Věst. Ustř. Úst. geol, 52. 121 — 123. Praha. Köhler H. - M ii 11 e r - S o h n i u s II. (1979): Rb-Sr systematics on paragneiss series from Bavarian Moldanubieum. — Contr. Mineral. Petrology, 71, 387—392. Berlin — Xew York. Kol bel H. (1904): Große Seileiiverscbiebungen mid Ilorizuiilalflexures im deutschen Grundgebirge und ihre lagerstättenkundliche Bedeutung. — Geologie, 3, 4 , 445—450. Herl i n. Koliba .1. (1929): Svrchní devon v pohoří Ještědském . — Věst. Stát. geol. Úst. Cs. Republ.. ú, 4. 286-292. Praha. K o n z a I o v á M. (197,'i): lVeogcnní rostlinné mikrofosilie z říčních sedimentů v podloží neoviilkanilů na Železnobrodsko. — Věst. Ustř. Ust. gcol, 48, 1. 17—23. Praha. — (197S): Some resiills of micropaleontologicul research in the East Sudetic sedimentary sequence. — Cas. Mineral. Geol, 23, 4, 389—394, Praha. — (1909): Zu der mikropaläonlologisehen Erforschung graphitischer Gesteine in Siidleil der Böhmischen Masse. — Věst. Ústř. Ust. gcol, 35. 4. 233—236. Prahu. K o n za lov á M. - Vach I 1 J. (1976): On the age of llic Ryrhtnburk Greyuncke. — Vest. Ústř. Úst. geol, .51, H, 129-138. Praha. Kopecký A. (1966): Zpráva o výzkumu mladých tektonických pohybu na území ČSSR za rok 1965. - Zpr. geol. Výzk. v Roce 196.5, i, 298-299. Praha. — (1972;: Hlavní rysy neolckloniky Československa. — Sbor. geol. Věd, Antropozoikum, 6. 77—155. Praha. Kopecký I.. (IOli'0: Výzkum tieovulkunilii 1. a H. sopečné fáze na Tepličku. — Zpr. geol. Výzk. v Roce 1963. I. 194—197. Praha. — (I960): Nález fciiitü a hlubinných alkalických hornin v Českém středolioří. — \ ěst. Ústř. Úst. geol, 41, 2. 121-125. Praha. — (1971a): Pyropc-bearing diatremes of tbc Bohemian Massif, in: Upper Mantle project programme in Czechoslovakia 1962—1970. 18—24. — Academia. Praha. — (1971b): Relationship belwecn fenilizalion. alkaline magrnalism, barite—fluorite mineralization and deep-fault tectonics in lbe Bohemian Massif. In: Upper Mantle project programme in Czechoslovakia 1962—1970. 73—76. — Academia. Praha. — (1978): .Ncoidic taplirogenic evolution and young alkaline volcanism of ihe Bohemian Massiľ. - Sbor. geol. Věd. Geol, 31, 91-107. Praha. K o tie c ký I.. - Dobeš M. - F i a 1 a J. - ň ť o v í č k o v á X. (1970): ľenites of the Bohemian Massif ami the relation between leiiilizalion. alkaline volcanism and deep tectonics. - Sbor. gcol. Véd. Gcol.. Hi. 51—122. Praha. Kopeck ý í. . - M a I k n v s k ý M . (19,53) : O nálezech melafyru v kladensko-rakovniekém permokarbonu. — Věst. Úslř. Ust. gcol.. 33. 4. 198—201. Praha. K u |i c u k ý I-. - Si a t t ran V , (1906): Buried occurrences of pyropc-peridotile and the structure of the crystalline basement in tlie extreme SW of ihe České stŕedohorí Mountains. — Krysliiliuikmn 4. 65—86. Academia. Praha. K o s l c 1 n í é. e k P . - íl e h á n e k J . - H o I z k n e e h t M . (1979): Mesozoikum v oblasti Ľliŕiec. - Zem. Plyn .Nafta, 24, 2, 313-327. Hodonín. K o u t e k J. (1927): K otázce hloubky jurského more u Brna. — Cas. Vlasten. Spol. mus., 36, 1—5. Olomouc. — (1966ý: Granulity (= leplyiiily) a ..granulity'' v kutnohorském krystaliniku. — Zpr. geol. Vý/k. v Uoce 196í. 1. 1-36. Praha. — (.!Ki7) : Geologie kutnohorského rudního obvodu. — Sbor. Obi. Muz., R. B, 8—9, 1—80. Kutná Hora. K o v u n d n J. (197.1): Kvaríérní vápence Československa. - Sbor. geol. Věd. Antropo-zuikum, 7. 1—236. Prahu. Kovanda J. - Smolíková L. - Fejfar 0. (1982): Erforsehung des Basalteiles ciner pleisloziinen Schichteufolge am Hang der Kuroviee-Klippe (Mittclmähren). — Sbor. geol. Aěd, Antropozoikum. 14, 29—55. Praha. K u v e r d y n s k ý B . - Z i k m undo v á J . (I960): K stratigrafické príslušnosti vrben-ské série a andělskohorských vrstev v oblasti Jescníkíi. — Vest. Ústř. Ost. geol., 41, 3, 267—373. Praha. K r :'i I V. (1976): Silcrelcs anil their relationship to planation surface in western Bohemia. — Sbor. Cs. Spolče, zeměvěd., 1. 81. 10—21. Praha. Králík K . - S e k y r a J. (I9G9): Geomorfologický přehled Krkonoš. In: Príroda Krkii-ii.ašského národního parku. -79—87. — Stál. zeměd. nakl. Praha. K re b s W . (1976): Wieilerliolter MagmenanIslieg und die Entwicklung variszischer und pustvariszischer Strukturen in Mitteletiropa. — .Nova Acta, leopold., 45, 23—30. Jena. K r c b s \\ . - \\ u c h e n d o r ľ II . (19/3): Prolerozolr—Palaeozoic gcosynclinal and orogeiiic evoltiliun of Central Europe. — Geol. Soc. Amer. Bull., 84, 8.. 2611—2630. New Aork. Kríž J. (lliYdj : He vision uľ the Lower Silurian stratigraphy in central Bohemia. — Vest, f'sir. Úst. geol.. 3'ji, .3. 275—283. Praha. Kiiž ,1. et al (j;)'S.'fj: The Pří.bdí Series as the fourth Series of the Silurian System. — Intern. S.rb.'oiuinissiou on Silurian Stratigraphy, Í—59. MS Usli-. Ust. geol. Praha. K i u p i ě k a .1 . (I9ÍW): Tbc eoniaet zone in tbc norili o ľ lbe Moldamibian Pluton. — Krystalinikum, fi, 7—39. Praha. K v y s t e k I . ( 95-9): Příspěvek k po/n iní geneze a st'irí riidiekých vrstev. — Cs. Kras, J, 22—23. ľriilia. — ('9/2.1: Pivdběžná zpráva o n ilezu spoiliio-slřodiiokřídových vápeněn u Kuřimi. — Geol. Práce. Spr.. 58. 1—?>ú". Bratislava. K rysiek I. - S u m u e 1 A. (iíblľ): ^ ýskyt krídy karpatského tyjm severne od Brna (Ku ran,. — final. Práce. Spr.. 71. 93—109. Bratislava. Kukal Z. (1962): Pelrografický výzkum vrstev šáreckých barrandienského ordoviku. — Sbor. Ústř. Úst. geol, Odd. geol.. 27„ 175—211. Praha. — (1963): Výsledkv sediinentologického výzkumu barrandienského ordoviku. — Sbor. geol. Věd. Geol.. .1. 103-138. Praha. — (I!¥>;")) : Zdroje klastického materiálu sedimentu ptíbramsko-jineckého kambria. — Sbor. gcol. Věd,. Geol., 10, 83-116. Praha. — (1971a): Sedimentology of Cambrian deposits uf the Barrandian area (central Bohemia). - Sbor. geol. Věd. Ceol., 20. 53—100. Praha. — (I!)71h): Geology of Recent sediments. — 1—490, Academic Press. London — Paris — New York. — (1993'}: The sedimentology ol Devonian and Lower Carboniferous deposits in the western part of the Nízký Jeseník Mountains. Czechoslovakia. — Sbor. gcol. Věd, Geol., 131-207. Praha. — (in press): Vývoj sedimentu Českého masívu. — Knih. Úslr. Ľ'st geol., 61. Praha. Kukla ,T. - L o že k V. (1961): Survey of Czechoslovak Quaternary: Loesses and related deposits. — Prace Inst, geol., 34, 11—20. Warszawa. K n m p era 0 . (1976) : Straligrafie spodního karbonu jesenického bloku. — Sbor. včd. Prací Vys. Sk. báň. TA. born.-geol... 20, 1974. 3. 133—154. Ostrava. — (1977): Straligrafie spodního karbonu jesenického bloku (2. část: Kulmská souvrství a jejich siraiigrafické ekvivalenty). — Sbor. věd. Prací Vys, Sk. báň., R. horn.-geol., 22. 1. 141-170. Ostrava. — (1979a) : Faunislieky doložené řezy kulmskými sériemi Nízkého Jeseníku. — Přírodověd. Sbor.. 229-244. Ostrava. — (1979b): Some features of the paleidic development of the Bohemian Massif. In: Czechoslovak geology and global tectonics. 77—SS. — Veda. Bratislava. — (1.981): Některé lektogenetické problémy východního okraje Českého masívu, — Sbor. věd. Prací Vys. Sk. báň.. R. horn.-geol., 25, 2 , 223—234. Ostrava. Kumpera 0. - Lang V. (1975): Goniatitová fauna v kulmu Drahanské vysočiny (moravskoslezská zóna Českého masívu). — Cas. Slez. Muz., Sér. A, 24, i, 11—32. Opava. K u n s k ý .1 . (1968): Fyzický zeměpis Československa. — Stát. pedag. nakl. Praha. Květ. oň P. (1951): Zpráva o geologickém mapovaní některých oblastí vnějších fylitú moravské skupiny. — Vést. Ustr. List. geol.. 2ú, 59—61. Praha. Lang V. - Chlupáč I. (1975): New finds of trilobites in the Culm of the Drahanská vrchovina Upland (Moravia. Czechoslovakia). - Vest. Ústř. Úst. geol., 50', 6, 337—344. Praha. Laurent R. (1972): The Herevnides of South Europe, a model. — 24lh TGC Toronto, sed. 3, 363—370. Toronto. L e g i e r s k i .1. - V u n č č c k M . (1905) : The use of isotopic composition of common lead for the solution uf uietallogenetie problems of 1 tic Czech Massif. — Krystalinikum, 3, 87-98. Praha. L i e hu s A. (1920): Uber die Säugclicrfauna der Quarlärablagerungcn aus der Umgebung von Auss-g a. d. E. — Lotos. 77. 117—146. Praha. I. o rľ n z \V . - Hol h K. (I9(í'i): Die lithustratigraphisehe Gliederung Ues kristallinen Vorsums in der lic-lilcljíebirgisuh-er/^ebirgisclicii Antiklinalzone. — Akademie-\erlag, ilerliu. I. íl sc r t .1 . (Í9ti7;: Contribulion to llie problém of tlie pre-Assyntian tectogenesis and nieta-nuirphism in t tie Muldamibicuiii of tlie Bohemian Massif. — Krystalinikum. 5. Gl—84. Praha. — (I9GS): On tlie genesis of nodular siltimanitic rocks. — Int. geol. Congr., Sess. "23. 4, 109-122. Praha. — (11)71): On the volraiiogeiious nrigin of some Moldanubian leptynites. — Krystalinikum. 7. (i 1-84. PraJia. 1. n s c r t J. et at. (L977); Leptinily kareľsko-kofskoj časti Baitijskogo učila i Cešskogo niiissj\ a In: Opyt korreljncii maginaličeskich i metamorfičeskieh porod. 5—72. — Nauka. Moskva. I. <>/.<• k \ . (1901): Survcy oľ Czechoslovak Quaternary: .Mollusca. — Prace. Inst. geol,. 34, C/.warl. Ku r. šrodk. i wscluid.. I. 119—124. Warszawa, — (1973;: Príroda vc člvrloliorách. — 372 pp., Academia. Pralia, — {I!l71.i: Príroda Českého krasu v uejinladši geologické minulosti. — Bohemia cent., 3, V',3—174. Praha. — (1977): Holneén — geologická současnost. — Vesmír, 56, 11. 328—335. Praha. I.ožok V. - Fe j far 0. (1.957): K otázce stampleistoeenní fauny ze Stránské skály u Brna. - Vést. ťJstř. Úst. geol. H2. 5. 290-294. Praha. I.ožok V . - ľ r o š c k K . (VXf7>: Krasové zjevy v travertinech a jejich straligrafieký význam. — Cs. Kras. lil. \. I4.~>—158. Pralia. T. o > e k V. - S i li r a v a V. (1908): Zur Altersslelhing der jüngsten Lahe-Terrassen. — Sbor. gool. Věd. Antropnzoikum. 5, 7—31. Praha. I.o/ek V. - ľ y r á ŕ* e k .1 . (19.58): Slniligrafický výzkum liaveriinu v Turíně u Přerova. — Anlhľopozoikimi. 7. 2(11—2Sfí. Pralia. I. y s c n k o Y. - Sláčik .í. (l!WI,i: Výsledky a ssávčry výzkumů Českého krasu uskutočnené v letech l'9/ll)1—Iflfift sknjiinou Tarcus. In: Sbor. prací ze semináře ke stému výročí narození Jaroslava IVlrboka. — Čes. sjieleot. spnleč. Praha. M a c á k F. - Müller V. (lílfiS): Slrnligrnľie a paleogeografie křídového útvnni v s*. Cechách. — Tas. Mineral. Geol.. 1!!. 1. 37—4(1. Pralia, M a v h a I s e h e k F. (1917): Morphologie der Südabdaeliiing des böhmischen ľ.rzgebirges. - Min. Cei.gr. Gesell.. (ii), 2*7-2«, 273-316. Wien. M a co u u .1 . (1!.'S'.I): ťaleogeografieky a stratigrafieký vývoj Opavské pahorkatiny v plei-slocémi. I. 2. — Čas. Slez. Mu?.. Sér. A. 29. 113—132. 193—222. Opava. M u t: o u n -I. - R ú ž i č k a M . (l!X!/i: The Quateiiiary oí tlio ľpper Mornvian Bnsin in llie it'lation 1o llie sedimeuls of llie eoiititieulal glaeialion. — Sbor. geol. Věd, Aiitropo-zoikuin. í. 12')—ll>8. Pralia. M n c o n n .1 . - S i I) r n v a V . - 'ľ y r á č e k J . - K n e b 1 o v á -Vodič k o v á V . (i960). Kvartér Oslravska a Moravské hránv, — /—410. Academia. Praha. Mahel" M. (l9/"i): Tectonics of ihe Carpathian—Balkan regions. — Geol. úst. D. Štúra. Bratislava. M a f e e li a A. et al. (1905): Slavlia a podloží jihočeských pánví. — Sbor. geol. Věd, Geol., ',. 07-117. Praha. M a I k ii v s k ý M. (I975): Palaeogeography of llie Miocene of tlie Bohemian Massif. — Věsl. Ústř. Úst. geol., 50. 1. 27—31. Praha. — (1979): Teklogeneze platformního pokryvu Českého masivu. — Knih. Ústř. Úst. jeol., 53, 1—I7fí. Praha. — (198')): l.es bassins sédimenlaires posl-hercyníens d'Europc Ceulrale. In: Geologie de l'Kuropc. — Mém. Bur. Reeh. géol. min.. 108. 289—295. Orleans. M a 1 k o v s k ý et at, (lí)7Ji) : Geologie české křídové pánve a jejího podloží. — 264 pp., Uslr. úst. geol. Praha. Mašek J . (1973): Vulkanické produkty slředočeského karbonu. — Sbor. geol. Véd. Geo).. 24. 73-124. Praha. Mašek .1 . - Z o u h e k J. (IDS'i) : Návrh vymezení a označování hlavních slratigrafických jednotek barrandienského proterozoika. — Vest. Ostř. Úst. geol.. 55. 1, 121—123. Praha. Mašin .1. (!968): The regional magnetic anomalies in Czechoslovakia. — Vést. Cstř. Úst. geol.. -II. 55—57. Pralia. Matějka A. (líľítJi: Geologická studie z okolí Valašského Meziříčí. — Sbor. Stát. gen í. I'st. Cs. Hepubl.- 10, 643-693. Praha. (1956) : Zpráva o geologických výsledcích sondo vacích prací v údolí Bečvy mezi Valašským Meziříčím a Černotínem. — Zpr. geol. Výzk. v Koce 1955, 116—119, Praha. Matějka A . - 11 o t li Z. (IXvti): Geologie magii rského flyše v severním povodí Váhu mezi Bylčou a Trenčínem. — Hn/pr. Ústř. Cst. geol., 22. Praha. Malějovská 0. (I0ťi7) : Pedogenesis of he Moldanubian granulites near Náměšť nad Oslavou. — Krystalinikum. 5. 85—103. Praha. — (1975): The Moldamihian gneiss series of south-western Moravia and its relation Id g;aiiuliles. — Vest. Pstř. Úst. geol., 50, 6, 345—351. Praha. M a za n co v á M. (1958): Patynologický výzkum hnědouhelného ložiska úhelná u Javorníka ve Slezsku. — Cas. Mineral. Geo]., 3, A. 417—419. Praha. McLaren D. J. (1977); 'the Silurian—Devonian Boundary Committee. A final report. — Int. Union Geol. Sci. Ser. A. 5, 1—34. Stuttgart. Menili k E. (l!)ŕ>1): Geologická slavba mezi slezským a niagarským príkrovem v oblasti Bílé. - Geol. Práce, Zpr.. .38. 99—110. Bratislava. — (1973): Problematika předmagurské jednotky v Moravskoslezských Beskydech. — Vést. Cstř. Úsl. geol., 48. 2. 73-77. Praha, — (19?.)): Přcdpříkrovové projevy vrásnění v dílčím godulském přikrovu slezské jednotky v Moravskoslezských Beskydech. In: Seminář k GO. výročí založení ÚÚG. — MS Ústř. 1 'st. geol. Praha. M i s a ř Z. Geologicko-pelrologická sludie šuniperského granodioritového tělesa. — Sbor. 1'st ř. I 'st. geol.. (»ko gnbbro-peridolile massif and íls mineralization. — Univ. Karlova. Pruhu. — (1982): Regionální gerdog:e Československa t., Geologie Českého masívu. — 1—380. Stát. podug, nakl. Praha. Morel \Y . - Irving M. (1978): Tentative paleocontinental maps for the Early Phane-rozoic and Proterozoic. — J. Geol.. Si). 536—561. Chicago. M o I I 1 o v á f.. (13611): Mode] htihinué stavby Českého masívu na základě gravimetrických anomálií. ■ Vest. Cslř. Üst. geol., 44. 4. 227—230. Praha. AI o 1: t 1 o v á 1-, - Suk M. (1970): K rozšíření grailitických hornin v hlubší stavbě mol-drmuhika. — Cas. Mineral. Geol., 15, 4. 3S3—392. Praha. Müller \ . (1974;: Slraligrafio u faciální vývoj české křídové pánve. In: M. Malkovský e! al.: Geologie české křídové pánve a jejího podloží. 101—115. — Ostř. úst. geol. Praha. Musil R. (1966): llolštejn. eine neue altpleisto/.äne Lokalität in Mähren. — Cas, Morav. Muz., Vědy p'ir., 31. 133—108. Brno. — (1968): Xeue Ergebnisse der Forschungen an der Lokalität Stránská skála. — Cas. Morav. Muz . Vědy přir., 53, 139-162. Brno. Musil El. et al. (1972): Stránská skála I. 191:!—1043. - Anlliropos, 2ÍI. (X. S. 12), 201 pp. Urno. X e č a e v (I. X. (196ti): Correlation of the Upper Proterozoic of the complexes Volhyn-l'.i.loüa und Bohemian Massif. — Ceologija. 28. 5, 91—98. Kiev. N ě in <: o v ;i .1. (.'.'Xifl): Příspěvek k petrografii krystalinika v Ilornomoravskéin úvalu IL — Sinn'. Prací l.'ttiv. Palackého. Geogr. Geol, 29. 65—76. Olomouc. X é ni c c l) . (1:1/9): Kvan'ity česVé části Českomoravské vrchoviny. In: Sborník příspěvků ke geologickému výzkumu jihozápadní části Českomoravské vrchoviny, 39—56. — .1: hočes. mu/. České Budějovice. X ě ni e c I) . - Tenčí k I. (1976/: Regionally metamorphosed greisen at Celoraz. I lie Bohemian-Moravian Heights (Českomoravská vrchovina), Czechoslovakia. — Mineraliuni Depos.. I L 2. 2111-217. Berlin. N ě m r. i r. F. (1934): Kouuovské čili visuté pásmo středních Cech z hlediska paleobota-nického. — Horn. Vest. Horn. hutu. Listy. 16. 449—452. Praha. — (1953): D vod do floristické slratigrafíe kameiioulielnýcli oblastí v CSR. — 1—173, Nakl. Cs. akad. věd. Praha. Neu žilová M. - Vcjnar Z. (Iíl\>6): Geologie a petrografie hornin kladrubského masivu. — Sbor. geol. Věd, Geol.. 11. 7—31. Praha. Nicolas A. (1972): Was the Hercynian orogenic Bell of Europe of the Andean type'.1 — Nature 236. 1972 . 221-223. London. Obere J. (1979): Der assyiitischc ('.lajkalische. kadomische) Bau des nordöstlichen Randgebietes des Böhmischen Massivs. — Neu. Jb. Geol. Paläont.. Mh., 4. 237—256. Stuttgart. O b r h c I J. (195>8): Entwurf der eingehenden straligraphischen Einteilung des oberen grauen Schichlenkuruplexes im Kladno-Rakovnik-ßecken. — Vest. Lstr. Üst. geol., 33, 6, 370-373. Praha. Opletal M. ct al. (1976): Przeglad wyników nowyeh hadaii geologicznych v Górach Orlickich. — Pizcgl. geol., 7. 414—41S. Warszawa. Orol ť. (1975): Vnriský tektonický styl paleozoika západní čásli jesenického bloku Českého masívu. — Výzk. Práce Uslř. Ost. geol., 8. 7—24. Praha. P a c t t o v á B . (1962) : Několik poznámek ke stratigrafiekému zařazení vonšovského a no-voveského souvrství v Chebské pánvi. — Gas. Mineral Geol., 7, 3, 283—287. Praha. — (1979): Significance of palynology for the biostraligraphic division of the Cretaceous of Bohemia. In: Palcoutological conference, 93—115. — Univ. Karl. Praha. — (1980): Further micropaleontotogical data for lbe Paleozoic age of Moldanubian carbonate rocks, — Cas. Mineral. Geol., 2Ů, 3, 275—279. Praha. Pachová B. - Zer t B. (ISI6J): Palynologický výzkum v Sokolovské pánvi. — Zpr. geol. Výzk. v Roce 1963, 94-95. Praha. P a 1 i v c o v á M. (1965): Tlie Central Bohemian Pluton — a petrogrnphic review and an attempt at a new genetic interpretation. — Krystalinikum. 3. 99—131. Praha. P a l i v c o v á M . - Beneš K . - Zoubek V . et al, (1968): Genesis of graniloids in lbe Bohemian Massif. — Int. Geol. Congr., Sess. 23, Prague 1968, Guide to Excursion 29 AC. 1—42. Praha. Palivcuv.i M. - Sťovíčková N . (1968): Volcanism and plulonism in the Bohemian Massif from the aspect of is segmented structure. — Krystalinikum. 6, 169—197. Praha. Pertold Z. (1961): Nález fylilú s valouny v západočeském proterozoiku. — Cas. Mineral. Geol., 6, 1, .52-59. Praha. — (1964): K tektonickému stylu prolerozoika barrandiensko-želc/nohorské zony. — tas. Mineral. Geol., 9. 4. 441-451. Praha. Perlo ld Z. - Pouba Z. (1979): Relations between subduclion and metallogenesis. In: Czechoslovak geolngv and global teclonics, 215-233. - Veda. Bratislava. P o í ľ k .1. (10721: T.iloľacinlní výzkum středočeského a západočeského terciéru. — Sboi jrenl. Věd. Cení.. '£*, 113-m. Praha. — (niva): \ olcaimgenic rocks in lliu Carboniferous of central and western Bohemia. '• Hull. Sue. beige Cool.. 81. 11—121. Bruxelles. '*<• s I V. (I'íl)'7i: Dili \V>rmagiira-Einheil ititf dem Gebiet der ČSSR. — Yěst. Cstř. t* s t. (tool.. 42. 1. 45—18. Praha. — (]ÍM4SJ: Liiofacie pidoocénu v niagarské jednotce vnějších flyšových Karpat. — Sbor. geol. Vied., Západ. Karpaty. 9. 71—117. Bratislava. ľ c s 1 V . - M c n č í k E . - II a n z 1 i k o v á E . (19*31): Pi-cdinagurské série jižně od Ja-hltnikm-u (.Yfonivskoslezské Beskydy). — Vést. Üs t f. Csl. geol., 39, 3, 189-199. Praha. Pet lá nek J. (19'78) : liyly variské plulony Českého masívu tak rychle obnaženy. í.e se staly /drojem materiálu karbouských arkóz? — Cas. Mineral. Ceol.. 2.'), 4. 381—3S7. Praha. P e t r a s <■ h c c k VY , (I921 — 1923): Kohleiigeologíe der österreichischen Teilstaaten, I. Die koblcuľuhreiulen Formationen, ill. Die inillel- und wos (böhmischen Steinkohlenbecken. IV. Das Rossilzcr Revier und kleine Stein kolilcnvorkommen in Böhmen und Mähren. — !!e:g- u. biilloiinťinn. Jb. Montan. Iloehsch. Lcobcn, 1. 69—70/2, 1—20, 3. 60-70/4, l-.->4, A. 71/2 .1-28, 5. 71,-3 1-12. Wien. — (1022) : Zur Fulslchungsgeschiclilu der sudeliseheii Karbon- und IWlicffeiidabtafteruiigen. h; - Z. Dtscb. jreol. Gesell., 8-12. Itcrliii. I — (I92W): Deckeiileklonik und 'tektonik des autochthonen Untergrundes in den Nord- * karpulen. - Z. Dlsch. geol, Gesell.. 8:.), 8—10. Berlin. (1934): Der bölimische Anteil der Mitlelsudeleii und sein Vorland. — Mitt. Geol. Gesell., •2 list Ostrava M-3'i-XlX. — Cslř. úst. geol. Praha. Rotli Z. - Hanzlíková E. (1962): Palaeotectonie and palaeoecological position of the ' Menilitic Formation in the Carpathian Mis. — Cas. Mineral. Geol., 27, 2. 113—126. Praha. Roth L. - Leško M. (1974); The Outer Carpathian Flysch Belt in Czechoslovakia. In: M. Mahel (ed.): Tectonics of the Carpathian—Balkan regions, 158—175. — Geol. úst. I D. Štúra. Bratislava. Rozen O. M. (I4>76j : Osobennosti vnutreiinego stroenija nekotorych dokembrijskich massivov paleozoid. In: Tektonika sredinnych massivov, 223—226. — Nauka. Moskva. Ryk a \\ . - Z n n s k o J. (1078): The region of Paleozoic consolidation and melamorphism in Poland. In: Metamorphic map ol Europe J ; 2 500 ll'JO. Explanatory text. Leiden, 139—141. — university Press. Leiden. S a f a n s k ý K. (1967): Jihočeské krystalinikum v obraze leteckého geofyzikálního mapováni. - Cas. Mineral. Geol.. 12, 4, 403—410. Praha. Satir a n \ . (1963) : Krušnohorské na;1ukonglomerátv a jejich genetický výrznam. — ' Sbor. geol. Věd. Geo]., 2, 41—62. Praha. — (1966): Fluidal structures in the Teplice quartz porphyry. In: Palaeovolcanites of the ( Bohemian Massif, 185—190. — Univ. Karlova. Praha. S a I I r a n V . - G o rek A . et al (1907): Crystalline und magrnatic complexes of Czechoslovakia. — Int. Geol. Congr.. Scss. 26. Prague 1903. Guide to Excursion 1 AC. 1—50. Praha. ' Sattran V . - Klo in ins ký J, (i 979): Petrometallogcnic series of igneous rocks and endogenous ore deposits in the Czechoslovak part of the Bohemian Massif. — Sbor. geol. Veil, ložisk. Geol., 12. 05—154. Praha. ' Scharbert H. G. (1962): Die Granulite der südlichen Böhmischen Masse. — Geol. Bds.l, . ;,2. L 112-123. Stuttgart. Scharbert Ii. G. (197(7): Tiefe Kruste und oberer Mantel in der Moldanubischen Zone Niederösterreichs. In: La cliaine Varisque d'Europe moyenne et occidentale. — Coli, intern. CNRS. 243, 193—198. Reimes. Scharbert S. (1977): Neue Ergebnisse radioine Irischer Altersbestimmungen an Gesteinen des Waldviertels. — Arbeitstagung Geol. Bundesanst., 11—13. Wien. Scharbert S . - Batik P. (t980): The age of the Thaya (Dyje) pluton. — Verh. Geol. Bundesanst., 3, 325—331. Wien. Scheu mann K . (1932): Uber die petrogenelische Ableitung des roten Erzgebirgsgneises. — Tschermaks. mineral, petrogr. Mitt., 42, 414—454. Wien. Schreyer W. (1965): Metamorpher Übergang Saxolhuringikum—Moldanubikum östlich Tisehetireuth/Obpf-, nachgewiesen durch phasenpetrologische Analyse. — Geol. Rdsch., 55, 491—509. Stuttgart. Schütznero v á-Havelková V, (1958): Výskyt miocenních sedimentů u Lažánek v Moravském krasu. — Věst. Ustř. Úst. geol., 33, 4, 208—211. Praha. Schwab F. L. (1976): Modern and ancient sedimnetary basins: Comparative accumulation rates. — Geology, 4, 723—727. Boulder. S c o t e s e C . el al. (1979): Paleozoic base maps. — J. Geol. 87 , 217-277. Chicago. S d z u y K . (1972): Das Kambrium der acadobaltischen Faunenprovinz. Gegenwärtiger Kenntnisstand und Probleme. — Zbl. Geol. Paläonl., 1—91. Stuttgart. Sekyra J. (L9Gla): Survey of Czechoslovak Quaternary: Wind-blown sands. — Praee Inst, geol., 34, Czwart. Eur. šrodk. i wscliod., I, 29—38. Warszawa. — (1061b): Traces of the continental glacier on the territory of northern Bohemia: in the piedmont of Wesl-Sudetic Mountains. — Zesz. Uniw. Wrocl., Ser. B, 8, 71—79. Wroclaw. — (1967): Kvarlčniě geologické poměry východního Polabí. — Sbor. geol. Věd, Anlropo-zoikum. 4, 97—121. Praha. S c 11 c y R . C . (1976): An introduction to sedimentology. — 1—488, Academie Press. London. Senes .1. et al. (1975): Regional stages of the Central Paratethys Neogene and the definition of their lower boundaries. — Proc. of 6th Congr. RCMNC, vol. I., 259—266, Veda. Bratislava. Sibravu V. (196á): Vysvětlující text ke kvartéru na geologické mapě 1:200000 list M-33-V11I (Umbařoviee—Dresden) a M-33-IX (Děčín—Görlitz). — MS Geofond. Praha. — (1967): Study of the Pleistocene of the glaciated and non-glaciated areas of the Bohemian Massif. — Sbor. geol. Věd, Anlropozoikum, 4, 7—38. Praha. — (1972): Zur Stellung der Tschechoslowakei im Korrelierungssystem des Pleistozäns in Europa. — Sbor. geol. Věd, Anlropozoikum, 8, 1—218. Praha. — (1074): K problematice hranice plioeén—pleislocén a její pozici na územ! Československa. — Sbor. geol. Věd. Antropozoikum, 10, 7—21. Praha. "i brava V. (1Í3S1): Xeotectonic activity and volcanisni in the marginal areas of inland glacial ions in the Bohemian Massif, — Rep. 6 Se.ss. Project 73/1/24 IGCP, Ostrava, Czeeiiosl., August 16-25, 1976, 219—225. Praha, S i b r a v a V . et al. (19(79): Erforschung der Pleistozänablagerungen auf dem Hügel Zlatý kopec bei Pŕezletice (NO-Rand von Prag). I. Teil. — Sbor. geol. Věd, Antropozoikum, 12, 57-146. Praha. S i b r a v a V. - Havlíček P. (1980): Radiometrie age of Pliocene—Pleistocene volcanic rocks of the Bohemian Massif, — Vest, Üstr. Üst. geol., 55, 3, 129—139. Praha. S i brava V. - V á cl J. (1962); Nové důkazy kontinentálního zaledněni severních Čech. — Anlhropozoikum. 11, 85—91. Praha. Skácel J. (1966): Zeleznorudná ložiska moravskoslezského devonu. — Rozpr. Cs. Akad. Véd, ft. mat. přír. Věd, 76, 11,. 1—59. Praha. — (1970): Geologie předkvartérníeh útvarů v Osoblažském výběžku. — Sbor. Prací Univ. Palackého, Geogr. Geol., 29, 10, 131-148. Olomouc. Skoček V . (1976): Regional and geological interpretation of organic matter coalification in the late Palaeozoic sediments of the Bohemian Massif. — Vest. Üstr. Ust. geol., 1, 13—25. Praha. — (1980): Nové poznatky o litologii devonských bazálních klastik na Moravě. — Věst. Ustř. Üst. geol., 50, 1, 27—37. Praha. Škvor V. (.1.970): Metamorphic processes in the Bohemian Massif. — Geol. Soc. Amer. Bull, 81, 955-960. New York. — .(1975): Geologie české části Krušných hor a Smrěin. — Knih. Ustř. Üst. geol, 48, 1—120. Praha. Slavík F. (1930): Prehnit z podloží naftonosného neogénu gbelského. — Příroda, 23. Brno. Smejkal V. - Vejnar Z. (1965): Zur Frage dor prävariszisehen Allers einiger Grani-loide des Böhmischen Massivs. In: Geochemie v Československu. — Sbor. prací 1. geochem. konf., 123—128. Ostrava. Smíd B . (1962): Přehled geologie a petrografie hornin těšinitické formace na severním úpatí Beskyd, — Geol. Práce, Zoš... 63 , 53—60. Bratislava. Smolíková L. • Kovanda J. (1979): K vývoji holo cenu v Českém krasu. — Sbor. geol. Věd, Antropozoikum, 12, 163—186. Praha. — (1983): Die Bedeutung der pleistozänen Sedimente des Fundortes Růženín Dvůr (Brno-Zidenice II) für die Slratigraphie des Brno-Beekens. — Sbor. geol. Věd, Antropozoikum, 15, 9—3S. Praha. Smolíková L. - Zeman A. (1982): Bedeutung der Ferretto-Böden für die Quartär-slraligraphie. — Sbor. geol Věd, Antropozoikum, 14, 57—93. Praha. Souček J. (1974): Styk červenského granodioritu s mold anu b i kern. — Cas. Mineral Geol,, 19, 1. 47-60. Praha. Soukup J, (1956): Stratigrafie rozdělení křídy Českého masívu. — Věst. Ustř. Üst. geol., 31. 4. 173-180. Praha. Suukup J. (1068): In: I. Chlupáč et al: Lcxique stratigraphiquc international I, Kurope. (íb 1, Massif de Bohéme. — CNRS Paris. Spencer K. M. (1974): Mcsozoic—Cenozoic erogenic belts. Data for orogenic studies. — 1—120, Geol Soc. London. Scot. Acad. Press. Edinburgh. S t c i n o c h c r V . (1960): Látkové složení, provinciální charakter a petrogeneze středočeského pln lonu. — Rozpr. Cs. Akad. Věd, R. mat. přír. Věd, 79, 1. Praha. Stejskal J. (1925): Geologické pomery v oblasti mezi Bory a Velkým Meziříčím. — Práce Morav, přírodověd. Společ., 2, 9, 223—270. Brno. Štelcl J. (190'J) : Petrografie kulmských slepenců v jižní čásli Drahanské vysočiny. — Folia. Univ. Půrky n. b run., Geol, 1, 1—103. Brno. — (1963): Brněnský masív v geologické literatuře od r. 1801. — Folia Univ. Purkyn. brun., Geol., 4, 3, 43-81. Brno. — (1968): Uber die Sillimanit-Andalusit-Disthen-Paragenese im Hohen Gesenke. — Freiberg. Forsch.-IL, R. C. 231, % 135-141. Freiberg. — (I9601) : Petrografie paieozoíckých slepenců na střední Moravě. — Folia Univ. Purkyn. brun., Geol., 19, 1— 90. Brno. — (1975): V ýsledky geologického a petrografického výzkumu brněnského masívu za léta 1974-I97G. - MS Geofond. Praha. ň tel cl J. et al. (197^): Výsledky geologického a petrografického výzkumu brněnského masívu za léla 1971 — 1973. — MS Geofond. Praha. — (1976): Souborná zpráva o výzkumu brněnského masívu v letech 1973—1975. — MS Geofond. Praha. S lelci .1 . - Weiss J. (1976): Explanatory text to the Map of metamorphic structure al the contact between the Bohemian Massif and West Carpathians. — Acta Geol. Acad. Sci. hung., 20. Budapest. — (1978): K problematike korreljacii metamorfičeskogo kontakta Češskogo massiva i Karpat. — Ser. Univ. Purk\n. brun.. Geol. S, 3—9. Brno. S t e t t n e r F. (197^): Probleme des Bayerischen Präkambriums. In: Précambrien des zones mobiles de l'Ľurope. 109—120. — Geol. úst. ČSAV. Praha. Stille IT. (1948): Die assynlische Ära und der vor-, mit- und nachassynlische Mngina-tismus. — Z. Dlsch. geol. Gesell, 98, 152—165. Berlin. — (1049): Die kaledonischc Faltung Mitteleuropas im Bilde der gesamteuropäischen. — Z. Dlsch. geol. Gesell. 10». 223-266. Berlin. — (1951) : Das mitteleuropäische variszische Grundgebirge im Bilde des gesamteuropäischen. - Geol. .Ib., Reib., 2, 138. Hannover. S t o r r M . - K u ž v a r t M . - Neužil J . (1978): Genesis of the weathering crust of the Bohemian Massif. — Schr.-Reibe geol. Wiss., 11, 265—281. Berlin. Suk M. (1964): Material characteristics of the metamorphism and migmatization ol Moldanubian paragncisses in Central Bohemia. — Krystalinikum, 2, 71—105. Praha. — (1969): K problému mapování metamorfních zón v Českém masivu. - Věst, Ustř. Ust. geol, 44, 4 , 209-218. Praha. Suk M. (1971): Petrochemistry of Moldanubian amphibolites. — Geochemie. 1, 9—57. Praha. — (1974): Lithology oí Moldanubian mctamorphics. — Cas. Mineral. Geol.. 19 . 4. 374—38S. Praha. — (1979): Hauplprobleme des tiefen Unterbaues der Böhmischen Masse. — Krystalinikum. 14. 109—118. Praha. Suk M. et al. (L975): Vysvětlivky k základní geologické mapo CSSR 1 :'25000 list 22-2-43 Jíernartiee. — MS Üstr. úst. geol. Praha. Suk M. - Weiss J. (L97G): Problems of interpreting the deep structures of the plutonic bodies in the Moldamibicum. — Vest. I'istr. Ost. geol.. 51, 1—11. Praha. _ (L981): Geological sections through the Variscan otogen in the Bohemian Massif. — Geol. en Mijnb.. G'X 161—108. Amsterdam. Svoboda J. (1031): Geologieko-petrografieké poměry metamorfovaného ostrova sedlčan-sko-krásnohorského. — Vest. St. geol. Ost. Cs. Republ.. 7, 141—152. Praha. — (193Ö): Metamorfovaný ostrov sedlčansko-krásnohorský. — Arch. přírodověd. Prozk. C»eh, 18. 4, 1-62. Praha. — (L956): Příspěvek k paleogeografii siluru v Českém masívu. — Vést. Ostř. Üst. geol., 31, 2, 120-127. Praha. Svoboda J. et al. (1966): Regional geology of Czechoslovakia, Part I, The Bohemian Massif. — Üstr. Üst. geol.. Academia. Praha. Svoboda J. - Fiala F. (1957): Geologicko-petrografické poměry algonkia mezi Telči-cemi a Týncem n. L. v Železných horách. — Sbor. Ostř. '.st. geol., Odd. geol.. 23, 475—531, Praha. Szabó P. Z. (J.958) : Kras v jižním Maďarsku. — Cs. Kras. 11, 145-156. Praha. Tásler R. (1979): Geologie české části vnitrosudetské pánve. — Ostř, úst. geol. Praha. Tásler R. - Valín F. (1962): Lithofazielle Korrelation des oberen Stefans und Autuns im Inuersudetischen Becken und im Krkoiioše-Vorlandbecken. — Věst. Üstr. Üst. geol., 57, 1, 81-94. Praha. Thiele O. (1962): Neue geologische Ergebnisse aus dem Snuwald (O.-ö). - Jb. Geol. Bundesansi.. 1, 117—129. Wien. — (1971) : Ein westvergenter kalcdonischer Deckenbau im niederöslerreiehischeii Waldviertel ? - Jb. Geol. Bundesanst., 119. 75—Si. Wien. Thurm ll.-üankwitz P.-Bankwitz E.-Harnish G. (1977): Rezente horizontale Deformationen der Erdkruste im Südostteil der Deutschen Demokratischen Republik. — Pelcrmanns geogr. Mill., 4. 281—304. Gotha. Tomek C. (I078): Are there light granites below the Paleozoic Barrandian basin? — Cas. Mineral. Geol., 23. 3. 283—286. Praha. Tomek C . - Švancara .1 . - Budík L. (1979): The depth and the origm of the West Carpathian gravity low. — Earth planet. Sei. Lett., 44, 1, 39—42. Amsterdam. Tomšík I . (1972): Pelrografio a chemické složení metamorfitů z podloží čs. části hornoslezské pánve. — Cas. Mineral. Geol.. 17, 2, 147—162. Praha. Tonika J . (19/8): The Mulěnín ferrodioríte ring intrusion, West Bohemia. - Krvstalini-kum. 14. 195-208. Praha. Tonika .1. - Vein ar Z. (I960): Geologie a petrografie stodského masívu. — Cas. Mineral. Geol.. 11. 2, 129-137. Praha. ľ u r n o v e c I. (1980}: K otázce stáří krasových jevů v Barrnndienu. — Ces. Kras, t). 44-46. Beroun. T y c z y ň ska M . (1958): A Pre-Tortonian karst surface in the vicinity of CTacow. — Bull. Acad. pol. ScL Sér. Sci. géol. géogr., 6, 6, 399—401. Warszawa. Tyráček J. (1961a): Survey of Czechoslovak Quaternary: River terraces in the Carpathian region. — Prace Inst, geol., 3"L Czwart. Eur. srodk. i wschod., I, 71—76. Warszawa. — (1961b) : Geologické pomery pleistocenních travertinů v Kokorách u Přerova. — Axlthro-pozoikum, 9. 87—105. Praha. — (1961c): Nové názory na rozšíření maximálního zalednění v Moravské bráně. — Přírodověd. Cas. slez.. 2. 247—254. Opava. — (1963): Fosilní kuželový kras u Hranic na Moravě. — Cas. Mineral. Geol, 2, 2. 176—185. Praha. — (1963): On the problem of the parallelization of the continental and the alpine glaciation on the territory of Czechoslovakia. ~ Rep. of the 6lh Int. Congr. Quaternary. Warszaw, Vol. Ill, Geomorph. sect., 375—384. Lodž. Ľ d o v kina X . J. . - D u d e k A . - L a n g M . (1977): Fklogity CeŠskogo Massiva i metamorfičeskich tolšč SSSR. in: Opyl korreljacii magmatičeskich i metamorfičeskich porod. 101-117. - Xauka. Moskva. I) Iry ch J . el al. (1976): Petrology of the Petrovice melagabbro. — Rozpr. Cs. Akad. Věd. R. mat. piír. Věd, 86, 9. Praha. Urban L. (1972): Straligrafické poměry^ krystalinika v okolí Licoměřic v Železných horách. - Sbor. geol. Věd, Geol., 23, 75—112. Praha. Vachtl J. (1962<): K otázce stáří a geneze tzv. oligoceiiních křemenců v okolí Mostu v severozápadních Cechách. — Sbor. Ostř. Úst. geol., Odd. geol., 19, 213—271. Praha. — (1965): Podloží střední částí české křídy (vých. od Labe). — Sbor. geol. Věd, Geol., 9. 119-134. Praha. — (1971): Acid volcanic rocks of the Vítanov Group (Železné hory Mountains). — Acta Univ. Carol.. Gol., 1-2. 139—174. Praha. — (1974): Der Ubergang von der Geosynkiinal- in die Plattformentwieklung. — Shoř. geol. Věd, Geol., 20. 45— 77. Praha. V á c t J, (1964): Hrádecká část žitavské pánve (s relikty terciéru na Liberecku a Frýdlant- sku). In: J. Svoboda et ak: Regionální geologie CSSR, 1/2, 354—361. — Osiř. úst. geol, l'raha. — (1977i : Chehská pánev — současný stav litoslraligrafického a tektonického rozboru tŕeti-horních usazenin. — Sbor. S. celostátní paleontologické konference v Sokolově 1977. /—Sokolov. V á cl J. - Cade k J. (.1962): Geologická stavba hrádecké části Žitavské pánve. — Sbor. Osiř. Cst. geol.. Odd. geol., 27, 331—383. Praha. V á cl .T . - M u 1 k u v s k ý M . (1062): Geologie Zateeka. — Sbor. Iľstr. Ost. geol., Odd. geol., 27. 201—330. Praha. V a j n e r V. (i 963): Ceologické pomery metamorlovaného ostrova tekovského. — Sbor. Ustř. Úst. geol., Odd. geol., 28. 231-264. Praha. Vau Hinte J. E. (1976): A Cretaceous time scale. — Bull. Amer. Assoc. Petrol. Geol.. 69, 498-516. Tulsa. Vašíček Z. (1977): Zu den Unlerkreide-Vertretern der Gattung Inoceramus in der schlesischeii Einheit (äußere Karpaten. Tschechoslovakei). — Cas. Slez. Muz., Vědy přír., 26, 1, 55-62. Opava. Vej nur Z. (1966a): The pelrogenetíc interpretation of kyanile, sillimanite and andalusite in the SW Bohemian crystalline complexes. — Neu. Jb. Mineral,. Abb., 104, 2, 172—1S9. Stuttgart. — (1966b): Pertdolttes and serpentinites of the Český les Mountains. — Krystalinikum, 4. 163-169. Praha. — (1968): Interrelations between the Monotonous and the Varied Groups of the West Bohemian Moldanubicum. — Vest. Ustř. Úst. geol, 43, 207—211. Praha. — (1971): Grundfragen des Moldanubikums und seine Stellung in der Böhmischen Masse. — Geol. Rdseh., 60, 1455—1465. Stuttgart. — (1972): Regionally metamorphosed volcanic rocks from the West-Bohemian metabasite belt. — Krystalinikum, 8, 131—156. Praha. — (1973) : Petrochemistry of the Central Bohemian Pluton. — Geochemie, 2, 1—116. Praha. — (Í975): Highly ferrous silicates from the Mutěnín ferrodiorite ring intrusion, West Bohemia. — Vest. Üslr. Ost. geol., 50. 5, 265—273. Praha. — (1981) : Problém izográd v melapelitech domažlické oblasti. — Vest. Ostr. Üst. geol., 56, 245-247. Praha. — (1982) : Regionálni metamorfóza psarnitieko-pclitickýeh hornin domažlické oblasti. — Sbor. geol. Véd, Geol., 37, 9—70. Praha. V e j u a r Z. - Zoubek V. et al. (1962): Vysvetlivky k přehledné geologické mapě CSSR. 1 :200 000 M-33-XIX Mariánské Lázně a M-33-XXV Svarcava. — Ustř. úst. geol. Praha. Veselá M. (1976): Jihlavská brázda ve vývoji geologické stavby okolí Jihlavy. — Sbor. geol. Věd, Gcol.. 28, 200-202. Praha. — (1967): On the stratigraphieal position of granuliles in the Moldanubicum. — Krystalinikum, 5, 137—152. Praha. Vi dal P. -Au v ray B. -Chariot R.-Fediuk F . - H a m e u r t J. ■ Wald-h au s rov á J. (1975): Radiometrie age of volcanics of the Cambrian "Křivoklát— Rokycany" complex (Bohemian Massif). — Geol. Rdsch., 64, 2, 563—570. Stuttgart. Vinogradov A. P.-Tugarinov A. I.-Zykov S. P.-Knorre K. G. -Stenko V. A.-Lebedev V. I. (1962): Uber das Alter der kristallinen Gesteine Zentraleuropas. — Freiberg. Forsch.-IL, 124, 39—56. Freiberg. Vlašimský P . (1973): Pne bazických a tonalitových hornin v exokontaktní zóně středočeského pln tonu na Příbramsku. — Acta Univ. Carol., Geol., 3, 179—195. Praha. Vrána S. (196.35: Anlhofylitieké horniny okoíí Zárovné v jižních Cechách. — Sbor. Ostř. Ust. geol.. Odd. geol., 28, 7-30. Praha. — (1977): Find of a polymict metaconglomerate on the Muldanuhicum of southern Bohemia. - Vest. Ustř. Ust. geol., 52, 2, 65-71. Praha. — (1979): Polyphase shear folding and thrusting in the Moldanubicum of southern Bohemia. — Vest. Ustř. 1st. geol., 34, 2, 75—86. Praha. — (1982): Petrochemistry and relict textures of quartz keratophyre pebbles from a Molda-nubian metaconglomerate in southern Bohemia. — Cas. Mineral. Geol., 27, 1. 11—23. Praha. Vrána S. - Cháb J. (1981): Metatonalite-itietaconglomerate relation: the problem of the Upper Proterozoic sequence and its basement in the NE part of the Central Bohemian Pluton. — Sbor. geol. Věd, Geol., 36, 145—187. Praha. Vyskočil P. (1972): Recentní pohyby zemské kůry na území Českého masívu. — MS Výzk. úst. geod. Praha. Vyskočil P. - Kopecký A. (1974): Neotectonics and recent erustal movements in the Bohemian Massif. — Výzk. úst. geodet, topogr. kartogr. Praha. Vyskočil P. - Zeman A. (I9Ö91): Problematika a dosavadní výsledky studii recent-ních pohybu zemského povrchu na styku Českého masívu a Karpat. — Cas. Mineral. Geol, 23. 4, 389-407. Praha. W a I d h a u s e r o v á J . (1971): The chemistry of the Cambrian volcanics in the Rar-randian area. — Krystalinikum, 8, 45—75. Praha. Wald m an n L. (1927): Zum geologischen Bau des moldanubischen Grundgebirges aut dem Kartenblatle Gmünd—Lilschau, IV. Teil. — Anz. öster. Akad. Wiss., 64. 153—155. Wien Walznauer A. (19(38): Das Kristallin am Xordrand der Böhmischen Masse und seine Beziehungen zum Moldanuhikum im Süden und skandinavischen Kristallin im Norden. — Geologie. 17, 6/7, 695—702. Berlin. Weiss J . (1977): Fundament moravského bloku ve stavbě evropské platformy. — Folia Univ. Purkyn. bnin... Geol., 18, 13, 5—64. Brno. W e i 1 h o f e r K . A . (1897): Zur stratigraphischen Gliederung der mittelböhmischen Steiti-koldenablagcrungen. — Verh. K-Kon. geol. Reichsanst., 16, 317—320. Wien, — (1902): Geologische Skizze des Kladno-Rakonitzer Kohlenbeckens. — Verh. K-Kön. geol. Reichsanst., 17-18, 399-420. Wien. Wie sen c der II. -Freilinger G. -Kittler G.-Tsambanrakis G. (1976): Der kristalline Untergrund der Nordalpen in Österreich. — Geol. Rdsch.. 65. 2, 512—525. Stuttgart. Zahálka B. (1924): Oblasti České křídy. - Cas. Mineral. Gcol., 1 (1923-1924), 13-15. 39-45, 99-101. 156-143. Praha. Zahálka C. (1893): Straligrafie útvaru křídového v okolí Rípu. Pásmo IV - Dřínovské. Pásmo V - Roudnické. — Zpr. siř. hospod, školy v Roudnici za Sk. rok 1892—1803. Za k o vil II. (1903): Slraťygrafia i zasiegi facjalne dolnego karbonu w Sudetách. — Kwart. geol., 7. I. 73—94. Warszawa. Zapletal K. (1926): Geologie středu svrntské klenby. — Sbor. St. geol. Üst. Cs. republ. 509—560. Praha. — (1933): Vznik a vývoj Tišnovska. — Vlastivěda Tišnovska, 5—44. Tišnov. — {195/) : Zur Geologie der Sudeten und Umgebung, des oberschlesischen Kohlenbeckens, der WYslkurpatcn und des Vorlandes. — Spisy přírodověd. Fak. Masaryk. Univ.. R. G, 7. /—386. Brno. Z ii r u b a Q . - B u c h a V . - L o ž e k V . (1977): significance of the Vltava terrace system for Quaternary chronostratigraphy. — Rozpr. Cs. Akad. Věd, R. mat. prir. Věd, 87, 4, 90 pp. Praha. Z á i. o p e k A . (1979): On geodynamical aspects of geophysical synthesis in Central Europe. In: Geodynamic investigations in Czechoslovakia, 91—104. — Veda. Bratislava. Zázvorkn V. (1928): Předběžná zpráva o nálezu křídových hornin v dole Mayrau u Kladna. — Cas. Nár. Muz., Odd, přírodověd., i02, 165—168. Praha. Zebera K. (195Ü) : Fluviální štěrkopísky na území speciální mapy list Hradec Králové— Pardubice. — Anthropnzoikum, 5. 381—384. Praha. — (1958): Československo ve starší době kamenné. — Academia. Praha. — {1967a) : Kvartér Podřipska, I. — Sbor. geol. Věd, Antropozoikum, 4, 71—96. Praha. — (1907b): Moldavite-bearing sediments between Koroseky und Holubov in South Bohemia. - Věst. Üstr. Üst. geol.. 42, 5, 327—337. Praha. — (1972) : Kvartér Podřipska. II. — Sbor. geol. Věd, Antropozoikum, 6, 7—34. Praha. — (1971): Kvartér Podřipska. III. — Sbor. geol. Věd, Antropozoikum, 10. 23—40. Praha. Zebera K . - P u c h in a j c r o v á M, (1958): Riss-wíirmská slatina (gyltja) z Královéhradecká ve východních Cechách. — Anthropozoikum, 7. 151—156. Praha. Zelenka L. (IM"]): Geologické studie z Českomoravské vysočiny. — Sbor. St. geol. Üst. Cs. Hepub!.. 5. 501—7. Praha. — (1929): Příspěvky k tektonice středních a jihovýchodních Cech. 1. — Věst. St. geol. Üst. Cs. Republ.. 5. 2—3. 1-23. Praha. Zeman A. (1907): Kvartérní neotekloiiické fáze ve východní části Vyškovského úvalu. — Ví st. Ustř. Üst. geol.. 42, 2, 105-110. Praha. — (1909): Příspěvek k poznáni kvartéru a nentektoniky v jz. okolí Prostějova. - Zpr. Geogr. Üst. ČSAV, 6. 1—7. Brno. — (1071): Pleislorenru fluviolakustrinnf a fluviální sedimenty v jižní části Hornomoravského úvalu. - Věst. Üstr. Üst. geol-, 46. 1, 19—30. Praha. — (1974): Quaternary of the surroundings of Stránská skála. — Sbor. geol. Věd. Antropozoikum. Iii'. 41—72- Praha. — (1980): Předniiocciiní reliéf a zvětraliny v oblasti karpatské předhlubne a moravských Karpat při vyhledávání ložisek nafty a plvnu. — Věst. Üstr. Üst. geol.. 55, 6. 357—366. Praha Zeman A. - Havlíček P. - Minaříková D. - B ú i i č k a M. - Fe j far O. (1980) : Kvartérní sedimenty slh-dní Moravy. — Sbor. geol. Věd, Antropozoikum, 13, 37-9 í. Praha. Z c man J . (1.978): Deep-seated fault structures in the Bohemian Massif. — Sbor. geol. Věd, Geol., 31, 155—185. Praha. — (1979): The influence of paleorifls on the development of continental crust in the Bohemian Massif. In: Czechosl. geology and global tectonics, 57—75. — Veda. Bratislava. Z c in á n e k V . (1967): Interpretace magnetických anomálií v humpoleeké a obrataňské oblasti nioldanubika. — Sbor. geol. Věd, užitá Geofyz., 6. 125—153. Praha. Z i km und J . (L9'71): Geologie a petrografie pararulových sérií severní části moldanubika — Sbor. geol. Věd, Geol., 21, 7—36. Praha. Zikmundová J . (1961): Nálezy konodontú v devonu Ještědského pohorí. — Věst. Üstr. Üst. geol., 39, 6, 455-457. Praha. — (1967): Konodontová zóna Scaliognalhiis anchoralis Branson et Mehl v ponikevských břidlicích .Nízkého Jeseníku. - Věst. Üstr. Üst. geol., 42, 6, 449-451. Praha. — (1976): Biostratigrafie paleozoika v podkladu a předpolí Karpat východně od Brna. — Cas. Mine.-al. Geol., 21, 4. 369-385. Praha. Z i k m u n d o v á J . - IT o 1 u h V . (1965): Valouny silurských a devonských vápenců v permokarbomi na Mladoboleslavsku. — Věst. Üstr. Üst, geol.. 40, 3, 185—187. Praha. Zoubek V. (1927): I.e inétamorphisnie ďinjection et le métamorphisme de contact dans les environs de Pelhřimov. — Sbor. St. geol. Üst. Cs. Republ., 7 , 366—412. Praha. — (1946): Příspěvky kc slratigrafii krystalinika Českého masívu I., II. — Sbor. St. geol. Üst. Cs. Republ., 13, 463-498. Praha. — (lOtó): Poznámky ke geologii krystalinika Českého masívu. — Sbor. St. geol. Ust, Cs. Republ., 13, 339-398. Praha. — (1951): Předběžná zpráva n geologických a pelrografických poměrech netolické oblasti. - Věst. Ustř. Úst. geol., 2«, 155-162. Praha. — (1965): Moldanubikum und seine Stellung im geologischen Bau Europas. — Freiberg. Forsch.-II., 190. 129-148. Freiberg. — (1907): Některé kritické problémy krystalinika Českého masívu. — čas. Mineral. Geol., 12, 2, 151—155. Praha. — (1968): Einige Hauptmerkmale und Probleme des Präkambriums der Böhmischen Masse und der Westkarpaten im gegenseitigen Vergleich, — Mitt. Geol. Gesell., 60, 97—108. Wien. — (1072) : Quelques prohlcmcs et résullats de la correlation géologique du socle préeambrien de l'Europe varisque et alpine. — Notes Mém., Serv. géol. (Rabat), 236, Coll, int. CNRS 192, 177-192. Rabat. — (1974) : Remarques sur le Préeambrien des zones mobiles de l'Europe Centrale et oc-cidcntale. In: Préeambrien des zones de l'Europe, 33—62. — Geol. úst. ČSAV. Praha. — (1975): Moldanubikum und seine Stellung im geologischen Bau Europas. — Freiberg. Forsch.-H., R. C, 100, 129-148. — (1976): Prekambrium v evropských variscídách. In: Korelace proterozoických a paleo-znických stratiformních ložisek, 4, 7—25. — Přírodověd, fak. Univ. Karl. Praha. /oubrk \ (197i. : IlríiuiU to liif prulilem nf viIhIm nmu »( lha Pir.-niiiliri-ui — I>>roj»n*«ini CorrrlaliiHi ľrrrjuiitinnii | tt.'—SJ Mímka Mntkvn — (It*»».i ; do ltu> irtml tliilc uf rfwnrh af lha Precaiubriím in llie Kiirnimtn Variaruln - KU ľ ľf.j. *1, tn.i Gtiígr., 5, 57. 5?-#í. UiKtirefli. Z unii* k V. - Škvor V. m iL (lUHt): Vyivtiiivky k pMiliMln* gwiloaprke nu|v. I :'>»llMn M-3S-XtV Trpliro, M..X(-VI| iluitNir.ivi.il - I .11 .í.t *.«i| t'h.1,™ /ouhek V, - Vyikníil Y. (llfTI.I: Arn.iti.ilol lilioví- |ki1<- >» wliiltu ke (Třolof^rkym ■Inikturňra v nliln.li .iř>-.lnl Kvtopy In; Vytkiitn tiluliinuř itnilopickŕ itivby Cokr-.lov»n.U, ffř-m - MS Ceofy«k« tkn... /ttkalovi V. (JDTffl: Hii>»lr»»ncnific palnuoika v podkladu * prn.lp^ll Knrp.it výcho-dur ,*J Um . - Ca*. MiormL ťln.L, 21, 4. JfiU—jS-í. Praha. /. U k n lov I V . - C h l to p i l I. (1982} I Mralifraitekik klaaifiknrc iH>niclcimiirl'iv»nrtt» A— VMU uwrav .ku»U>rakr <»UU»«L — C»» MůwptL Geol. 17. 3. ZtS—Í4t. Praha. Ku kalová V, - S korek V, ,: Man aitini-tkw nf nrfaiiUm* and Uthulniric Uiuiulnrici m t!,- ľuIrti-./.n. »ť,linu iit« in Moravia, Lím hinluv;iVia — Vi-»t t »lř. I il pf.il 51, 1 V*)-li2. Praha. Z vart II. J. The iluaJilr uf oroRtroie Ml. — Gml. m Mijnh. 4*. 1W1-,M Um llmtc — (ť«7ťi : Rfithitijil iiMrUi»iir|ihiini in llie Variaeatt orotfrtiv of Etircpa, — Nova Ail» lr.ip.ilil. Uf. 45 Xl-Xl. Hnile. /.wirl II I • llorntiepnn U, F. {1980]: Tha Varixan mul prr-Vi»ci«rBii liitonic r\oliilinn t iiiirol mul Wrttrrn Európa, ■ Imlativa model, fn ■ Gaolofi* ili» l'Kump*. - Mimi Itur. Itali, gml min UK SJi-JK. Orlriun IVhI mixpr llnjrk HD l:'ninti»kov>- IJuirf, Natura mrni A mail fiA. IUj*k ruwr FnntÜknvy Ltini. Wr»i tiulimiia l'lnil.» try SS. Landikrli PHntu ti\ ß. t. ... Ii- Ii Sin.ill iiiM.n,. rVJijii.^i'j'riu^u lu.jj) (->i I>l.itlin, kunJiVk n«-iir Jini'« l'li.itu h> 11. Maluulknvl A «ilirilr ruck (■ Ii. rt ■ «r»l ttt Mary Wunrc- U|>J»r fVutnrnniic nf liic fWr»n VtMle b]T J. SvtibwJn llun.v.i kj/.ilclun nxk AI Itrcilrrj.o nnar P«lr Onlml Bofacnimn plulun PhoUi b> I ävobotlt B i l'lwlJWI vf ptit>hi(n»|itii l«Mf» 2 : Sul-gmilc in Dumm mt (>Vivnlaii) fn.k^ *: Mitiillita imuif« »( tln- tj*rh Wialiat Rrpulilic PIlOlll Ii)' V. MI) Pik A«hiv. DI ML 1 I ,!■„, I"'lr r/' : lli*liirirnl fl«lli'r> in I.nlii univ miiiiiii; nmi (Wert iMinnia) Pnuli. b> V. Mlji,*k j4 .Anten