Lineární algebra a geometrie II
13. přednáška: Jordanův kanonický tvar III
Základní myšlenka důkazu věty o JKT. Definice nilpotentního operátoru. Kořenové podprostory a jejich vlastnosti. Pro daný operátor splňující předpoklady Jordanovy věty je prostor direktním součtem kořenových podprostorů. Pro daný nilpotentní operátor najdeme jeho rozklad na direktní součet podprostorů, z nichž na každém je operátor cyklický. Tím dostaneme řetězce, které dávají bázi potřebnou pro Jordanův kanonický tvar.