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Historical remarks

 C. Röntgen (1895) – X-rays

 J. Radon (1917)– Mathematical Model

 G. Grossmann (1935) – Tomography

 G. Hounsfield, McCormack (1972) –
Computerized assited tomography (CAT scan)



Why does it work?
The physical priniples.

 Tomography means slice imaging,

 Quantification of the tendency of objects to
absorb or scatter x-rays by the attunation
coefficient, involving Beer‘s law.



Model

 No refraction or diffraction: X-ray beams
travel along straight lines that are not „bent“ by
the objects they pass through.

This is a good approximation because x-rays have very
high energies, and therefore very short wavelength.

 The X-rays used are monochromatic: The 
waves making up the x-ray beams are all of the
same frequency.

This is not a realistic assumption, but it is needed to
construct a linear model for the measurements.



 Beer‘s law: Each material encountered has a 
characteristic linear attenuation coefficient μ
for x-rays of a given energy.

 The intensity, I of the x-ray beam satisfies Beer‘s
law:    

Here, s is the arc-length along the straight line

trajectory of the x-ray beam.                                                                                                        

Model



The failure to distinguish objects

one object two objects

same projection



Solution: more directions

Different angles lead to different projections. 
The more directions from which we make
measurement, the more arrangements of objects
we can distinguish.



Analysis of a Point Source Device,
2D model, what do we measure?



2D model, what do we measure?

Beer‘s law:

First order ordinary differential equation for the
intensity I with boundary condition I at r=r0>0 equals I0.

Ex 1



2D model, what do we measure?



Analysis if a Point Source Device

The density of the developed film at a point is proportional

to the logarithm of the total energy incident at that point:

density of the film = γ × log (total energy intensity),

where γ is a constant,   we obtain:

This formula expresses the measurements as
linear  function of the attunation coefficient.



Oriented lines

t

t is the distant of the line from the origin,
s is the parameter of the line.



Radon transform



Radon transform



Radon transform

 The Radon transform can be defined, a priori for a function, f 
whose restriction to each line is locally integrable and

 This is really two different conditions:
1. The function is regular enough so that restricting it to any

line gives a locally integrable function,
2. The function goes to zero rapidly enough for the improper

integrals to converge.

In applications functions of interest are usually piecewise
continuous and zero outside of some disk.

Ex 2



Properties of the Radon transform

 The Radon transform is linear:

 The Radon transform of f is an even function:

 The  Radon transform is monotone: if f is a non-negative 
function then



Pencilgeometry (Nadelstrahlgeometrie)

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Back-projection formula

 It is difficult to use the line integrals of a function
directly to reconstruct the function:

 Results of the recontruction by back-projection

What is that??

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Fourier transform in 1D 
 The Fourier transform of an absolutely integrable

function f, defined on the real line, is

 Suppose that the Fourier transform of f is again an 
absolutely integrable function then



Square integrable functions

Ex 3

 A (complex-valued) function f,  defined on       , is square
integrable if

 Examples: The function is not 
absolutely integrable but square integrable, the
function

is absolutely integrable but not square integrable.                                       



Fourier transform in nD
 The Fourier transform of an absolutely integrable

function is defined by

 Let and define

then

 Parseval formula: If f is square integrable then



 Let f be an absolutely integrable function. For any real 
number r and unit vector , we have the identity

 For a given vector the inner product ,             

is constant along any line perpendicular to the direction

. The central slice theorem interprets the compution
of the Fourier transform of as a two-step process:

1. First, integrate the function along lines perp. to .

2. Compute the one-dimensional Fourier transform of
this function of the affine parameter.

Central Slice Theorem

Ex 4



Inverse Radon Transform and
Central Slice Theorem

3. Compute the one dimensional 
Fourier transform of

1. Choose a line L, determined
by the direction (Cartesian
coord.) or by the angle γ .
Then the coorinate axis ξ shows
in the same direction. 

2. Integrate along all lines perp.
to (those lines are parallel
to the cood. axis η. We obtain
the Radon transform .

4. With u=q cos γ and v=q sin γ,
we get F(u,v) = and
f(x,y) is equal to the 2D inverse
Fourier transform of F(u,v).  

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Radon Transform

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Radon Transform

In Cartesian coordinates.

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Radon Transform

In Polar coordinates.

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Radon Transform

Abdomen,                              Radon transform in Cartesian coord.

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Reconstruction

based on 1 projection.

Now, we can try to do some reconstruction by the
before mentioned procdure

E. Meyer, www1.am.uni-erlangen.de/~bause/Seminar/seminar.html



based on 4 projections.

Reconstruction

E. Meyer, www1.am.uni-erlangen.de/~bause/Seminar/seminar.html



based on 8 projections.

Reconstruction

E. Meyer, www1.am.uni-erlangen.de/~bause/Seminar/seminar.html



based on 30 projections.

Reconstruction

E. Meyer, www1.am.uni-erlangen.de/~bause/Seminar/seminar.html



based on 60 projections.

Reconstruction

What is the difference to the back-projection formula?

E. Meyer, www1.am.uni-erlangen.de/~bause/Seminar/seminar.html



Radon Inversion Formula

 If f is an absolutely integrable function and ist Fourier 
transform is absolutely integrable too, then



Radon Inversion Formula
 If f is an absolutely integrable function and its Fourier 

transform is absolutely integrable too, then

 Filtered Back-Projection

1. The radial integral is interpreted as a filter applied to
the Radon transform. The filter acts only the affine 
parameter; is output of the filter is denoted

2. The angular integral is then interpreted as the back-
projection of the filtered Radon transform.



Back-Projection vs. 
Filtered Back-Projection

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Back-Projection vs. 
Filtered Back-Projection

back-projection filtered back-projection
based on 1 projection

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Back-Projection vs. 
Filtered Back-Projection

back-projection filtered back-projection
based on 3 projections

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Back-Projection vs. 
Filtered Back-Projection

back-projection filtered back-projection
based on 10 projections

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Back-Projection vs. 
Filtered Back-Projection

back-projection filtered back-projection
based on 180 projections

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Back-Projection vs. 
Filtered Back-Projection

back-projection filtered back-projection
based on 180 projections

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Back-Projection vs. 
Filtered Back-Projection

a) back-projection and b) filtered back-projection,
based on 1, 2, 3, 10, 45 projections resp. 

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Different Inversion formulas

 We already had the Radon inversion formula:

 We write |r|  as sgn(r) r :



A Different Inversion formula
 We already had the Radon inversion formula:

 Where we write |r|as sgn(r) r

 denotes the 1D Fourier 

transform with respect to t. 

 Suppose that g is square integrable on the real line. The 

Hilbert transform of g is defined by

If is also absolutely integrable, then

We obtain



Mathematical Model for CT
 We consider a two-dimensional slice of an three-dimensional 

object, the physical parameters of interest is the attenuation
coefficient f of the two-dimensional slice. According to Beer‘s
law, the intensity traveling along a line is attenuated according
to the differential equation

where s is arclength along the line.

 By comparing the intensity of an incident beam of x-rays to that
emitted, we measure the Radon transform of f:

 Using the Radon inversion formula, the attenuation coefficient f 
is reconstructed from the measurements



Scanner geometry

http://www.impactscan.org/slides/impactcourse/basic_principles_of_ct/



Scanner geometry

http://www.impactscan.org/slides/impactcourse/basic_principles_of_ct/



Scanner geometry

http://www.impactscan.org/slides/impactcourse/basic_principles_of_ct/



Scanner geometry

http://www.impactscan.org/slides/impactcourse/basic_principles_of_ct/



Radon transform - Polar grid
Fourier transform – Cartesian grid

Buzug, Einführung in die Computertomography, Springer Verlag , 2004



Why fan beam?

http://www.impactscan.org/slides/impactcourse/basic_principles_of_ct/



Reconstruction Algorithm for a 
Parallel Beam Machine
 We assume that we can measure all the data from a finite set

of equally spaced angles. In this case data would be

 With these data we can apply the central slice theorem to
compute angular samples of the two-dimensional Fourier 
transform of f,

 Using the two-dimensional Fourier inversion formula and
using a Riemann sum in the angular direction gives



Concluding remarks

 The model present here is a CT-model, there exist other
types of tomographical methods that are based on 
other mathematical models.

 All mathematical models are based on so-called integral 
geometry and connected with wave equations.

 Modern tomography even combines different methods:

 fusion of CT-scan (grey) 

 and PET-scan (grey)

 PET = Positron Emission

 Tomography

http://www.sdirad.com/PatientInfo/pt_pet.htm



Most of the pictures are dealing with medical applications

but Computer tomography can be applied to more

applications, as for example:

Material sciences
Tomographic visualisation of a  metallic foam structure

http://www2.tu-berlin.de/fak3/sem/GB_index.html

Geology
http://www.geo.cornell.edu/geology/classes/Geo101/

101images_spring.html

Seismic tomography reveals a more 

complex interior structure.

Archeology
3D-Computer Tomography of 

Prehispanic Sound Artifacts. 

Supported by the Ethnological Museum Berlin and the St. Gertrauden Hospital, Berlin.

http://www.mixcoacalli.com/wp-content/uploads/2007/09/ct2.jpg

Concluding remarks
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