HOMEWORK 2 – 2019

Exercise 1. Given the short exact sequence of Abelian groups

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

the following conditions are equivalent:

(1) There exists $p: B \to A$ such that $p \circ f = id_A$.

(2) There exists $q: C \to B$ such that $g \circ q = id_C$.

(3) There are $p: B \to A$ and $q: C \to B$ such that $f \circ q + q \circ g = id_B$.

Prove that $(3) \Rightarrow (1)$ and (2).

Exercise 2. For the short exact sequence of chain complexes

$$0 \longrightarrow A_* \xrightarrow{f} B_* \xrightarrow{g} C_* \longrightarrow 0$$

there is a long exact sequence of homology groups

$$\dots \longrightarrow H_{n+1}(C_*) \xrightarrow{\partial_*} H_n(A_*) \xrightarrow{f_*} H_n(B_*) \xrightarrow{g_*} H_n(C_*) \xrightarrow{\partial_*} H_{n-1}(A_*) \longrightarrow \dots$$

with the connecting homomorphism ∂_* defined by the prescription

 $\partial_*([c]) = [a]$, where $\partial c = 0$, $f(a) = \partial b$, g(b) = c.

- (1) Prove that the definition is independent of the choice of c in the homology class in $H_n(C_*)$.
- (2) Prove the exactness in $H_n(C_*)$.