logo-IBA logomuni Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy * Relativní riziko a poměr šancí * Princip korelace dvou náhodných veličin * Korelační koeficienty – Pearsonův a Spearmanův * Korelace a kauzalita esf-komplet-barva.jpg logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Opakování – Fisherův exaktní test * Jak funguje Fisherův exaktní test? Veličina X Veličina Y Y = 1 Y = 2 Celkem X = 1 a b a + b X = 2 c d c + d Celkem a + c b + d n logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Opakování – Chí-kvadrát test dobré shody * Lze použít chí-kvadrát test dobré shody na testování normality dat? * Pokud ano, jak? logo-IBA logomuni 1. Vyjádření rizik ve čtyřpolní tabulce logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Motivace * Sledujeme souvislost věku matky a výskytu náhlého úmrtí kojence (SIDS). Výsledky dány v tabulce: * * * * * * * Pomocí Pearsonova chí-kvadrát nebo Fisherova exaktního testu můžeme rozhodovat o závislosti/nezávislosti dvou sledovaných veličin. Testy ale neumožňují tento vztah kvantifikovat. * Má-li to smysl a chceme-li kvantifikovat (rozhodovat o těsnosti této závislosti) můžeme použít tzv. relativní riziko (RR) a poměr šancí (OR). SIDS Věk matky Do 25 let 25 a více let Celkem Ano 29 15 44 Ne 7301 11241 18542 Celkem 7330 11256 18586 logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Srovnávané skupiny * Pomocí RR i OR můžeme srovnat pravděpodobnosti výskytu sledovaného jevu ve dvou různých skupinách: * * 1. skupina s pravděpodobností výskytu události P1: * experimentální skupina – např. léčená novou léčbou * riziková skupina – např. hypertonici * skupina s expozicí určitému faktoru – např. horníci * * 2. skupina s pravděpodobností výskytu události P0: * kontrolní skupina * skupina bez expozice logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Relativní riziko = Relative risk * Výpočet relativního rizika (RR) umožňuje srovnat pravděpodobnosti výskytu sledovaného jevu ve dvou různých skupinách. * 1. skupina – experimentální nebo skupina s expozicí určitému faktoru * 2. skupina – kontrolní nebo skupina bez expozice * * * * * Pravděpodobnost výskytu jevu v 1. skupině (experimentální) Pravděpodobnost výskytu jevu ve 2. skupině (kontrolní) Sledovaný jev Skupina Experimentální Kontrolní Celkem Ano a b a + b Ne c d c + d Celkem a + c b + d n logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – relativní riziko * Sledujeme souvislost věku matky a výskytu náhlého úmrtí kojence (SIDS). Výsledky dány v tabulce: SIDS Věk matky Do 25 let 25 a více let Celkem Ano 29 15 44 Ne 7301 11241 18542 Celkem 7330 11256 18586 Riziko výskytu SIDS u dětí matek ve věku do 25 je téměř třikrát vyšší než u dětí matek rodících ve vyšším věku. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Riziko vs. „šance“ (odds) * Riziko a pravděpodobnost – odhad pravděpodobnosti vzniku onemocnění * Relativní riziko – poměr dvou pravděpodobností * * Šance – poměr pravděpodobnosti výskytu jevu a výskytu opačného jevu * * * * nabývá hodnot mezi 0 a nekonečnem * pokud kůň vyhraje s pravděpodobností 10%, jaká je jeho šance na výhru? logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Poměr šancí = Odds ratio * Poměr šancí (OR) je další charakteristikou, která umožňuje srovnat výskyt sledovaného jevu ve dvou různých skupinách. * 1. skupina – experimentální nebo skupina s expozicí určitému faktoru * 2. skupina – kontrolní nebo skupina bez expozice * Pravděpodobnost výskytu jevu v 1. skupině (experimentální) Pravděpodobnost výskytu jevu ve 2. skupině (kontrolní) 1 – Pravděpodobnost výskytu jevu v 1. skupině (experimentální) 1 – Pravděpodobnost výskytu jevu ve 2. skupině (kontrolní) Sledovaný jev Skupina Experimentální Kontrolní Celkem Ano a b a + b Ne c d c + d Celkem a + c b + d n logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – odds ratio * Sledujeme souvislost věku matky a výskytu náhlého úmrtí kojence (SIDS). Výsledky dány v tabulce: SIDS Věk matky Do 25 let 25 a více let Celkem Ano 29 15 44 Ne 7301 11241 18542 Celkem 7330 11256 18586 „Šance“ na výskyt SIDS u dětí matek ve věku do 25 je téměř třikrát vyšší než u dětí matek rodících ve vyšším věku. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Grafické srovnání RR a OR A B RR = OR = Výskyt sledovaného jevu Bez výskytu sledovaného jevu logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Umělý příklad – pití slazených nápojů * Sledujeme vliv pití slazených nápojů na výskyt zubního kazu. Výsledky dány v tabulce: Zubní kaz Pití slazených nápojů Ano Ne Celkem Ano 34 19 53 Ne 16 31 47 Celkem 50 50 100 logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Srovnání RR a OR * Hodnoty, jakých může nabývat RR i OR, souvisí s četností výskytu sledované události v kontrolní (referenční) skupině. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Komentáře k RR, OR * hodnota relativního rizika leží mezi 0 a 1/P0 * pro běžné jevy nelze pozorovat vysoké hodnoty relativního rizika pokud je riziko v kontrolní skupině 66%, maximální RR je 1,5 * * OR je obtížnější interpretovat * může být vhodné konvertovat na RR, musíme ale znát riziko v kontrolní skupině * * * * nevychází stejně, ale oba jsou validní ukazatele účinku * ALE POKUD SE NEJEDNÁ O VZÁCNÝ JEV, OR NELZE INTERPRETOVAT JAKO RR!!! * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Výhody a nevýhody RR a OR * Nevýhoda OR: * obtížná interpretace. * * Výhoda i nevýhoda RR: * nezajímá ho samotná pravděpodobnost výskytu jevu, ale pouze jejich podíl → korektní použití RR je však pouze v případě, že pravděpodobnost výskytu jevu v kontrolní skupině je reprezentativní (není ovlivněna výběrem sledovaných subjektů). * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Prospektivní a retrospektivní studie * Prospektivní studie * U některých subjektů je rizikový faktor přítomen a u jiných ne → sledujeme v čase, zda se vyskytne událost. * * Retrospektivní studie * U některých subjektů se událost vyskytla a u jiných ne → zpětně hodnotíme, zda se liší s ohledem na nějaký rizikový faktor. * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Použití RR a OR * Prospektivní studie – u některých subjektů je rizikový faktor přítomen a u jiných ne → sledujeme, zda se vyskytne událost. * Zjištěná pravděpodobnost výskytu události v kontrolní skupině je reprezentativní, neboť prospektivně zařazujeme všechny pacienty → korektní použití RR. * * Retrospektivní studie – u některých subjektů se událost vyskytla a u jiných ne → zpětně hodnotíme, zda se liší s ohledem na nějaký rizikový faktor. * Zjištěná pravděpodobnost výskytu události v kontrolní skupině není reprezentativní, neboť ji ovlivňujeme zpětným výběrem skupin subjektů. → nekorektní použití RR. → korektní použití OR. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Intervalové odhady * RR i OR jsou variabilní stejně jako četnosti v kontingenční tabulce – bodový odhad je tak vhodné doplnit 100(1-α)% intervalem spolehlivosti. * Lze ukázat, že pro nepříliš malé hodnoty a, b, c, d má přirozený logaritmus RR (lnRR) i přirozený logaritmus OR (lnOR) normální rozdělení. * Pak platí: * * * 100(1-α)% IS pro přirozené logaritmy: * * * 100(1-α)% IS pro RR a OR: * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – intervalové odhady * Sledujeme souvislost věku matky a výskytu náhlého úmrtí kojence (SIDS): * * * * * * Logaritmická transformace: * * * * Zpětná transformace: SIDS Věk matky Do 25 let 25 a více let Celkem Ano 29 15 44 Ne 7301 11241 18542 Celkem 7330 11256 18586 logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika * Relativní redukce rizika (RRR) * * * * * * Absolutní redukce rizika (ARR) Další způsoby vyjádření rozdílu rizika ARR = Bez léčby S léčbou RRR = 1 - RR = 1 - logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Další způsoby vyjádření rozdílu rizika ARR = 20% Pro snížení počtu událostí o 20 je třeba léčit 100 pacientů. NNT = NNT = Pro snížení počtu událostí o 1 je třeba léčit 5 pacientů. * Počet pacientů, které je potřeba léčit, abychom zabránili výskytu jedné události – „number needed to treat“ (NNT). * * * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Zvláštní případ RRR – účinnost vakcíny (vaccine efficacy) * Hodnotíme dvojitě zaslepenou placebem kontrolovanou studii zaměřenou na účinnost bivalentní vakcíny proti incidentní HPV infekci (Harper a kol., 2004) * According to protocol group, 18 měsíců HPV infekce Skupina Vakcinace Placebo Celkem Ano 2 23 25 Ne 364 332 696 Celkem 366 355 721 Riziko infekce u vakcinovaných je pouhých 8,4% ve srovnání s kontrolní skupinou – vakcína předejde 91,6% infekcí relativní riziko logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Absolutní vs. relativní četnost * Vyjádření výsledků v relativní formě (procento) má často příjemnou interpretaci, ale může být zavádějící. * Relativní vyjádření účinnosti by mělo být vždy doprovázeno absolutním vyjádřením účinnosti. * * Příklad: Srovnání účinnosti léčiva ve smyslu prevence CMP u kardiaků. Studie 1: Výskyt CMP ve skupině A je 12 %, ve skupině B je 20 %. Relativní změna v účinnosti = 40 %; absolutní změna = 8 %. Studie 2: Výskyt CMP ve skupině A je 0,9 %, ve skupině B je 1,5 %. Relativní změna v účinnosti = 40 %; absolutní změna = 0,6 %. * Výsledkem je rozdílný přínos léčby při stejné relativní účinnosti. * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika NNT a absolutní vs. relativní četnost * Příklad: Srovnání účinnosti léčiva ve smyslu prevence CMP u kardiaků. Studie 1: Výskyt CMP ve skupině A je 12 %, ve skupině B je 20 %. Relativní změna v účinnosti = 40 %; absolutní změna = 8 %. Studie 2: výskyt CMP ve skupině A je 0,9 %, ve skupině B je 1,5 %. Relativní změna v účinnosti = 40 %; absolutní změna = 0,6 %. * NNT = NNT = Pro snížení počtu událostí o 1 je třeba léčit 167 pacientů. NNT = NNT = Pro snížení počtu událostí o 1 je třeba léčit 13 pacientů. logo-IBA logomuni 2. Hodnocení vztahu dvou spojitých veličin – základy korelace logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Proč hodnotit vztah dvou spojitých veličin? * Zatím jsme se zabývali spojitou veličinou v jedné skupině, spojitou veličinou ve více skupinách, diskrétní veličinou v jedné skupině, diskrétní veličinou ve více skupinách, dvěma diskrétními veličinami v jedné skupině. * * Teď se chceme zabývat dvěma spojitými veličinami v jedné skupině: 1.Chceme zjistit, jestli mezi nimi existuje vztah – např. jestli vyšší hodnoty jedné veličiny znamenají nižší hodnoty jiné veličiny. 2.Chceme predikovat hodnoty jedné veličiny na základě znalosti hodnot jiných veličin. 3.Chceme kvantifikovat vztah mezi dvěma spojitými veličinami – např. pro použití jedné veličiny na místo druhé veličiny. * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Jak hodnotit vztah dvou spojitých veličin? * Nejjednodušší formou je bodový graf (x-y graf). * Vztah výšky a váhy studentů Biostatistiky pro matematické biology – jaro 2010: vyska_vaha_MatBi.jpeg logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Korelace * Korelační koeficient – kvantifikuje míru vztahu mezi dvěma spojitými veličinami (X a Y). * * Standardní metodou je výpočet Pearsonova korelačního koeficientu (r). * Nabývá hodnot od -1 do 1. * Hodnota r je kladná, když vyšší hodnoty X souvisí s vyššími hodnotami Y, a naopak je záporná, když nižší hodnoty X souvisí s vyššími hodnotami Y. * Charakterizuje linearitu vztahu mezi X a Y – jinak řečeno variabilitu kolem lineárního trendu. * Hodnoty 1 nebo -1 získáme, když body x-y grafu leží na přímce. * 600px-Icon-Warning-Red.svg.png logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Pearsonův korelační koeficient (r) * Předpokládáme realizaci dvourozměrného náhodného vektoru o rozsahu n: (máme dvojice hodnot, které patří k sobě – charakterizují i-tý subjekt) * * Pearsonův korelační koeficient: * * * * kde jsou výběrové průměry, jsou výběrové směrodatné odchylky. 600px-Icon-Warning-Red.svg.png logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Pearsonův korelační koeficient (r) cor_r_-09.jpeg cor_r_1.jpeg cor_r_04.jpeg cor_r_005.jpeg r = 1,0 r = -0,9 r = 0,4 r = 0,05 logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – Pearsonův korelační koeficient (r) * Vztah výšky a váhy studentů Biostatistiky pro matematické biology – jaro 2010: vyska_vaha_MatBi.jpeg logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Problémy s výpočtem r * Pearsonův korelační koeficient lze vypočítat na jakýchkoliv datech. * Pokud však budeme chtít jakkoliv rozhodovat o vlastnostech r (interval spolehlivosti, testování hypotéz), musíme učinit předpoklad o normalitě hodnocených veličin. r = 0,93 p < 0,001 r = 0,63 p < 0,001 r = 0,23 p = 0,019 Více skupin Nelineární vztah Velikost výběru 600px-Icon-Warning-Red.svg.png logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Interval spolehlivosti pro r * Výběrové rozdělení koeficientu r není normální, pro výpočet IS je třeba ho transformovat: * * Veličina w má normální rozdělení se standardní chybou přibližně: * 100(1-α)% IS pro w má tvar: * * 100(1-α)% IS pro r pak dostaneme zpětnou transformací: * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – interval spolehlivosti pro r * Vztah výšky a váhy studentů Biostatistiky pro matematické biology – jaro 2010: vyska_vaha_MatBi.jpeg logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Test hypotézy H0: r = 0 logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – test hypotézy H0: r = 0 * Vztah výšky a váhy studentů Biostatistiky pro matematické biology – jaro 2010: vyska_vaha_MatBi.jpeg Zamítáme H0: r = 0. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Spearmanův korelační koeficient (rs) * Pearsonův korelační koeficient je náchylný k odlehlým hodnotám a obecně odchylkám od normality. Spearmanův korelační koeficient stejně jako řada dalších neparametrických metod pracuje pouze s pořadími pozorovaných hodnot. * Máme náhodný výběr rozsahu n: * Definujeme: xri – pořadí xi mezi hodnotami x; yri – pořadí yi mezi hodnotami y; di = xri – yri. * Spearmanův korelační koeficient: * * * Vyskytují-li se shodné hodnoty, je nutné použít výpočet pomocí Pearsonova korelačního koeficientu na pořadích. * Hodnoty rs se pohybují stejně jako u r od -1 do 1. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – Spearmanův korelační koeficient (rs) * Vztah výšky a váhy studentů Biostatistiky pro matematické biology – jaro 2010: Student Výška xi Pořadí výška Váha yi Pořadí váha Rozdíl di di2 1 175 10 69 10 0 0 2 166 1 55 3 -2 4 3 170 4 67 8 -4 16 4 169 2,5 52 1 1,5 2,25 5 188 13 90 12,5 0,5 0,25 6 175 10 53 2 8 64 7 176 12 57 4,5 7,5 56,25 8 171 5 57 4,5 0,5 0,25 9 173 6,5 68 9 -2,5 6,25 10 175 10 73 11 -1 1 11 173 6,5 62 6 0,5 0,25 12 174 8 90 12,5 -4,5 20,25 13 169 2,5 63 7 -4,5 20,25 logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – Spearmanův korelační koeficient (rs) * V souboru je hodně shodných hodnot → musíme použít Pearsonovo r na pořadí. Student Pořadí výška Pořadí váha Rozdíl di di2 1 10 10 0 0 2 1 3 -2 4 3 4 8 -4 16 4 2,5 1 1,5 2,25 5 13 12,5 0,5 0,25 6 10 2 8 64 7 12 4,5 7,5 56,25 8 5 4,5 0,5 0,25 9 6,5 9 -2,5 6,25 10 10 11 -1 1 11 6,5 6 0,5 0,25 12 8 12,5 -4,5 20,25 13 2,5 7 -4,5 20,25 logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Jak to, že nám r a rs vyšly různě? * Původní hodnoty: * * Pořadí: vyska_vaha_MatBi.jpeg logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika IS pro rs a test hypotézy H0: rs = 0 * Výběrové rozdělení rs je pro výběry s n > 10 stejné jako výběrové rozdělení r, proto je možné pro konstrukci 100(1-α)% IS použít metodu pro Pearsonův koeficient. * * Pro větší vzorky, n > 30, je možné použít pro ověření hypotézy H0: rs = 0 stejnou testovou statistiku jako v případě r: logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Poznámka o r2 * Korelace dvou náhodných veličin se často interpretuje pomocí druhé mocniny Pearsonova korelačního koeficientu: r2. * * Hodnota r2 vyjadřuje, kolik % své variability sdílí jedna veličina s druhou, jinak řečeno, kolik % variability jedné veličiny může být predikováno pomocí té druhé. * * S hodnotou r2 se setkáte v lineárních modelech. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Klíčové principy – zkreslení * Pojem zavádějící faktor – pro zavádějící faktor současně platí, že * přímo nebo nepřímo ovlivňuje sledovaný následek, * je ve vztahu se studovanou expozicí , * není mezikrokem mezi expozicí a následkem. * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika •Proměnná asociovaná s rizikovým faktorem a kauzálně spojená s výsledkem • • • • • • • • •může zcela zatemnit skutečný vztah mezi rizikovým faktorem a výsledkem Nošení zápalek Rakovina plic Kouření RIZIKOVÝ FAKTOR? VÝSLEDEK ZAVÁDĚJÍCÍ FAKTOR Zavádějící faktor (confounder) logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Rakovina plic Konzumace alkoholu Vysoká Nízká Celkem Ano 33 27 60 Ne 1667 2273 3940 Celkem 1700 2300 4000 Vysoká konzumace alkoholu je rizikovým faktorem pro vznik rakoviny plic... Zdroj: Fundamentals of biostatistics, Rosner 2006 Jak na zavádějící faktory: stratifikace logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Rakovina plic Konzumace alkoholu Vysoká Nízká Celkem Ano 24 6 30 Ne 776 194 970 Celkem 800 200 1000 Rakovina plic Konzumace alkoholu Vysoká Nízká Celkem Ano 9 21 30 Ne 891 2079 2970 Celkem 900 2100 3000 Skupina kuřáků Skupina nekuřáků Ve skutečnosti ani u kuřáků ani u nekuřáků konzumace alkoholu riziko vzniku rakoviny plic nezvyšuje Zdroj: Fundamentals of biostatistics, Rosner 2006 Jak na zavádějící faktory: stratifikace