logo-IBA logomuni Přednáška VII. Úvod do testování hypotéz * Principy a pojmy testování hypotéz, chyba I. a II. druhu * P-hodnota a její interpretace * Síla testu a souvislost s velikostí vzorku * Statistická versus klinická/biologická významnost esf-komplet-barva.jpg logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Opakování – vlastnosti výběrového průměru * Čím lze vysvětlit následující vlastnosti výběrového průměru? * * Rozdělení pravděpodobnosti výběrového průměru je tím méně variabilní čím více pozorování je v průměru zahrnuto. * * Rozdělení pravděpodobnosti výběrového průměru se s rostoucím n přestává podobat rozdělení původních dat a začíná se podobat rozdělení normálnímu. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Opakování – interpretace intervalu spolehlivosti * Jak lze interpretovat např. 95% interval spolehlivosti pro odhad střední hodnoty? R 0 μ x1 ( ) d1 h1 x2 ( ) d2 h2 x3 ( ) d3 h3 x100 ( ) d100 h100 x99 ( ) d99 h99 cca 95 % cca 5 % x ( ) d h x ( ) d h logo-IBA logomuni 1. Motivace logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Odhady a testy * Zatím jsme se bavili hlavně o odhadech – pomocí odhadů popisujeme charakteristiky cílové populace. * * Chceme jít v rozhodování dál: 1.Chceme srovnávat. * 1 náhodný výběr s předpokládanou hodnotou * 2 náhodné výběry mezi sebou * Více náhodných výběrů mezi sebou 2.Chceme hodnotit změnu náhodné veličiny vzhledem k nějaké intervenci. 3.Chceme rozhodovat o nezávislosti dvou náhodných veličin. 4.Chceme rozhodovat o charakteru rozdělení náhodné veličiny. * logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Medicína založená na důkazech * Úkolem zdravotního systému je zajistit dostupnými prostředky nejlepší možný zdravotní a psychický stav národa. * * K naplňování tohoto úkolu by měl pomoci princip nazvaný medicína založená na důkazech („evidence based medicine“). * Medicína založená na důkazech je proces zabývající se systematickým hledáním, hodnocením a hlavně využitím současných výsledků klinického výzkumu při poskytování péče jednotlivým pacientům. * Poskytování důkazů pomocí klinického výzkumu a vědecké literatury. * Vytváření klinických doporučení (založených na důkazech) a jejich distribuce. * Implementace účinných a efektivních postupů pomocí výuky a řízení kvality. * Hodnocení dodržování doporučených postupů pomocí klinických auditů, indikátorů kvality a výsledků léčebné péče. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Role testování hypotéz logo-IBA logomuni 2. Principy a pojmy testování hypotéz logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Hypotézy * Nulová hypotéza („null hypothesis“) – tvrzení o neznámých vlastnostech rozdělení pravděpodobnosti sledované náhodné veličiny (na cílové populaci). Může být tvrzením o parametrech rozdělení nebo tvaru rozdělení pravděpodobnosti. * Nulová hypotéza má tvar: * * Alternativní hypotéza – tvrzení o neznámých vlastnostech rozdělení pravděpodobnosti sledované náhodné veličiny, které popírá platnost nulové hypotézy. Vymezuje, jaká situace nastává, když nulová hypotéza neplatí. * Alternativní hypotéza má tvar: * 600px-Icon-Warning-Red.svg.png logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Testování hypotéz * Testování hypotéz se zabývá rozhodováním o platnosti stanovených hypotéz na základě pozorovaných dat. * * Platnost hypotéz ověřujeme pomocí statistického testu – rozhodovacího pravidla, které každému náhodnému výběru přiřadí právě jedno ze dvou možných rozhodnutí – H0 nezamítáme nebo H0 zamítáme. * * Základy moderního testování hypotéz položili J. Neyman a E. S. Pearson. 600px-Icon-Warning-Red.svg.png logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklady – řešené problémy 1.Urychluje použití antibiotika ve srovnání s použitím běžné dezinfekce hojení rány? 2. 2.Je průměrný objem prostaty mužů nad 70 let stejný jako průměrný objem prostaty celé mužské populace? 3. 3.Je efekt snížení systolického tlaku novým antihypertenzivem stejný u hypertoniků, kteří kouří, jako u hypertoniků, kteří nekouří? 4. 4.Liší se AML, ALL, CML a CLL v aktivitě vybraných genů? logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklady – hypotézy 1.Urychluje použití antibiotika ve srovnání s použitím běžné dezinfekce hojení rány? Střední doba hojení s antibiotiky: Střední doba hojení bez antibiotik: 1. 2.Je průměrný objem prostaty mužů nad 70 let stejný jako průměrný objem prostaty celé mužské populace? 3. Střední objem prostaty mužů nad 70 let : Populační hodnota (konstanta): logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklady – hypotézy 3. Je efekt snížení systolického tlaku novým antihypertenzivem stejný u hypertoniků, kteří kouří, jako u hypertoniků, kteří nekouří? 1. Střední hodnota efektu u kuřáků: Střední hodnota efektu u nekuřáků: 1. 4.Liší se AML, ALL, CML a CLL v aktivitě vybraných genů? 5. Střední hodnota exprese genu g u AML, ALL, CML, CLL: logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Proč nulová hypotéza vyjadřuje nepřítomnost efektu? logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Proč nulová hypotéza vyjadřuje nepřítomnost efektu? * Nulová hypotéza odráží fakt, že se něco nestalo nebo neprojevilo → je stanovena obvykle jako opak toho, co chceme experimentem prokázat. * * Nulová hypotéza je postavena tak, abychom ji mohli pomocí pozorovaných hodnot vyvrátit. * * Pro zamítnutí platnosti nulové hypotézy nám totiž stačí najít jeden příklad, kdy nulová hypotéza neplatí – tím příkladem má být náš náhodný výběr (naše pozorovaná data). * * Zamítnout nulovou hypotézu je jednodušší než nulovou hypotézu potvrdit. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Co se při rozhodování může stát * Vzhledem k nulové hypotéz máme čtyři možnosti výsledku rozhodovacího procesu: * * * * * * * * * Při rozhodování se můžeme mýlit, můžeme se dopustit dvou chybných úsudků. 600px-Icon-Warning-Red.svg.png Rozhodnutí Skutečnost H0 platí H0 neplatí H0 nezamítneme správné přijetí platné nulové hypotézy chyba II. druhu H0 zamítneme chyba I. druhu správné zamítnutí neplatné nulové hypotézy logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Analogie se soudním procesem * Ctíme presumpci neviny = předpokládáme, že nulová hypotéza platí. * * Požadujeme důkaz pro prokázání viny = na základě dat chceme ukázat, že nulová hypotéza neplatí. * * Když nám bude stačit málo důkazů, zvýší i procento odsouzených, kteří jsou skutečně vinni = správné zamítnutí neplatné nulové hypotézy, ale zároveň se zvýší se procento odsouzených nevinných = chyba I. druhu. * * Když budeme požadovat hodně důkazů, zvýší se procento nevinných, kteří budou osvobozeni = správné přijetí platné nulové hypotézy, ale zároveň se zvýší i procento vinných, kteří budou osvobozeni = chyba II. druhu. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Pravděpodobnost výsledků rozhodovacího procesu * Jak je vidět z analogie se soudním procesem, nelze zároveň minimalizovat α i β. V praxi je nutné více hlídat α → předem stanovíme maximální hranici pro α (hladina významnosti testu, „level of significance“) a za této podmínky minimalizujeme β. 600px-Icon-Warning-Red.svg.png Rozhodnutí Skutečnost H0 platí H0 neplatí H0 nezamítneme správné rozhodnutí P = 1 – α chyba II. druhu P = β H0 zamítneme chyba I. druhu P = α správné rozhodnutí P = 1 – β logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Proč hlídat spíše α než β? * Benjamin Franklin: * „It is better that 100 guilty persons should escape than that one innocent person should suffer.“ logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Statistický test * Testování hypotéz probíhá na základě dat (ve frekventistické statistice výhradně na základě dat). * * Testované hypotéze odpovídá statistický test, respektive testová statistika, která umožní ověřit platnost nulové hypotézy. * Testová statistika je transformací pozorovaných dat s rozdělením pravděpodobnosti, sama tedy má také rozdělení pravděpodobnosti. Rozdělení pravděpodobnosti testové statistiky za platnosti H0 se označuje jako „null distribution“. * * Na základě dat vypočítáme hodnotu testové statistiky, kterou srovnáme s kvantilem (kritickou hodnotou) jejího rozdělení odpovídajícím zvolené hladině významnosti testu α. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Zamítnutí / nezamítnutí nulové hypotézy * Hodnotu testové statistiky srovnáme s kvantilem (kritickou hodnotou) jejího rozdělení odpovídajícím zvolené hladině významnosti testu α. * * Představuje-li pozorovaná hodnota testové statistiky extrémnější (méně pravděpodobnou) hodnotu v rámci rozdělení odpovídajícího nulové hypotéze než je kritická hodnota (kvantil) odpovídající zvolenému riziku α, pak nulovou hypotézu zamítáme. * * Riziko špatného rozhodnutí, které podstupujeme, buď rovnoměrně rozdělujeme na obě extrémní varianty výsledku (oboustranný test) nebo uvažujeme pouze jednu extrémní variantu výsledku (jednostranný test). logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Zamítnutí / nezamítnutí nulové hypotézy riziko α / 2 riziko α / 2 2,5 % 2,5 % 95 % Oboustranný test při α = 0,05 Jednostranný test při α = 0,05 riziko α 5 % 95 % Padne-li testová statistika sem – zamítáme H0 Padne-li testová statistika sem – nezamítáme H0 Padne-li testová statistika sem – zamítáme H0 Padne-li testová statistika sem – nezamítáme H0 Padne-li testová statistika sem – zamítáme H0 logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Co znamená „padnutí testové statistiky“ * Je-li hodnota testové statistiky větší než kvantil příslušný riziku α, pak mohly nastat dvě situace: * 1.buď H0 platí a my jsme pozorovali málo pravděpodobný jev 2.H0 neplatí * * My pracujeme s rizikem α, tedy málo pravděpodobné jevy jsou součástí našeho rizika, proto v tomto případě volíme možnost 2 a zamítáme H0. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – z-test pro jeden výběr * Při populačním epidemiologickém průzkumu se zjistilo, že průměrný objem prostaty u mužů je 32,73 ml (SD = 18,12 ml). Na hladině významnosti testu α = 0,05 chceme ověřit, jestli se muži nad 70 let liší od celé populace. Máme náhodný výběr o velikosti n = 100 a výběrový průměr 36,60 ml. * Chceme ověřit platnost proti * Platí-li H0, pak (předpokládáme, že známe σ) * * Jak na to? logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – z-test pro jeden výběr * Při populačním epidemiologickém průzkumu se zjistilo, že průměrný objem prostaty u mužů je 32,73 ml (SD = 18,12 ml). Na hladině významnosti testu α = 0,05 chceme ověřit, jestli se muži nad 70 let liší od celé populace. Máme náhodný výběr o velikosti n = 100 a výběrový průměr 36,60 ml. * Chceme ověřit platnost proti * Platí-li H0, pak (předpokládáme, že známe σ) * * Z CLV víme, že by mělo platit: * * Pokud tedy výběrový průměr patří do rozdělení neměla by jeho hodnota být vzhledem k tomuto rozdělení nijak extrémní. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – z-test pro jeden výběr * Chceme ověřit platnost proti * Platí-li H0, pak (předpokládáme, že známe σ) * * Z CLV víme, že by mělo platit: * * Vypočteme hodnotu testové statistiky: * * * * * Můžeme zamítnout nulovou hypotézu na hladině významnosti testu α = 0,05 nebo ne? z0,025 = -1,96 z0,050 = -1,64 1,96 = z0,975 1,64 = z0,950 z0,005 = -2,58 2,58 = z0,995 1 - α α / 2 α / 2 90 % 95 % 99 % logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad – z-test pro jeden výběr * Hodnota testové statistiky: * Můžeme zamítnout nulovou hypotézu na hladině významnosti testu α = 0,05 nebo ne? * * * Nulovou hypotézu o rovnosti objemu prostaty u mužů nad 70 let populační hodnotě 32,73 ml zamítáme na hladině významnosti α = 0,05, protože výsledná hodnota z statistiky je větší než kritická hodnota (příslušný kvantil) rozdělení N(0,1). α / 2 α / 2 2,5 % 2,5 % 95 % z statistika logo-IBA logomuni 3. P-hodnota a její interpretace logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika P-hodnota * P-hodnota vyjadřuje pravděpodobnost za platnosti H0, s níž bychom získali stejnou nebo extrémnější hodnotu testové statistiky (samozřejmě vzhledem k jednostrannosti nebo oboustrannosti testu). * * Číselně (ale ne filozoficky) ekvivalentní je tzv. dosažená hladina významnosti testu („attained significance level“), což je nejmenší hladina významnosti α, při které bychom ještě zamítnuli H0. * * V praxi se často obě hodnoty zaměňují! 600px-Icon-Warning-Red.svg.png logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika z_test_p_value_prostata.jpeg Příklad – p-hodnota * Vraťme se k příkladu s objemem mužské prostaty – hodnota testové statistiky z = 2,14. Jaká jí odpovídá p-hodnota? * Důležité je uvědomit si, že máme oboustrannou alternativní hypotézu! 1,6 % 1,6 % z statistika p-hodnota pro oboustrannou alternativu: -z statistika p-hodnota pro z-test z příkladu: logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Velikost vzorku a významnost výsledku * Vraťme se k příkladu s objemem mužské prostaty – ALE s n = 10! * Chceme ověřit platnost proti * Platí-li H0, pak (předpokládáme, že známe σ) * Pak * * * * * * H0 nyní nezamítáme! * Rozdíl se nezměnil, pouze je menší n! * Máme méně informace. priklad_prostata_n10.jpeg z statistika logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Důležité poznámky k testování hypotéz * Nezamítnutí nulové hypotézy neznamená automaticky její přijetí! Může se jednat o situaci, kdy pro zamítnutí nulové hypotézy nemáme dostatečné množství informace. * Dosažená hladina významnosti testu (ať už 0,05, 0,01 nebo 0,10) nesmí být slepě brána jako hranice pro existenci/neexistenci testovaného efektu. Neexistuje jasná hranice pro významnost či nevýznamnost – často je velmi malý rozdíl mezi p-hodnotou 0,04 a p-hodnotou 0,06. * Malá p-hodnota nemusí znamenat velký efekt. Hodnota testové statistiky a odpovídající p-hodnota může být ovlivněna velkou velikostí vzorku a malou variabilitou pozorovaných dat. * Výsledky testování musí být nahlíženy kriticky – jedná se o závěr založený „pouze“ na jednom výběrovém souboru. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Spojitost s intervaly spolehlivosti * Opět se vraťme příkladu s objemem mužské prostaty (pro n = 100). * Chceme ověřit platnost proti * Na základě n = 100 jsme nulovou hypotézu zamítli. * Zkusme vypočítat 95% interval spolehlivosti pro μ (tedy IS s α = 0,05): * * * * * * * 95% IS neobsahuje H0. Co nám to říká? logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Spojitost s intervaly spolehlivosti * Můžeme zamítnout H0, protože 95% IS neobsahuje předpokládanou hodnotu neznámého parametru (neobsahuje H0). Opět podstupujeme riziko α = 0,05, že se mýlíme (tedy, že jsme naším 95% IS nepokryli hodnotu μ). * * Testování hypotéz a intervaly spolehlivosti jsou velmi často ekvivalentní, ale popisují trochu něco jiného: Interval spolehlivosti charakterizuje přesnost bodového odhadu, zatímco test nulové hypotézy se zaměřuje na pravděpodobnostní model v pozadí. * * Vždy by měl být vedle výsledku testu publikována i velikost dosaženého efektu s příslušným intervalem spolehlivosti. Ze samotné p-hodnoty testu nebo rozhodnutí zamítáme H0/nezamítáme H0 není zřejmé, v jakých mezích se velikost účinku (rozdílu) pohybuje. logo-IBA logomuni 4. Síla testu logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Síla testu * Pravděpodobnost chyby II. druhu značíme β. * 1 – β se nazývá síla testu a vyjadřuje pravděpodobnost, že zamítneme H0 ve chvíli, kdy H0 opravdu neplatí. * * Snažíme se sílu testu optimalizovat při zachování hladiny významnosti testu α → princip výpočtu velikosti experimentálního vzorku před provedením studie (budeme se tomu věnovat někdy příště). * * Optimalizovat sílu testu a velikost vzorku předem není triviální, můžeme narazit na spoustu problémů – biologické limity, etické limity, finanční limity. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Faktory ovlivňující sílu testu * Velikost vzorku: čím více pozorování (informace o platnosti nulové hypotézy), tím větší má test sílu. Stejně jako u intervalů spolehlivosti, síla testu roste s odmocninou z n. * Velikost efektu (účinku): velikost rozdílu v neznámých parametrech také ovlivňuje sílu testu. Vždy je jednodušší identifikovat jako významný velký efekt, např. velký rozdíl ve středních hodnotách objemu prostaty dvou populací. Naopak je těžší prokázat jako významný menší efekt (menší rozdíl). * Variabilita dat: variabilita dat zvyšuje variabilitu odhadů a ztěžuje tak rozhodnutí o H0. Čím více jsou pozorované hodnoty variabilní, tím více dat bude potřeba pro přesný odhad velikosti účinku (rozdílu). * Hladina významnosti: snížíme-li hladinu významnosti testu (např. zvolíme 0,01 místo 0,05), bude obtížnější H0 zamítnout → sníží se síla testu. * logo-IBA logomuni 5. Statistická versus klinická/biologická významnost logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Klíčové principy – významnost Praktická významnost ANO NE ANO OK, praktická i statistická významnost jsou ve shodě. Významný výsledek je statistický artefakt, prakticky nevyužitelný. NE Výsledek může být pouhá náhoda, neprůkazný výsledek. OK, praktická i statistická významnost jsou ve shodě. 600px-Icon-Warning-Red.svg.png Statisticky nevýznamný výsledek neznamená, že pozorovaný rozdíl ve skutečnosti neexistuje! Může to být způsobeno nedostatečnou informací v pozorovaných datech! logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Problém násobného testování hypotéz * V klinickém výzkumu se často potřebujeme testovat více hypotéz zároveň – např. při hodnocení stejného primárního parametru v rámci různých podskupin souboru pacientů (A, B, C a D) → Je zajímavé podívat se na rozdíl i mezi podskupinami, tedy podívat se, jak se liší skupiny A a B, B a C, apod. * * Tento fenomén v praxi vede k tzv. problému násobného testování hypotéz. * S narůstajícím počtem testovaných hypotéz nám roste také pravděpodobnost získání falešně pozitivního výsledku, tedy pravděpodobnost toho, že se při našem testování zmýlíme a ukážeme na statisticky významný rozdíl tam, kde ve skutečnosti žádný neexistuje (chyba I. druhu). * * Použití korekčních procedur: Bonferroniho procedura, metoda Steela a Dwasse. logo-IBA logomuni logo-IBA logomuni Tomáš Pavlík Biostatistika Příklad * Modelová situace: provedeme zároveň 60 testů (v době srovnávání biochemických a genetických parametrů to není zase tolik). Použijeme-li klasickou hladinu významnosti 0,05 (resp. 5 %), máme pro každý test 5% riziko získání falešně pozitivního výsledku. Vynásobíme-li 60 a 0,05, vyjde nám, že zhruba u 3 testů bychom měli dospět k falešně statisticky významnému závěru. * * V případě genomických analýz, kde jsou často různé testy pouze formou exploratorní analýzy, nemusí být přítomnost falešně pozitivních výsledků fatální, v klinické praxi to však může vést k zavádějícím výsledkům a mylným interpretacím.