Plant Biosystems, 2015 TäYi(3r & Francis http://dx.doi.org/10.1080/11263504.2014.1001461 W T<*°"c™> ORIGINAL ARTICLE Composition and ecology of the Quercus coccifera L. communities along the eastern Adriatic coast (NE Mediterranean) N. JASPRICA1, Z. SKVORC2, K. DOLINA1, M. RUSCIC3, S. KOVACIC4, & J. FRANJIC2 1 Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, P.O. Box 83, HR-20000 Dubrovnik, Croatia; 2Faculty of Forestry, University of Zagreb, Svetosimunska 25, HR-10000 Zagreb, Croatia; ^Faculty of Natural Sciences, Mathematics and Education, University of Split, Teslina 12, HR-21000 Split, Croatia and 4Botanical Garden, Faculty of Science, University of Zagreb, Marulicev trg 9a, HR-10000 Zagreb, Croatia Abstract The aim of this study is to classify and describe all plant communities with Quercus coccifera covering the entire eastern Adriatic coast and islands from north Croatia to south Albania., and to relate their species composition, chorotypes and life forms to environmental factors using Pignatti ecological indicator values. From total 70 phytosociological releves, we identified and described four floristically and ecologically distinctive vegetation communities (two new proposed subassociations, one association and stand each) using TWINSPAN and the Braun-Blanquet classification scheme. In Croatia and Montenegro., Q. coccifera is forming macchia within the Fraxino orni-Quercetum cocciferae pistacietosum lentisci. Quercus coccifera occurs only sparsely in south Croatia as a shrubland within Fraxino orni-Quercetum cocciferae nerietosum oleandri subassociation or macchia within the Erico arboreae-Arbutetum unedonis association. Despite the difference in biogeographic position and bioclimates, low shrubby Albanian Q. coccifera stands are more closely related to the Q. coccifera communities from the western Mediterranean. Eastern Adriatic communities appear exclusively within the Querceta ilicis vegetation zone and spread within the meso-Mediterranean belt. They nevertheless are an important part of the region's natural heritage and management plans must ensure that all forms of land are used in a sustainable way. Keywords: Phytosociology, Quercetea ilicis, Quercus coccifera, syntaxonomy, new sub associations, eastern Adriatic Introduction Kermes oak {Quercus coccifera L. s.l., Fagaceae) is distributed across almost the entire Mediterranean basin, apart from Egypt (Ozenda 1964). The area of its distribution extends from the northern Adriatic coasts of Croatia (the island of Mali Losinj, 44°32' N) to southern Israel (region of Negev, 31°00' N) and from the Atlantic coast of Portugal (region of Cascais, 9°30' N) to western Syria (Moutains of an-Nusayriyah or Alaouites, 37°00' E) (Horvatic 1957; Cafielas 1993). In the south-western part of the Adriatic Basin, it occurs in the most south-eastern Italian region of Puglia (Salento area). In addition, in Italy, the species also occurs in the Ionian side of the Basilicata region, and on Sicily and Sardinia (Conti et al. 2005). Quercus coccifera is a common member of the Mediterranean macchia. It also dominates low and high shrub formations in the southern France (Lossaint & Rapp 1971; Poissonet et al. 1978), Spain (Loidi et al. 1994; Terradas 1999), Greece (Papachristou 1998) and in Italy (La Mantia & Gianguzzi 2003; Biondi et al. 2004). The Q. coccifera communities are frequently subject to wildfires, associated with cutting and grazing, over the whole Mediterranean area (Turkmen & Diizenli 2005; Pausas et al. 2008). According to Greuter et al. (1986) and Tutin et al. (1993), Kermes oak corresponds only to Quercus coccifera L. Actually, for Italy two species: Quercus coccifera L. and Q. calliprinos Webb have been recognized (Pignatti 1982; La Mantia & Gianguzzi 2003). By contrast, more recently, again for Italy, Conti et al. (2005) accept only one taxon. In this study, we also recognize one taxon that is referred to as Q. coccifera and includes the possible presence of Q. calliprinos. Finally, we accepted the results of Toumi and Lumaret (2010) who suggest that Correspondence: K. Dolina, Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, P.O. Box 83, HR-20000 Dubrovnik, Croatia. Tel: +385 20324728. Fax: +385 20323872. Email: katija.dolina@unidu.hr ©2015 Societá Botanica Italiana 2 N. Jasprica et al. Q. calliprinos and Q. coccifera are, in fact, two morphotypes closely related genetically and constitute two components of the same species. The phytosociology of Q. coca/era-dominated vegetation formations has been studied across the Mediterranean region, and many different associations and/or subassociations have been described (Tsiourlis et al. 2009 and references therein). In some cases, the same associations were classified under different plant communities. This was explained by the variation in local conditions, despite the fact that there is a constant presence of diagnostic taxa. For example, the very common association Querco cocciferae-Pistacietum lentisci was distinguished in subassociations due to local floristic influences and variations in local ecological conditions (Rivas-Martinez et al. 2002). However, the most recent and a very comprehensive description of Q. coccifera stands and their character-species in the Mediterranean region, especially in Greece, were given by Tsiourlis et al. (2009). The amount of Q. coccifera cover in three eastern Adriatic countries (Croatia, Montenegro and Albania) is estimated at < 1 % of the country's forest area. According to Trinajstic (1975), Kermes oak is considered as helenopalaeophyte, introduced to this part of the Balkans in the time of Ancient Greece. Along the eastern Adriatic, the Q. coccifera stands can be found in scattered and mutually isolated formations and may be divided into four sections: (i) northernmost area, including several localities on the north Adriatic island of Mali Losinj; (ii) southern Croatian localities (region of Dalmatia) covering sites on the islands of Korcula and Mljet, as well as the peninsula of Peljesac, and a few localities in the vicinity of Dubrovnik (Konavle); (iii) a very limited area (only a few hectares) in south Montenegro; (iv) southernmost region, including Albanian stands near the city of Valona (Vlore, Figure 1). Croatian populations have been statutorily protected since 1969, and most of them are included within the Important Plant Areas of Croatia (Alegro et al. 2010). Kermes oak stands do not have economic value in the investigated area, but their role in local ecology (e.g. protection against erosion) and the aesthetics of landscape seems to be important. Stands with Q. coccifera have been described by Horvatic (1958) in south Croatia as "Orno-Coccifer- 14°E 16°E 18"E 20"E 22'E Figure 1. Location of sampling sites and distribution of the Q. coccifera communities along the eastern Adriatic Sea. 1, Fraxino orni-Quercetum cocciferae subass. pistacietosum lentisci; 2, Fraxino orni—Quercetum cocciferae subass. nerietosum oleandri; 3, Erico arboreae—Arbutetum unedonis; 4, Albanian stands - HR, Croatia; BIH, Bosnia and Herzegovina; MNE, Montenegro; AL, Albania. Composition and ecology of Quercus coccifera L. communities 3 etum", now noted as the Fraxino orni-Quercetum cocciferae association (sensu Weber et al. 2000) within the Quercion ilicis alliance, namely Fraxino orni-Quercion ilicis (sensu Biondi et al. 2003). The same association is recorded in Montenegro (Trinajstic 1985) and in south Albania (Hoda & Mersinllari 1996; Dring et al. 2002). Until now, no information on the floristic composition and syntaxonomic characteristics of Q. coccifera stands from the other sites along the eastern Adriatic coast and islands has been available. This study is focused on all known sites with Q. coccifera stands along the eastern Adriatic coasts. In this study, for the first time in Croatia, we accepted the opinion of Biondi et al. (2003) that the distribution area of Quercion ilicis (sensu Braun-Blanquet) is restricted to the Iberian Peninsula, whereas the Quercus ilex forests of the entire Italian peninsula (Sicily and Sardinia included) and of the Dinarids have to be ascribed to the amphi-Adriatic alliance Fraxino orni- Quercion ilicis. The objectives of this study were: (i) to bring together all of the available published and recently collected data and investigate the phytosociology and syntaxonomy of Quercus coca/era-dominated Mediterranean formations along the eastern Adriatic coasts; (ii) to determine the relation between environmental parameters and the floral compositions of the Q. coccifera communities. The results will contribute to the scarce syntaxonomic knowledge on these formations within the Quercetea ilicis vegetation zone in the Adriatic Basin. Study area The study area of Quercus coccifera-stands covers most of the east Adriatic coast, which is the northernmost arm of the Mediterranean Sea, extending from the Strait of Otranto (where it connects to the Ionian Sea) to the northwest and the Po Valley. The investigated area stretches along the western coasts of the Balkan Peninsula - that is, the eastern coast and islands of the Adriatic Sea -from 44°35' N at the northern Croatian island of Mali Losinj to 40°29' N at the Albanian island of Sazani on the south. The whole of the study area is situated in the Mediterranean region, Eastern Mediterranean subregion, Adriatic province and Epiro-Dalmatian Sector (Rivas-Martinez et al. 2004a). Geologically, the area consists mostly of Cretaceous and Eocene limestone (Dimitrijevic 1982). Mediterranean limestone soil (calcic cambi-sol) has developed on this geological formation (Verheye & de la Rosa 2005). According to the bioclimatic classification of Rivas-Martinez (1993, 1997), Rivas-Martinez et al. (1999) and the Bioclimatic Map of Europe (Rivas-Martinez et al. 2004b), the study area has a Mediterranean pluviseasonal-oceanic bioclimate and is situated within the meso-Mediterranean belt. Phytogeogra-phically, the area lies within the Quercetea ilicis vegetation zone, where the climate is typically Mediterranean: mild and rainy winters, warm and dry summers, and an extended period of sunshine throughout the year. Over the study area, however, the climatic conditions vary: from the semi-dry conditions of the southern Albanian stands to the relatively subhumid conditions of northern Adriatic coasts (island of Mali Losinj). Human pressures could not be ignored for some of the investigated sites, particularly in Montenegro. Material and methods Communities and releve data From 1995 to 2011, 61 phytocoenological releves were made in Croatia and Montenegro, and nine releves were taken from the literature for Albania. Releves were collected using the Braun-Blanquet (1964) approach. In Croatia, seven releves were collected on the north Adriatic island of Mali Losinj (44°35'20.88" N, 14°23'06.06" E); 44 releves originated from Dalmatia (south Croatia) of which 27 were taken from the Peljesac peninsula (42°54'37.99" N, 17°27'11.70" E); seven were taken from the island of Korcula (42°56'45.66" N, 17°09'04.48" E); five were taken from the island of Mljet (42°41'42.60"N, 17°44'21.84"E) and five from the vicinity of the city of Dubrovnik (Konavle area, 42°32'45.64"N, 18°16'33.60" E). In Montenegro, 10 releves were collected near the town of Ulcinj (41°57'01.37" N, 19°10'49.66" E). In addition, nine releves from Albanian Q. coccifera shrublands (the island of Sazani, 40°29'09.84" N, 19°17'15.91" E) were used from Hoda and Mersinllari (1996). Most of the plot sizes were set at 100 m2, and every effort was made to achieve high ecological and physiognomic homogeneity within each plot (Moravec et al. 1994). The plots were located at various altitudes, expositions and inclinations. The distribution of Q. coccifera communities and sampling localities are shown on the map (Figure 1). The system of characterizing species and the nomenclature of higher taxa was derived from Horvat et al. (1974), Mucina (1997) and Rivas-Martinez et al. (2002). The nomenclature of the plant communities was typified, and the criteria necessary to define a new syntaxon were used in accord with the third edition of the International Code of Phytosociological Nomenclature (Weber et al. 2000). The nomenclature of plant species follows the Flora Europaea (Tutin et al. 1964-1980, 1993; Royal Botanic Garden Edinburgh 2011), except for two Croatian endemics [in Table I 4 N. Jasprica et al. Table I. Synoptic table of the studied vegetation communities. Group no. No. of releves 1 46 2 10 Quercetea ilicis Quercus coccifera L. (incl. Q. calliprinos Webb) Asparagus acutifolius L. Phillyrea latifolia L. Smilax aspera L. Quercus ilex L. Rubia peregrina L. Arbutus unedo L. Pinus halepensis Miller Pistacia lentiscus L. Pistacia terebinthus L. Lonicera implexa Aiton Clematis flammula L. Viburnum tinus L. Juniperus oxycedrus L. ssp. oxycedrus Juniperus oxycedrus L. ssp. macrocarpa (Sibth. et Sm.) Ball Myrtus communis L. Erica arborea L. Olea europaea L. var. sylvestris Brot. Laurus nobilis L. Juniperus phoenicea L. ssp. turbinata (Guss.) Nyman Calicotome villosa (Poiret) Link (incl. C. infesta (C. Presl) Guss.) Cyclamen repandum Sibth. et Sm. Ceratonia siliqua L. Carex hallerana Asso Prasium majus L. Ephedra fragilis Desf. ssp. campylopoda (CA. Meyer) Ascherson et Graebner Teucrium flavum L. Phillyrea angustifolia L. Osyris alba L. Rosa sempervirens L. Rubus ulmifolius Schott Ruscus aculeatus L. Asplenium onopteris L. Querco-Fagetea sylvaticae Tamus communis L. Veronica chamaedrys L. Sorbus domestica L. Colutea arborescens L. Fraxinus ornus L. Hedera helix L. Frangula rupestris (Scop.) Schur Cyclamen hederifolium Aiton Coronilla emerus L. ssp. emeroides (Boiss. et Spruner) Hayek Celtis australis L. Paliuretea Paliurus spina-christi Miller Rhamnus intermedius Steudel et Höchst. Erico-Cistetea Spartium junceum L. Cistus creticus L. ssp. eriocephalus (Viv.) Greuter & Bürdet** Fumana thymifolia (L.) Spach ex Webb Fumana ericoides (Cav.) Gand. Cistus creticus L. ssp. creticus** Cistus salvifolius L. Dorycnium hirsutum (L.) Ser. Erica manipuliflora Salisb. Teucrium fruticans L. Thero-Brachypodietea ramosi Piptatherum miliaceum (L.) Cosson Carex divulsa Stokes Stipa bromoides (L.) Dörfl. Trifolium angustifolium L. 100 78 74 61 54 48 39 28 87 20 67 63 57 52 39 33 30 28 26 20 11 9 7 4 2 2 24 24 24 17 13 22 7 7 7 72 35 15 13 50 9 15 37 11 9 4 35 35 11 13 20 13 11 9 100 70 10 30 100 20 90 40 20 10 20 30 50 10 50 20 10 30 10 70 20 70 100 80 80 40 80 60 100 20 100 20 100 80 100 100 60 20 20 100 60 20 100 80 40 100 100 100 22 22 33 44 22 22 33 22 44 33 56 22 78 33 89 33 Composition and ecology of Quercus coccifera L. communities 5 TABLE I - continued Group no. 12 3 4 No. ofreleves 46 10 5 9 Micromeria graeca (L.) Bentham ex Reichenb. Andropogon distachyos L. Asphodelus aestivus Brot. Psoralea bituminosa L. 33 40 Dactylis glomerata L. ssp. hispanica (Roth.) Nyman 17 10 Hyparrhenia hirta (L.) Stapf 13 10 Briza maxima L. 13 Scorpiurus muricatus L. 9 Tanacetum cinerariifolium (Trev.) Schultz Bip. 9 80 Allium subhirsutum L. 7 Crucianella latifolia L. 4 40 Carlina corymbosa L. 4 Brachypodium distachyon (L.) Beauv. 2 Reichardia picroides (L.) Roth 2 Convolvulus althaeoides L. ssp. tenuissimus (Sibth. et Sm.) Stace 2 30 Ononis reclinata L. 2 50 Allium sphaerocephalon L. 20 Brachypodium retusum (Pers.) Beauv. 76 100 Euphorbia characias L. ssp. wulfenii (Hoppe ex Koch) A.R. Sm. 15 Teucrium polium L. ssp. capitatum (L.) Arcangeli 9 Satureja visianii Silic* 50 Allium croaticum Bogdanovic, Brullo, Mitic et Salmeri* 40 Urospermum picroides (L.) Scop, ex F. W. Schmidt 30 Erysimum sp. 30 Anagallis foemina Miller Urginea maritima (L.) Baker Pallenis spinosa (L.) Cass. Blackstonia perfoliata (L.) Hudson 2 Asyneuma limonifolium (L.) Janchen 30 Centaurium erythraea Rafn Festuco vallesiacae-Brome tea erecti Acinos arvensis (Lam.) Dandy 13 Bupleurum baldense Turra ssp. gussonei (Arcangeli) Tu tin 11 Brachypodium pinnatum (L.) Beauv. 7 Festuca rupicola Heuffel 7 Fumana procumbens (Dunal) Gren. et Godron 100 Jurinea mollis (L.) Reichenb. 80 Sesleria tenuifolia Schräder 60 Edraianthus tenuifolius (Waldst. et Kit.) A. DC. 50 Teucrium montanum L. 30 Muscari comosum (L.) Miller Salvia officinalis L. 24 70 Micromeria Juliana (L.) Bentham ex Reichenb. 24 70 Euphorbia spinosa L. 15 90 Hypericum perforatum L. 7 20 Teucrium chamaedrys L. 7 Heiichrysum italicum (Roth) G. Don 7 50 Dianthus sylvestris Wulfen ssp. tergestinus (Reichenb.) Hayek 4 20 Galium lucidum All. 4 80 Aethionema saxatile (L.) R.Br. 4 40 Genista sylvestris Scop. 4 30 Satureja montana L. 2 40 Petrorhagia saxifraga (L.) Link 20 70 Melica ciliata L. 11 80 Desmazeria rigida (L.) Tutin 9 70 Koeleria splendens Presl. 7 70 Teucrium polium L. 4 50 Anthyllis vulneraria L. 2 Dorycnium pentaphyllum Scop. ssp. herbaceum (Vill.) Rouy 11 Gladiolus illyricus Koch 2 20 Lotus corniculatus L. 9 Asperula scutellaris Vis. 30 40 40 40 100 40 20 20 40 44 44 33 22 56 44 44 22 44 33 33 56 22 44 33 Bromus hordeaceus L. 44 33 44 44 44 44 N. Jasprica et al. TABLE I - continued Group no. No. of relevés 1 46 2 10 Parietarietea judaicae Cheilanthes acrostica (Balb.) Tod. Sedum dasyphyllum L. Geranium purpureum Vili. Ceterach officinarum DC. Asplenietea trichomanis Inula verbascifolia (Willd.) Hausskn. Phagnalon rupestre (L.) DC. Campanula pyramidalis L. Portenschlagiella ramosissima (Portenschl.) Tutin Sedum ochroleucum Chaix Asplenium trichomanes L. Nerio oleandri-Tamaricetea africanae Nerium oleander L. Thlaspietea rotundifolii Scutellaria rubicunda Hörnern. Stellarietea mediae Avenafatua L. Cisto cretici-Micromerietea julianae Anthyllis hermanniae L. 7 11 11 9 40 30 50 80 60 50 40 30 80 60 100 11 78 44 33 Notes: Groups: 13 Fraxino orni—Quercetum cocciferae subass. pistacietosum lentisci; 2, Fraxino orni—Quercetum cocciferae subass. nerietosum oleandri; 3, Erico arboreae-Arbutetum unedonis; 4, Albanian stands. Species values are expressed as percentage frequencies. marked with an asterisk (*)] and a few taxa [marked with two asterisks (**)] where the Flora Croatica Database and Med-Checklist were used, respectively (Greuter et al. 1984; Nikolic 2014). Biological form was verified in the field and denoted according to categories reported in Pignatti (1982), these being based on the classification of Raunkiaer (1934). Regarding chorological form, reference was also made to Jasprica and Kovacic (1997), as well as to the monographs used for taxonomic nomenclature. Statistical analysis To identify vegetation types, releves were classified by TWINSPAN (Hill 1979) using Juice 7.0 software (Tichy 2002). TWINSPAN pseudospecies cut levels for species abundances were set to 0-5-25 percentage scale units. Initially, six division levels were chosen. Later, different levels of division were accepted resulting in four groups interpretable in terms of ecology. The resulting classification were projected onto an ordination diagram using non-metric multidimensional scaling (NMDS) performed on a matrix of Bray-Curtis dissimilarities. Ordination was calculated using the R program (R Development Core Team 2012) and its vegan package (Oksanen et al. 2012). For further interpretation of the ecological conditions of the studied vegetation types, unweighted average indicator values were used (Pignatti 2005) calculated in the JUICE 7.0. Average indicator values were presented with Box-Whiskers diagrams made in the STATISTICA 7.1 (STATSOFT inc. 2005). Diagnostic, constant and dominant species were determined for each defined association. Diagnostic species of the associations were determined using the phi coefficient, measuring the fidelity of species to a particular association (Sokal & Rohlf 1995; Chytrý etal. 2002). Only species with aphicoefficient > 0.30 and a probability of the observed pattern of species occurrence under random expectation <0.01 (Fisher's exact test) were considered to be diagnostic for each association. Constant species were defined as those with a frequency >30% inside the vegetation unit. Dominant species were defined as those occurring in at least 10% of relevés of a vegetation unit with a cover value >25%. Results The communities with Quercus coccifera on the eastern Adriatic coast belong to the macchia (sclerophyllous scrubs) or degraded scrub vegetation occurring in Mediterranean bioclimatic strata at 0-450 m a.s.l. Based on TWINSPAN, four distinctive vegetation units were identified (Figure 2), and, following the Braun-Blanquet approach, were classified under one association and two new proposed subassociations. In our analysis Albanian stands are also retained as a separate group. Table I shows the frequencies of the diagnostic species for the corresponding vegetation units. According to these Composition and ecology of Quercus coccifera L. communities 7 IJO 05- -0 5 -10 - 1 2 22 2 -1.0 -05 00 05 NMDS1 Figure 2. NMDS ordination diagram with projected cluster membership of the releves. For group abbreviations see capture of Figure 1 or Table I. results, the syntaxonomic synopsis of the Q. coccifera communities on the eastern Adriatic coast is: Class Quercetea ilicis Braun-Blanquet 1947 Order Quercetalia ilicis Braun-Blanquet 1947 Alliance Fraxino orni-Quercion ilicis Biondi, Casavecchia & Gigante ex Biondi, Casavecchia & Gigante in Biondi, Allegrezza, Casavecchia, Galdenzi, Gigante & Pesaresi 2013 Association Fraxino orni-Quercetum cocciferae (Horvatic 1958) Trinajstic 1985 pistacietosum lentisci subass. nova hoc loco Jasprica & Skvorc 2015 nerietosum oleandri subass. nova hoc loco Jasprica & Skvorc 2015 Alliance Oleo sylvestris-Ceratonion siliquae Braun-Blanquet ex Guinochet & Drouineau 1944 Association Erico arboreae-Arbutetum unedonis Allier & Lacoste 1980 Analysis of ecological factors, life forms and floral elements Pignatti indicator values showed that the highest light intensity is characteristic of the subassociation nerietosum oleandri, followed by Albanian stands and Erico-Arbutetum (Figure 3). In contrast, the subassociation pistacietosum lentisci shows the lowest indicator value for light. The lowest temperature value was indicated for the subassociation nerietosum oleandri, and the highest for Erico-Arbutetum, while the subassociation pistacietosum lentisci and Albanian stands had an intermediate position. With regard to moisture, the subassociation pistacietosum lentisci and Albanian stands showed the greatest range. The communities differed considerably in relation to substrate reaction. The subassociation nerietosum oleandri showed the highest reaction value, whereas Erico-Arbutetum showed the lowest. The communities with low nutrient values were the subassociation nerietosum oleandri and the association Erico-Arbutetum. With respect to continentality, and quite the opposite to temperature values, subassociation nerietosum oleandri had the highest value, and Erico-Arbutetum had the lowest. The analysis of plant life forms showed that Erico-Arbutetum was dominated by phanerophytes (54%), whereas phanerophytes and hemicryptophytes contributed equally (30%) in Fraxino orni-Quercetum cocciferae pistacietosum lentisci (Table II). Hemicryptophytes prevailed in the Fraxino orni-Quercetum cocciferae nerietosum oleandri (35%) and Albanian stands (25%), respectively. Mediterranean floral elements (57-88%), mostly circum-Mediterranean plants, followed by a considerable proportion of South European plants (7-23%), dominated in all communities (Table III). Fraxino orni-Quercetum cocciferae (Horvatic 1958) Trinajstic 1985 (Table I, Figure 2) - pistacietosum lentisci subass. nova Jasprica & Skvorc 2015, hoc loco Holotypus: [Rel. number 1, hoc loco: Croatia: Peljesac Peninsula: village of Ruskovici, the coordinate 42°59'06.48" N, 17°10'25.40" E, 20 November 1995 by N. Jasprica; altitude 200 m, slope 10°, aspect SE, surface 200 m2, vascular plant cover 90%]. Characteristic species: Quercus coccifera (4.4), Fraxinus ornus (+), dif. subass. pistacietosum lentisci Pistacia lentiscus (1.2); Oleo sylvestris-Ceratonion siliquae: Juniperus oxycedrus ssp. macrocarpa (+), Pinus halepensis (+); Fraxino orni-Quercion ilicis: Juniperus oxycedrus ssp. macrocarpa (+), Pistacia terebinthus (+), Lonicera implexa (+), Clematis flammula (+), Asparagus acutifolius (+), Smilax aspera (+), Rubia peregrina (+), Spartium junceum (+), Laurus nobilis (+), Rosa sempervirens (+); Companions: Brachypodium retusum (2.4), Micro-meria Juliana (+), Tanacetum cinerariifolium (+), Petrorhagia saxifraga (+), Ceterach officinarum (+), Psoralea bituminosa (+), Coronilla emerus ssp. emeroides (+), Asplenium trichomanes (+), Hedera helix (1.1), Helichrysum italicum (+), Cistus salvifolius (+), Convolvulus althaeoides ssp. tenuissimus (+), Piptatherum miliaceum (+), Leontodon autumnalis (+), Fumana ericoides (+), Tamus communis (+), Celtis australis (+), Verbascum sinuatum (+),Astraga- 8 N. Jasprica et al. X □ "X o Median □ HW-76H T T 0 M*4ijr. I T 0 rl- :i.t □ 25*4-75* ^ Mm-Max 04 H a5' M •I* X T O Mr dun 10 3.8 to 3J 32 a 3d 1 I 28 2» >-j 1 2 0 O ! J:.:- I ö 2 1-11'. ■ M 3 X Figure 3. Relationships of the studied vegetation communities to Pignatti indicator values. For group abbreviations see capture of Figure lor Table I. lus hamosus (+), Lotus corniculatus (+), Trifolium angustifolium (+), Hippocrepis comosa (+), Cyclamen hederifolium (+). Constant species: Quercus coccifera, Pistacia lentiscus (differential from the subassociation nerietosum oleandri), Asparagus acutifolius, Brachypodium retu-sum, Phillyrea latifolia, Fraxinus ornus, Lonicera implexa, Clematis flammula, Smilax aspera, Viburnum tinus, Quercus ilex, Juniperus oxycedrus ssp. oxycedrus, Coronilla emerus ssp. emeroides, Rubia peregrina, Juniperus oxycedrus ssp. macrocarpa, Arbutus unedo, Spartium junceum, Hedera helix, Cistus salvifolius, Cistus creticus ssp. creticus, Myrtus communis, Psoralea bituminosa, Erica arborea. Dominant species: Quercus coccifera and Brachypodium retusum. Ecology: The subassociation is developed as xerothermic macchia with an average height of 2-3 m. These subassociations can be found from 4 m (north Adriatic) up to 300 m a.s.l. It appears mostly on southern expositions on the slopes between 5° and 50°. In optimal conditions of development, it is Composition and ecology of Quercus coccifera L. communities 9 Table II. Life-form spectra in the plant communities with Q. coccifera. Life forms /communities Subass. pistacietosum lentisci Subass. nerietosum oleandri Erico-Arbutetum Albanian stands Phanerophyta 51 (30.54) 24 (23.08) 20 (54.05) 13 (23.64) Chamaephyta 22 (13.17) 24 (23.08) 3 (8.11) 10 (18.18) Hemicryptophyta 51 (30.54) 37 (35.58) 5 (13.51) 14 (25.45) Geophyta 12 (7.19) 5 (4.81) 7 (18.92) 5 (9.09) Terophyta 31 (18.56) 14 (13.46) 2 (5.41) 13 (23.64) Total taxa 167 (100.00) 104 (100.00) 37 (100.00) 55 (100.00) practically impenetrable. The shrub layer cover varies from 70% to 100%. The herbaceous vegetation layer is occupied mainly by Brachypodium retusum. Altogether, the subassociation had 167 species. Among those, 134 were companions from 8 vegetation classes. The highest number of species belonged to the Quercetea ilicis and Thero-Brachypo-dietea ramosi. The number of species in the releves was between 14 and 40 species (average 22.7). There were no differences in the average number of taxa per releve (20.6-22.9) between the northern and southern Adriatic localities. Most of the companions were treated as characteristic species of the Querco-Fagetea sylvaticae, Erico-Cistetea, Thero-Brachypodie-tea ramosi and Festuco vallesiacae-Brometea erecti communities. Distribution records: Eastern Adriatic coast and islands; Croatia: the islands of Mali Losinj (north Croatia) and Korcula, peninsula of Peljesac, Konavle (south Croatia); Montenegro: Bay of Valdanos, village of Bratica, near the town of Ulcinj (south Montenegro). Nomenclatural and syntaxonomic notes: The association has been described according to three releves by Horvatic (1958) as "Orno-Cocciferetum" (Fraxino orni-Quercetum cocciferae) from the Peljesac Peninsula, south Croatia. An analysis of this study allowed us to separate the association into two communities and describe two new subassociations named pistacietosum lentisci and nerietosum oleandri. The subassociation pistacietosum lentisci shares most of the floristic characteristics of Querco cocciferae-Pistacie-tum lentisci, which is widespread in the Mediterranean Basin (Braun-Blanquet 1936). Fraxino orni-Quercetum cocciferae (Horvatic 1958) Trinajstic 1985 (Table I, Figure 2) - nerietosum oleandri subass. nova Jasprica & Skvorc 2015, hoc loco Holotypus: [Rel. number 11, hoc loco: Croatia: Peljesac Peninsula: village of Podgorje above town of Orebic, the coordinate 42°58'48.68" N, 17°08'54.85" E, 27 June 2009 by N. Jasprica; altitude 200 m, slope 45°, aspect SE, surface 100 m2, vascular plant cover 80%]. Characteristic species: Quercus coccifera (2.2), dif. subass. nerietosum oleandri Nerium oleander (3.3); Oleo sylvestris-Ceratonion siliquae: Ephedra fragilis ssp. campylopoda (+); Fraxino orni-Quercion ilicis: Juniperus oxycedrus ssp. oxycedrus (+.1), Pistacia terebinthus (+.1), Clematis flammula (+), Laurus nobilis (+); Companions: Brachypodium retusum (2.2), Micromeria Juliana (+), Petrorhagia saxifraga (+), Salvia officinalis (+.1), Euphorbia spinosa (+), Fumana procumbens (+.1), Ceterach officinarum (+), Sedum ochroleucum (+), Melica ciliata (+.1), Galium lucidum (+), Desmazeria rigida (+.1), Psoralea bituminosa (+), Jurinea mollis (+), Hedera helix (+), Geranium purpureum (+), Table III. Floral elements (in %) in the plant communities with Q. coccifera. Floral elements / Groups Subass. pistacietosum lentisci Subass. nerietosum oleandri Erico-Arbutetum Albanian stands Mediterranean 61.21 57.84 88.89 70.91 Illyrian-Balkanic 0.00 1.96 0.00 1.82 South European 19.39 23.53 11.11 7.27 Eeast European-Pontic 1.21 0.00 0.00 0.00 Southeast European 0.61 0.98 0.00 1.82 Central European 0.61 0.00 0.00 0.00 European 2.42 1.96 0.00 0.00 Euroasian 6.06 6.86 0.00 9.09 Circum-Holarctic 0.61 0.00 0.00 0.00 Cosmopolitan 6.67 5.88 0.00 9.09 Cultivate and adventive plants 1.21 0.98 0.00 0.00 10 N. Jasprica et al. Inula verbascifolia (2.2), Phagnalon rupestre (+), Crucianella latifolia (+), Urospermum picroides (+), Dactylis glomerata ssp. hispanica (+), Hyparrhenia hirta (+.1), Teucrium flavum (+.1), Sedum dasyphyl-lum (+), Rhamnus intermedins (+), Celtis australis (+), Allium sphaerocephalon (+), Orobanche purpurea (+), Campanula trachelium (+), Punica granatum (+), Geranium rotundifolium (+), Bromus madritensis (+), Seseli tomentosum (+), Plumbago europaea (+), Lactuca viminea (+), Calaminiha nepeta ssp. nepeta (+), Carduus pycnocephalus (+), Ajuga chamaepitys (+)■ Constant species: Quercus coccifera, Nerium oleander (differential from the subassociation pistacietosum lentisci), Pistacia terebinthus, Fumana procumbens, Brachypodium retusum, Juniperus oxycedrus ssp. oxycedrus, Euphorbia spinosa, Ceterach offici-narum, Tanacetum cinerariifolium, Sedum ochroleucum, Melica ciliata, Jurinea mollis, Galium lucidum, Phil-lyrea latifolia, Petrorhagia saxifraga, Cistus creticus ssp. creticus, Micromeria Juliana, Salvia officinalis, Erica manipuliflora, Koeleria splendens, Desmazeria rigida, Asplenium trichomanes, Inula verbascifolia, Sesleria tenuifolia, Fraxinus ornus, Frangula rupestris, Teucrium polium, Helichrysum italicum, Geranium purpureum, Phagnalon rupestre, Ononis reclinata, Satureja visianii, Edraianthus tenuifolius, Juniperus oxycedrus ssp. macrocarpa, Psoralea bituminosa, Satureja montana, Aethionema saxatile, Crucianella latifolia, Campanula pyramidalis, Allium croaticum, Cheilanthes acrostica, Pistacia lentiscus, Pinus halepen-sis, Convolvulus althaeoides ssp. tenuissimus, Teucrium flavum, Urospermum picroides, Portenschlagiella ramo-sissima, Sedum dasyphyllum, Rhamnus intermedius, Asperula scutellaris, Erysimum sp., Teucrium monta-num, Genista sylvestris, Asyneuma limonifolium. Dominant species: Quercus coccifera, Nerium oleander, Brachypodium retusum, Cistus creticus ssp. creticus, Erica manipuliflora. Ecology: The subassociation may represent low and high shrub formation. Altitudinal range is between 200 and 450 m a.s.l. It appears exclusively on southern expositions on slopes between 40° and 85°. The shrub layer cover varies from 50% to 85%. Altogether, the subassociation had 104 species. Among those, 90 were companions. The highest number of companions belonged to the Festuco vallesiacae-Brometea erecti class. The number of species in the releves was between 18 and 53 (average 37.5). Distribution records: Eastern Adriatic: Croatia: western part of the peninsula of Peljesac, above town of Orebic. It occupies an area of ca. 4 ha. Nomenclatural and syntaxonomic notes: This vegetation is associated with the dry grasslands of the Scorzonero villosae—Chrysopogonetalia grylli order (Jasprica & Kovacic 2011). This subassociation is characterized by high cover and frequency of Nerium oleander, and makes it similar to the associations of Chrysopogono grylli—Nerietum oleandri from Croatia (Jasprica et al. 2007) or Spartio-Nerietum oleandri from Calabria, Italy (Biondi et al. 1994; Brullo & Spampinato 1997). A common characteristic of all the communities is the great number of the companions from the Thero-Brachypodietea ramosi and Festuco vallesiacae-Brometea erecti classes, and, on the other hand, connection with the Oleo sylvestris-Ceratonion siliquae macchia. The subassociation includes many local stenoendemic species, such as Satureja visianii Silic, Allium croaticum Bogdanovic, Brullo, Mitic & Salmeri, Asperula scutellaris Vis., etc., and some Croatian strictly protected taxa of Ophrys spp. and Orchis spp. Erico arboreae-Arbutetum unedonis Allier & Lacoste 1980 (Table I, Figure 2) Constant species: Quercus coccifera, Pistacia lentiscus, Phillyrea angustifolia, Lonicera implexa, Erica arborea, Arbutus unedo, Juniperus phoenicea ssp. turbinata, Brachypodium retusum, Cistus creticus ssp. creticus, Erica manipuliflora, Teucrium fruticans, Bryophyta coll., Asparagus acutifolius, Phillyrea latifolia, Viburnum tinus, Quercus ilex, Cistus salvifolius, Calicotome villosa, Rubia peregrina, Coronilla emerus ssp. emeroides, Smilax aspera, Allium subhirsutum, Dorycnium hirsutum, Scorpiurus muricatus, Reichardia picroides, Gladiolus illyricus, Muscari comosum. Dominant species: Brachypodium retusum and Erica manipuliflora. Ecology: The association is commonly developed as xerothermic macchia. Depending on the topographic conditions, this association may at least partly represent low and high shrub formation. Altitudinal range is between 8 and 50 m a.s.l. Northwestern expositions are most frequent, whereas the slope varies from 20° to 45°. The shrub layer cover varies from 90% to 100%. The taxa Erica manipuliflora, Teucrium fruticans, Cistus creticus ssp. creticus and C. salviifolius appeared within this association with high cover and frequency. Ecologically and in terms of physiognomy, the Erico arboreae-Arbutetum unedonis association is closely related to the Erico manipuliflorae-Cistetum cretici association (the Cisto cretici-Ericion manipuliflorae alliance) with which it often borders. Among companions, the species of Quercetalia pubescentis, Cisto cretici-Ericetalia manipuliflorae, Scorzonero villosae-Chrysopogonetalia grylli and Brometalia erecti orders are found. Distribution records: This association, which includes Q. coccifera, is restricted to the island of Mljet, south Croatia. Nomenclatural and syntaxonomic notes: This association is distributed throughout the western Composition and ecology of Quercus coccifera L. communities 11 Mediterranean (Molinier 1937; Allier & Lacoste 1980; Biondi et al. 2001; Brullo et al. 2008), and also found on the eastern Adriatic coast and islands (e.g. Trinajstic 1993; Jasprica & Kovacic 2011). In Croatia, this association (with the absence of Q. coccifera) is commonly developed as a progressive stage following wildfire burning of Pinus halepensis stands, and often remains as a permanent stage for several decades (Vukelic et al. 2008). The most frequent species of the Oleo sylvestris-Ceratonion siliquae alliance are Pistacia lentiscus and Myrtus communis; and Erica arborea, Arbutus unedo, Phillyrea media, Quercus ilex and Lonicera implexa of Fraxino orni-Quercion ilicis (Trinajstic 1993). Albanian stands (Table I, Figure 2) Constant species: Quercus coccifera, Dorycnium hirsu-tum, Cistus creticus ssp. eriocephalus, Scutellaria rubicunda, Phillyrea angustifolia, Carlina corymbosa, Blackstonia perfoliata, Pistacia lentiscus, Prasium majus, Rubia peregrina, Petrorhagia saxifraga, Teucrium polium, Anihyllis X rubicunda, Desmazeria rigida, Allium sphaerocephalon, Brachypodium distachyon, Andropogon distachyos, Micromeria graeca, Avena fatua, Centaurium eryihraea, Anagallis foemina, Bro-mus hordeaceus, Myrtus communis, Quercus ilex, Melica ciliata, Erica manipuliflora, Teucrium flavum, Teucrium chamaedrys, Fumana thymifolia, Anihyllis hermanniae, Urginea maritima, Asphodelus aestivus, Patterns spinosa. Dominant species: Quercus coccifera, Quercus ilex, Pistacia lentiscus, Phillyrea angustifolia, Erica manipuliflora, Teucrium flavum, Cistus creticus ssp. eriocephalus. Ecology: These low shrub formations (0.8-1.2m) were developed on calcareous substrates between 100 and 270 m a.s.l. The slope varied between 25° and 35°. South-western and western expositions were most frequent. The stands had from 8 to 28 species (average 19.6). Altogether, 44 companions were found from 9 vegetation classes. Distribution records: The island of Sazani, south Albania. Similar stands can be also found in south Albania, south of Valona (Vlore), on the western slopes between the village of Kanine and the Llogara National Park (Hoda & Mersinllari 1996; Ruci et al. 2001; Anonymous 2004). Nomenclatural and syntaxonomic notes: Albanian stands with Q. coccifera have been associated with the Fraxino orni-Quercetum cocciferae association (Hoda & Mersinllari 1996). The floristic composition of the stands does not include characteristic shrub (Frax-inus ornus) and climbing species of Fraxino orni-Quercion ilicis, such as Clematis flammula, Rosa sempervirens, Lonicera implexa, L. etrusca, and Erica arborea, Spartium junceum, Viburnum tinus, Arbutus unedo, etc. At lower altitudes, Q. coccifera is mostly accompanied by Pistacia lentiscus, Phillyrea media and Daphne gnidium, whereas at higher altitudes grows almost alone. The presence of xerophilic species is probably a result of severe grazing. Discussion The present investigation revealed the presence of sclerophyllous Quercus coccifera plant communities forming macchia or shrubland on the eastern Adriatic coast and islands. Our results suggest that Q. coccifera communities in the area appear exclusively within the Querceta ilicis vegetation zone and, in contrast to some other areas of the Mediterranean (Bergmeier 1990), extends from the shoreline up to 450 m of altitude, within the meso-Mediterranean belt. Four plant communities (two subassociations, one association and stand) were found, and they significantly differed both floristically and ecologically from each other. By contrast, analysis of chorotypes (geo-elements) did not show differences among the communities. The chorological spectrum highlights a clear dominance of the steno-Mediterra-neans. These data confirm the peculiarity of the surveyed area from the phytogeographic point of view. Eastern Adriatic communities with Q. coccifera consist mainly of sclerophyllous species such as Q. coccifera, Phillyrea latifolia, Pistacia lentiscus, Juniperus oxycedrus ssp. oxycedrus, while some thermophillous deciduous species frequently occur with higher percentages (e.g. Fraxinus ornus, Pistacia terebinthus). This agrees with the findings of Mavrommatis (1980) and Tsiourlis et al. (2009) who found that Ph. latifolia and P lentiscus are among the most common species in the Q. coccifera shrub-land of Greece. In our study, only a few species were common for all Q. coccifera communities, and among them, only Brachypodium retusum had the highest percentages. The floristic and ecological characterization of the two proposed new subassociations of Fraxino orni— Quercetum cocciferae is in line with the ecological and biological spectra. Results of statistical analysis and indicator values for light intensity, temperature, soil reaction and nutrients are clearly related to the identification and division of the association into subassociations. In addition, life form spectra indicate differences between the Fraxino orni-Quercetum cocciferae pistacietosum lentisci and Fraxino orni-Quercetum cocciferae nerietosum oleandri subassociations. In fact, the floristic composition of Fraxino orni-Quercetum cocciferae pistacietosum lentisci and only partly Fraxino orni-Quercetum cocciferae nerietosum oleandri are very similar with the Fraxino orni-Quercetum ilicis (Fraxino orni- Quercion ilicis) (Pandza 12 N. Jasprica et al. et al. 2004) or Pistacio lentisci—Juniperetum phoeniceae {Oleo sylvestris-Ceratonion siliquae) associations identified by Kovacic et al. (2001) on the Croatian coast and islands. In our study, in 54% of releves taken from the Fraxino orni-Quercetum cocciferae pistacietosum lentisci subassociation, Q. coccifera was accompanied by Q. ilex. On the other hand, the high percentage of herbaceous plants in the Fraxino orni-Quercetum cocciferae nerietosum oleandri subassociation indicates its close relationship with Thero-Brachypodietea ramosi and Festuco vallesiacae-Brometea erecti vegetation. Indeed, the subassociation represents mostly shrubby vegetation dominated by hemicryptophytic species, colonizing scarcely developed substrata exclusively on the steep calcareous rocky slopes between the scree and dry grassland vegetation in the north and the Oleo sylvestris-Ceratonion siliquae macchia (Aleppo pine forests) in the south. At relatively higher altitudes, moderate grazing and frequent wildfire leads to a lower percentage or absence of characteristic shrubs and climbing species of Fraxino orni—Quercion ilicis. The comparison between the subassociation Fraxino orni—Quercetum cocciferae nerietosum oleandri and the Nerium oleander stands on the eastern Adriatic (Jasprica et al. 2007) must be stressed. Stands with oleander are sporadic on the eastern Adriatic coast and, owing to heightened coastal development, perhaps in the process of becoming extinct. Nerium oleander in some other areas in Croatia and Montenegro, as in the western Mediterranean (Asensi & Diez-Garretas 2011), appears within the Rubo ulmifolii—Nerion oleandri alliance {Tamaricetalia), mostly growing in rivulets and dry ravines with discontinuous fresh water. This alliance is characterized by the greater biomass of Nerium oleander and/or Vitex agnus-castus accompanied by Rubus ulmifolius and several elements of Quercetea ilicis. Vitex agnus-castus, Rubus ulmifolius and other species from the Tamaricetalia order are not presented in the study area. Among all the communities with Q. coccifera reported in our study, this species had the lowest cover in the Erico arboreae-Arbutetum unedonis association, which we have subordinated to the Oleo sylvestris-Ceratonion siliquae alliance (cf. Jasprica et al. 2011). From the floristic point of view, the association showed similarities with those described in Croatia and Italy (e.g. Trinajstic 1993; Brullo et al. 2008; Viciani et al. 2011; Vukelic 2012). In practice, the association represents the xerothermic macchia dominated by numerous species of the Quercetalia ilicis order. However, higher percentages of the garrigue species as a common characteristic for the association reported from different areas may be explained by the varying degree of degradation (e.g. deforestation) or specific topographic conditions (Vukelic et al. 2008). In fact, the association is ecologically and physiognomically closely related to the garrigue communities with which it often borders (Jasprica et al. 2011). Similarly, in Sicily, Q. coccifera {Q. calliprinos) is also recorded from the Cisto cretici-Ericion manipuliflorae coenoses fragmented due to fire and deforestation (La Mantia & Gianguzzi 2003). Albanian stands showed a moderate position for most of the indicator values (except light intensity). In view of the structure of these stands, constituted basically by some characteristic species of the garrigue, dry grassland and scree vegetation, which occurred at higher percentages, we think they should not be subordinated to the Fraxino orni-Quercetum cocciferae association (cf. Hoda & Mersinllari 1996; Ruci et al. 2001). There is some similarity with the Quercetum cocciferae brachypodietosum identified by Wraber (1952) in southern France and Curcó (1991) in Catalonia (Spain). At present, these stands are the least-known among all Q. coccifera communities on the eastern Adriatic and further investigations are needed in order to clarify their syntaxonomy and ecology. The variability of interpretation of the ecological conditions of particular communities using the indicator values must also be stressed. In fact, species behaviour that varies widely from one region to another suggests caution in the use of indicator values and their extrapolation to other regions (Godefroid & Dana 2007; Schwabe et al. 2007). Ecological indices give only an estimate, and do not fully reflect the conditions in the habitats, which are the result of very complex interactions (Schaffers & Sykora 2000). In comparison with the synthetic table made by Tsiourlis et al. (2009) in the Mediterranean zone {Quercetea ilicis) of Greece, many differences in the floristic composition of our communities can be found. These differences are very difficult to evaluate due to variation in the degree of human presence and differences in taxonomical concepts. However, the most widespread subassociation on the eastern Adriatic - the Fraxino orni-Quercetum cocciferae pistacietosum lentisci — shares most of floristic characteristics described for the Querco cocciferae-Pistacietum lentisci and its subassociation typicum, including the majority of the typical Mediterranean evergreen shrubs. The subassociation Fraxino orni-Quercetum cocciferae pistacietosum lentisci shows some similarities with the subassociation Phillyreo latifo-liae-Quercetum calliprini rubio - arbutetosum andrachnes, described within the thermomediterra-nean bioclimatic belt on the Ionian island of Cephalonia (Bolôs et al. 1996). However, Arbutus andrachne was not present in our relevés. Composition and ecology of Quercus coccifera L. communities 13 In particular, an affinity is also seen with the Arbuto unedi-Quercetum calliprini {Oleo sylvestris-Ceratonion siliquaé), and partly with Hedero helicis-Quercetum calliprini {Fraxino orni-Quercion ilicis) associations described for the south-western Adriatic and Ionian coasts of the Salento peninsula in Italy (cf. Brullo et al. 1987; Biondi et al. 2004). Although Fraxino orni— Quercetum cocciferae pistacietosum lentisci shares most of the floristic characteristics, including the majority of the typical Mediterranean evergreen shrubs, with the endemic associations from Sicily {Junipero turbinatae-Quercetum calliprini) and Sardinia {Rusco aculeati-Quercetum calliprini), from the ecological point of view they differ due to their growth on xeropsamments of consolidated paleo-dunes (Bacchetta et al. 2009; Gianguzzi et al. 2012). In addition, Junipero turbinatae-Quercetum calliprini and, more recently described the Calicotomo infestae-Quercetum calliprini association (Minissale & Scian-drello 2013), are characterized by Chamaerops humilis, a species not present in the eastern Adriatic territory. Regarding the effects of human presence, in addition to overgrazing, wildfires have been reported as the main factor that influences the physiognomy and floristic composition of the Q. coccifera communities in the Mediterranean. Although wildfires are very common on the eastern Adriatic coast, Q. coccifera resprouts vigorously after a fire and no clear signs of degradation have been observed Qasprica 1999). This agrees with the findings of Trabaud (1991) and Turkmen and Duzenli (2005). In our case, according to the degree of anthropogenic impact, Q. coccifera form stands do not usually exceed a height of 2 m, whereas macchia formations up to 4-5 m high are rare. Forests with a height of about 15 m that can be found on some areas in Greece (Barbéro & Quézel 1980) are not presented in the study area. Finally, the effects of climatic changes, manifested in a decrease of precipitation and an increase of summer temperature in the eastern Mediterranean during the period 1950-1999 (Nastos et al. 2013), could not be ignored, whereas the effect of management regimes (e.g. agricultural land abandonment as one of the main drivers of land use change) is one of the crucial problems in the Mediterranean landscape (Bajocco et al. 2012). Acknowledgements The authors thank colleagues Dr Zlatko Bulic and Vasilije Buškovic from the Montenegrin Institute for Nature Protection for the opportunity to investigate the Montenegrin Q. coccifera stands in 2011. Thanks Dr Zoltán Barina for sharing data on the distribution of Kermes oak stands in Albania. Thanks also are extended to Dr Rade Garic for preparation of the geographical map and Zeljko Schnattinger for technical support. Thanks are also extended to Steve Latham (UK) for improving the English. We would like to thank the two anonymous reviewers and the editors for their constructive comments on an earlier version of this manuscript. References Alegro A, Bogdanovič S, Braňa S, Jasprica N, Katalinič A, Kovačič S, et al. 2010. Botanickí vážna područja Hrvatske [Important plant areas in Croatia]. Zagreb: Školská knjiga. Allier C, Lacoste A. 1980. Maquis et groupements végétaux de la série du chene vert dans le bassin du Fango (Corse) [Macchia and plant communities of the oak series in the basin Fango (Corsica)]. Ecol Medit 5: 59-82. Anonymous. 2004. Management plan of Llogora-Rreza e Kanalit- Dukat-Orikum-Tragjas-Radhime-Karaburun complex site. Available: http ://vinc .s .free. fr/IMG/karaburuni_llogara_ MPenglish.pdf. Accessed Mar 2014 15. Asensi A, Diez-Garretas B. 2011. The Tamaricetalia order in the Western Mediterranean region. Plant Biosyst 145(Suppl. 1): 123-131. Bacchetta G, Bagella S, Biondi E, Farris E, Filigheddu R, Mossa L. 2009. Vegetazione forestale e serie di vegetazione della Sardegna (con rappresentazione cartografica alia scala 1:350.000) [Forest vegetation and serial vegetation of Sardinia (with map at the scale 1:350,000)]. Fitosociologia 46(1): 3-82. Bajocco S, De Angelis A, Perini L, Ferrara A, Salvati L. 2012. The impact of land use/land cover changes on land degradation dynamics: A Mediterranean case study. Environ Manage 49: 980-989. Barbéro M, Quézel P. 1980. La vegetation forestiére de Crete [Forest vegetation of Crete]. Ecol Medit 5: 175-210. Bergmeier E. 1990. Wälder und Gebüsche des niederen Olympos (Kato Olimpos, NO-Thessalien). Ein Beitrag zur systematischen und orographischen Vegetationsgliederung Griechenlands [Forests and thickets of the lower Olympos (Kato Olympos, NE Thessaly). A contribution to the systematic and orographic vegetation structure of Greek lands]. Phytocoeno-logia 18: 161-342. Biondi E, Ballelli S, Allegrezza M, Taffetani F, Francalancia C. 1994. La vegetazione delle "fiumare" del versante ionico lucano-calabrese [The vegetation of the "rivers" of the Ionian coast of the Calabria-Lucania region]. Fitosociologia 27: 51-66. Biondi E, Filigheddu R, Farris E. 2001. II paesaggio vegetale della Nurra (Sardegna nord-occidentale) [The vegetation of Nura (north-west Sardinia)]. Fitosociologia 38(2): 3-105. Biondi E, Casavecchia S, Gigante D. 2003. Contribution to the syntaxonomic knowledge of the Quercus ilex L. woods of the Central European Mediterranean Basin. Fitosociologia 40(1): 129-156. Biondi E, Casavecchia S, Guerra V, Medagli P, Beccarisi L, Zuccarello V. 2004. A contribution towards the knowledge of semideciduous and evergreen woods of Apulia (south-eastern Italy). Fitosociologia 41(1): 3-28. Bolôs O, de Masalles RM, Ninot JM, Vigo J. 1996. A survey on the vegetation of Cephalonia (Ionian islands). Phytocoenologia 26(1): 81-123. Braun-Blanquet J. 1936. La forét d'Yeuse languedocienne (Quercion ilicis), monographie phytosociologique [The holm oak forest (Quercion ilicis) from the Languedoc, a phytosociological monograph]. Mém Soc Etud Sei nat Nimes 5: 1-147. 14 N. Jasprica et al. Braun-Blanquet J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde [Plant sociology. Basic course of Vegetation Science]. 3rd ed., Wien-New York: Springer-Verlag. Brullo S, Spampinato G. 1997. Indagine fitosociologica sulle ripisilve della Calabria (Italia meridionale) [Phytosociological survey of the riparian vegetation of Calabria (Southern Italy)]. Lazaroa 18: 105-151. Brullo S, Minissale P, Signorello P, Spampinato G. 1987. Studio fitosociologico delle garighe ad Erica manipuliflora del Salento [Phytosociological study of the Erica manipuliflora garrigue in Salento]. Arch Bot Biogeogr Ital 62(3-4): 201-214. Brullo S, Gianguzzi L, La Mantia A, Siracusa G. 2008. La classe Quercetea ilicis in Sicilia [The Quercetea ilicis class in Sicily]. Boll Accad Gioenia Sei Nat 41(369): 1-80. Cafielas I. 1993. Ecologia, caracteristicas y usos de los coscojares {Quercus coccifera L.) en Espafia [Ecology, characteristics and uses of the kermes oak {Quercus coccifera L.) in Spain] PhD thesis. Madrid: Universidad Politecnica de Madrid. Chytrý M, Tichý L, Holt J, Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J Veg Sei 13: 79-90. Conti F, Abbate G, Alessandrini A, Blasi C, editors. 2005. An annotated checklist of the Italian vascular flora. Roma: Palombi Editoři. Curcó A. 1991. Consideracions sobre la vegetació de la vail del riu Set (Segriá) [On the vegetation of the Set river's valley (Catalonia, Spain)]. Butll Inst Cat Hist Nat 59(Sec Bot 8): 107-116. Dimitrijevic MD. 1982. Dinarides: An outline of the tectonics. Earth Evol Sei 3: 4-23. Dring J, Hoda P, Mersinllari M, Mullaj A, Pignatti S, Rodwell J. 2002. Plant communities of Albania - a preliminary overview. Ann Bot (Roma) 2: 7-30. Gianguzzi L, Ilardi V, Caldarella O, Cusimano D, Cuttonaro P, Romano S. 2012. Phytosociological characterization of the Juniperus phoenicea L. subsp. turbinata (Guss.) Nyman formations in the Italo-Tyrrhenian Province (Mediterranean Region). Plant Sociol 49(2): 3-28. Godefroid S, Dana ED. 2007. Can Ellenberg's indicator values for Mediterranean plants be used outside their region of definition? J Biogeogr 34: 62-68. Greuter W, Bürdet HM, Long G, editors. 1984. Med-checklist. A critical inventory of vascular plants of the circum-mediterranean countries, 1: Pteridophyta 2, Gymnospermae, Dicotyledones (Acanthaceae-Cneoraceae). Geneve: Conservatoire et Jardin botaniques de la Ville de Geneve. Greuter W, Bürdet HM, Long G, editors. 1986. Med-checklist. A critical inventory of vascular plants of the circum-mediterranean countries. 3. Dicotyledones (Convolvulaceae-Labiatae). Geneve: Conservatoire et Jardin botaniques de la Ville de Geneve. Hill MO. 1979. TWINSPAN: A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ithaca, NY: Cornell University. Hoda P, Mersinllari M. 1996. Data on the vegetation of Sazani Island. Cah Options Mediterr 53: 91-113. Horvatic S. 1957. Biljnogeografsko raščlanjenje krša [Phytogeo- graphical division of Karst]. Krš Jugosl 5: 35-65. Horvatič S. 1958. Tipološko raščlanjenje primorske vegetacije gariga i borovih šuma [Typological division of garrigues and pine forests]. Acta Bot Croat 17: 7-78. Horvat I, Glavač V, Ellenberg H. 1974. Vegetation Südosteuropas [Vegetation of south-eastern Europe]. Stuttgart: Gustav Fischer Verlag. Jasprica N, editor. 1999. Mogucnost revitalizacije opožarenih područja Konavala, Pelješca i Korčule. [Possibility of restoring burned areas in the regions of Konavle, Pelješac peninsula and the island of Korčula]. Zagreb: Úprava za znanstveno-stručne projekte i istraživanja Ministarstva razvitka i obnove RH. Jasprica N, Kovačic S. 1997. Vascular flora of the central part of Pelješac peninsula. Nat Croat 6: 349-456. Jasprica N, Kovačic S. 2011. Raznolikost vegetacije na Pelješcu [The diversity of vegetation on the Pelješac peninsula]. In: Lupis BV, editor. Zbornik radova u cast Ivice Žile. Dubrovník: Matica hrvatska - ogranak Dubrovník, pp. 263-282. Jasprica N, Ruščič M, Kovačic S. 2007. The Chrysopogono grylli-Nerietum oleandri association in Croatia as compared to other Rubo ulmifolii—Nerion oleandri communities {Tamaricetalia, Nerio-Tamaricetea). Plant Biosyst 141: 40-50. Jasprica N, Ruščič M, Kovačic S. 2011. Fitosociološko-sintaksonomska pripadnost oštrike {Quercus coccifera L.) na Mljetu [Phytosociology and syntaxonomy of Kermes Oak {Quercus coccifera L.) stands on the island of Mljet, Croatia]. In: Durbešič P, Benovič A, editors. Zbornik radova Simpozija 'Dani Branimira Gušiča' - nove spoznaje iz prirodoslovlja otoka Mljeta [Proceedings of the Symposium "Branimir Gušič Days" - new contribution to the natural characteristics of the island of Mljet]. Pomena. Mljet: Nacionálni park Mljet, Hrvatsko ekološko društvo, Hrvatsko geografsko društvo, Institut za more i priobalje Dubrovník, pp. 93-101. Kovačic S, Jasprica N, Ruščič M. 2001. Floristic characteristics of Phoenician juniper macchia (ass. Pistacio lentisci-Juniperetum phoeniceae Trinajstič 1987) in Central and Southern Dalmatia (Croatia). Nat Croat 10: 73-81. La Mantia A, Gianguzzi L. 2003. Considerations on protection and forestal restoring of the Quercus calliprinos vegetation in Sicily. Bocconea 16(2): 823-829. Loidi J, Herrera M, Olano J, Silvan F. 1994. Maquis vegetation in the eastern Cantabrian coastal fringe. J Veg Sci 5: 533-540. Lossaint P, Rapp M. 1971. Repartition de la matiěre organique, productivité et cycle des elements minéraux dans des écosystěmes de climat méditerranéen [Segmentation of the organic matter, productivity and cycle of mineral elements in Mediterranean climate ecosystems]. In: Duvigneaud P, editor. Production des écosystémes forestiers [Production of the forest ecosystems]. Paris: UNESCO, pp. 587-617. Mavrommatis G. 1980. Phytogeographical, phytosociological and bioclimatological importance of the distribution area of kermes oak {Quercus coccifera L.) in Greece. To dasos 90: 72-77. Minissale P, Sciandrello S. 2013. A relic wood of Juniperus turbinata Guss. (Cupressaceae) in Sicily: Structural and ecological features, conservation perspectives. Plant Biosyst 147: 145-157. Molinier R. 1937. Les lies d'Hyeres. Etude phytosociologique [The Hyéres islands. Phytosociological study]. Ann Soc Hist Nat Toulon et duVar21: 91-129. Moravec J, Blažková D, Hejný S, Husova M, Jeník J, Kolbek J, et al. 1994. Fytocenologie (nauka o vegetaci) [Phytosociology], Praha: Academia. Mucina L. 1997. Conspectus of classes of European vegetation. Folia Geobot Phytotax 32: 117-172. Nastos PT, Politi N, Kapsomenakis J. 2013. Spatial and temporal variability of aridity index in Greece. Atmos Res 119: 140-152. Nikolič T, editor. 2014. Flora Croatica baza podataka [Flora Croatica database] (online). Available: http://hirc.botanic.hr/ fed. Botanickí závod, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu. Accessed Oct 2014 17. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. 2012. Vegan: Community ecology package. Available: http://cran.r-project.org/web/packages/vegan/index. html. Accessed Mar 2014 24. Ozenda P. 1964. Biogéographie végétale [Plant biogeography]. Paris: Doin. Composition and ecology of Quercus coccifera L. communities 15 Pandža M, Franjič J, Škvore Ž, Trinajstič I, Pavletič Z. 2004. Šumska vegetacija otoka Murtera [Forest vegetation on the island of Murter]. Rad Šumar inst Jastreb 39(2): 131-162. Papachristou T. 1998. Forest ecosystems of Greece and their relation to grazing animals. In: Humphrey J, Gill R, Claridge J, editors. Grazing as a management tool in European Forest Ecosystems. Forestry Commission Technical Paper. Vol. 25., pp. 72-78. Pausas JG, Llovet J, Rodrigo A, Vallejo R. 2008. Are wildfires a disaster in the Mediterranean basin? - A review. Int J Wildland Fire 17: 713-723. Pignatti S. 1982. Flora dTtalia [Flora of Italy]. 1-3. Bologna: Edagricole. Pignatti S. 2005. Valori di bioindicazione delle piante vascolari della flora d'ltalia [Bioindicator values of the vascular plants of the flora of Italy]. Braun-Blanquetia 39: 1-97. Poissonet P, Romane F, Thiault M, Trabaud L. 1978. Evolution dune garrigue de Quercus coccifera L. soumise ä divers traitements: Quelques résultats des cinq premieres années [Evolution of the Quercus coccifera L. scrubland subjected to various treatment: Some results from the first five years], Vegetatio 38(3): 135-142. R Development Core Team. 2012. R: A language and environment for statistical computing. Vienna, Austria. Available: http://www. cran.r-project.org R Foundation for Statistical Computing. Raunkiaer C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. Rivas-Martinez S. 1993. Bases para una nueva clasificación Bioclimática de la Tierra [Bases for a new bioclimatic classification of Earth]. Folia Bot Matritensis 10: 1-23. Rivas-Martinez S. 1997. Syntaxonomical synopsis of the potential natural plant communities of North America. I. Itinera Geobot 10: 5-148. Rivas-Martinez S, Diaz TE, Fernández-González F, Izco J, Loidi J, Lousä M, et al. 2002. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Itinera Geobot 15: 5-922. Rivas-Martinez S, Penas A, Diaz TE. 2004a. Biogeographic map of Europe. Leon, Spain: University of Leon, Cartographic Service. Rivas-Martinez S, Penas A, Diaz TE. 2004b. Bioclimatic map of Europe, Bioclimates. Leon, Spain: University of Leon, Cartographic Service. Rivas-Martinez S, Sánchez-Mata D, Costa M. 1999. North American boreal and western temperate forest vegetation (Syntaxonomical synopsis of the potential natural plant communities of North America, II). Itinera Geobot 12: 5-316. Royal Botanic Garden Edinburgh 2011. Flora Europaea, Database of European Plants (ESFEDS). Edinburgh, UK: Royal Botanic Garden. Available: http://rbg-web2.rbge.org.uk/FE/fe.html. Accessed Oct 2014 16. Ruci B, Hoda P, Vangjeli J, Dragoti N, Xhulaj M, Buzo K, et al. 2001. Biodiversity of the Albanian national parks and its problems. In: Ricciardi L, Myrta A, De Castro F, editors. Italo-Albanian cooperation for the enhancement of plant biodiversity. Bari: CIHEAM. pp. 27-41. Schaffers AP, Sýkora KV. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: A comparison with field measurements. J Veg Sei 11: 225-244. Schwabe A, Kratochwil A, Pignatti S. 2007. Plant indicator values of a high-phytodiversity country (Italy) and their evidence, exemplified for model areas with climatic gradients in the southern inner Alps. Flora 202(5): 339-349. Sokal RR, Rohlf FJ. 1995. Biometry. 3rd ed., New York: W.H. Freeman and Company. StatSoft. 2005. STATISTICA (data analysis software system), version 7.1. Available: http://www.statsoft.com Tulsa: StatSoft Inc. Terradas J. 1999. Holm oak and holm oak forest: An introduction. In: Roda F, Retana J, Gracia CA, Bellot J, editors. Ecology of Mediterranean Evergreen Oak Forests. Berlin: Springer, pp. 3-14. Tichý L. 2002. JUICE, software for vegetation classification. J Veg Sei 13: 451-453. Toumi L, Lumaret R. 2010. Genetic variation and evolutionary history of holly oak: A circum-Mediterranean species-complex [Quercus coccifera L./ Q. calliprinos (Webb) Holmboe, Fagaceae]. Plant Syst Evol 290: 159-171. Trabaud L. 1991. Fire regimes andphytomass growth dynamics in a Quercus coccifera garrigue. J Veg Sei 2: 307-314. Trinajstič I. 1975. Kronološka klasifikacija antropohora s osvrtom na helenopaleofite jadranskog primorja Jugoslavije [Chronological classification of antropophytes with reference to helenopaleophytes on the coast of Yugoslavia]. Biosistematika 1: 79-85. Trinajstič I. 1985. Fitogeografsko-sintaksonomski pregled vazda-zelene šumske vegetacije razreda Quercetea ilicis Br.-Bl. u jadranskom primorju Jugoslavije [Phytogeographic-syntaxo-nomic review of evergreen forest vegetation of the Quercetea ilicis Br.-Bl. class on the coast of Yugoslavia]. Poljopr šumar Titogr 31(2-3): 71-96. Trinajstič I. 1993. Problem sukcesije vegetacije na požarištima Alepskog bora (Pinus halepensis Mill.) u Hrvatskom primorju [The problem of succession of vegetation after the fire of Aleppo pine (Pinus halepensis Mill.) communities on the Croatian coast]. Sumar list 117(3-5): 131-137. Tsiourlis G, Konstantinidis P, Xofis P. 2009. Syntaxonomy and synecology of Quercus coccifera Mediterranean shrublands in Greece. J Plant Biol 52(5): 433-447. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, et al. 1964-1980. Flora Europaea. Cambridge: Cambridge University Press, pp. 1-5. Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, et al., editors. 1993. Flora Europaea II. Cambridge: Cambridge University Press. Turkmen N, Düzenli A. 2005. Changes in floristic composition of Quercus coccifera macchia after fire in the Cukurova region (Turkey). Ann Bot Fenn 42: 453-460. Verheye W, de la Rosa D. 2005. Land use and land cover, from Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO. 21. Oxford: Eolss Publishers. Available: http://www.eolss.net. Accessed Dec 2013 21. Viciani D, Albanesi D, Dell'Olmo L, Foggi B. 2011. Contributo alia conoscenza della vegetazione dell'Isola di Gorgona (Arcipelago Toscano) (con carta in scala 1: 5.000). Fitosocio-logia 48(2): 45-64. Vukelic J. 2012. Sumska vegetacija Hrvatske [Forest vegetation in Croatia]. Zagreb: Sumarski fakultet, Državni závod za záštitu prirode. Vukelic J, Mikac S, Baričevic D, Bakšic D, Rosavec R. 2008. Sumska staništa i šumske zajednice u Hrvatskoj [Forest habitats and forest communities in Croatia]. Zagreb: Državni závod za záštitu prirode. Weber HE, Moravec J, Theurillat JP. 2000. International code of phytosociological nomenclature. J Veg Sei ll(3rded.): 739-768. Wraber M. 1952. Zum Wasserhaushalt von Quercus coccifera [Water balance of Quercus coccifera]. Vegetatio 3: 266-278. Appendix Syntaxonomic units mentioned in the text, but not in the scheme (in alphabetical order): Arbuto unedi-Quercetum calliprini Brullo3 Minissale, Signorello & Spampinato 1987 16 N. Jasprica et al. Asplenietea trichomanis (Braun-Blanquet in H.Meier & Braun-Blanquet, 1934) Oberdorfer 1977 Brometalia erectiW. Koch 1926 Calicotomo infestae-Quercetum calliprini Minissale & Sciandrello 2013 Chrysopogono grylli-Nerietum ohandri Jasprica., Ruscic & Kovacic 2007 Cisto cretici-Ericetalia manipuliflorae Horvatic 1958 Cisto cretici-Ericion manipuliflorae Horvatic 1958 Cisto cretici-Micromerietea julianae Oberdorfer ex. Horvatic 1958 Erico-Cistetea Trinajstic 1985 Erico manipuliflorae-Cistetum cretici Horvatic 1958 Festuco valesiacae-Brometea erecti Braun-Blanquet & Tüxen ex Braun-Blanquet 1949 Fraxino orni-Quercetum ilicis Horvatic (1956) 1958 Hedem helicis-Quercetum calliprini Biondi3 Casavecchia, Guerra3 Medagli., Beccarisi & Zuccarello 2004 Junipero turbinatae-Quercetum calliprini Bartolo., Brullo & Marcenö 1982 Nerio oleandri-Tamaricetea africanae Braun-Blanquet & O. Bolös 1958 Paliuretea Trinjastic 1978 Parietarietea judaicae Oberdorfer 1977 Phülyreo latifoliae-Quercetum calliprini rubio-arbuteto-sum andrachens (Knapp) Barbero & Quezel 1976 Pistacio lentisci-Juniperetum phoeniceae Trinajstic 1987 Quercetalia pubescentis Braun-Blanquet (1931) 1940 Quercetum cocciferae Braun-Blanquet 1924 brachypodie- tosum Braun-Blanquet 1935 Quercion ilicis Braun-Blanquet 1934 em. Rivas-Marti- nez 1975 Querco cocciferae-Pistacietum lentisci Braun-Blanquet, Font Quer, G. Braun-Blanquet, Frey., Jansen., & Moor 1935 nom. mut. propos. (art. 45) (addenda) [Querco cocciferae-Lentiscetum Braun-Blanquet, Font Quer, G. Braun-Blanquet, Frey., Jansen., & Moor 1935] Querco cocciferae-Pistacietum lentisci typicum Querco-Fagetea sylvaticae Braun-Blanquet & Vlieger in Vlieger 1937 Rubo ulmifolii-Nerion oleandri O. Bolös 1985 Rusco aculeati-Quercetum calliprini Mossa 1990 Scorzonero villosae-Chrysopogonetalia grylli Horvatic & Horvat in Horvatic 1963 Spartio-Nerietum oleandri Brullo & Spampinato 1990 Stettarietea mediae Tüxen, W. Lohmeyer & Preising ex von Rochow 1951 Tamaricetalia Braun-Blanquet & O. Bolös 1957 em. Izco et al. 1984 Thero-Brachypodietea ramosi Braun-Blanquet 1947 Thlaspietea rotundifolii Braun-Blanquet 1948