Numerical analysis of the order Scorzoneretalia villosae Massimo Terzi* Abstract: The Scorzoneretalia villosae (= Scorzonero-Chrysopogonetalia) order was originally defined to describe the sub-Mediterranean grasslands of western Croatia, but its distribution range has since been extended to Albania, Bosnia and Herzegovina, Bulgaria, Italy, Kosovo, Montenegro, Slovenia and Serbia. Major syntaxonomic revisions of the order have been performed at the regional or national scale and show inconsistencies both for the syntaxonomic schemes and relative diagnostic taxa. This situation presents some difficulties in comparing or transferring findings between regions or when using syntaxonomic information for practical purposes. To tackle these inconsistencies, nearly nine hundred relevés already assigned to the Scorzoneretalia villosae were classified with the goal of establishing syntaxonomic relationships among associations. Diagnostic taxa of the main clusters of relevés were identified via Indicator Species Analysis (ISA). Results of statistical analyses were then interpreted from a syntaxonomic standpoint. Associations were ordinated (non-metric multidimensional scaling) on the basis of taxa frequencies in order to visualise their floristic and chorological relationships. Based on the results, associations were grouped within four alliances: Scorzonerion villosae, Chrysopogono-Saturejion subspicatae, Saturejion subspicatae and Centaureion dichroanthae were assigned to two new suborders, the meso-xerophytic Scorzonerenalia villosae and the xerophytic Koelerienalia splendentis, classified within the Scorzoneretalia villosae of the Festuco-Brometea. The order covers the western part of the Balkan Peninsula and, in the northern part of its range, the southeastern portion of the pre-Alpine sectors. Floristic similarities between the Scorzonerenalia villosae and other eastern meso-xerophytic syntaxa of the class have been highlighted. I review the nomenclature for the order, describing or validating two suborders and four associations for the first time, and lectotypifying three syntaxa . Keywords: Balkan Peninsula; dry grassland; Festuco-Brometea; phytosociological nomenclature; ScorzoneroChrysopogonetalia; syntaxonomy. Nomenclature: Taxonomic nomenclature follows the Euro+Med Plantbase (http://ww2.bgbm.org/EuroPlusMed/, accessed 1 June 2014) and subordinately Conti et al. (2005) and the Flora Croatica Database (FDC; http://hirc.botanic.hr/fcd/Search.aspx). Syntaxonomical nomenclature refers to Terzi (2011) if not indicated otherwise. Abbreviations: ICPN = International Code of Phytosociological Nomenclature (Weber et al. 2000); IndSp = Indicator Species; IndVal = Indicator Value index (Dufrêne & Legendre 1997); ISA = Indicator Species Analysis; NMDS = Nonmetric Multi-Dimensional Scaling (Kruskal 1964; Mather 1976). Submitted: 12 June 2014; revised version submitted: 11 November 2014; accepted: 12 November 2014 Co-ordinating Editor: Erwin Bergmeier © 2015 Gebrüder Borntraeger, 70176 Stuttgart, Germany DOI: 10.1127/phyto/2015/0009 www.borntraeger-cramer.de 0340-269X/2015/0009 $ 9.90 Phytocoenologia Vol. 45 (2015), Issue 1–2, 11–32 Research Paper Published online June 2015 *Author’s address: Institute of Bioscience and Bioresources (IBBR), National Research Council of Italy (CNR), Via Amendola 165/a, 70126 Bari, Italy; massimo.terzi@ibbr.cnr.it. Introduction The sub-Mediterranean dry grasslands of the Adriatic western Balkan Peninsula were united by Horvatić and Horvat (Horvatić 1958, 1963; Horvat 1962) within the Scorzonero-Chrysopogonetalia and assigned to the Brachypodio-Chrysopogonetea. According to these authors, the order would substitute the continental inland vegetation of the Festuco-Brometea towards the Adriatic coastal strip and give way to the eu-Mediterranean vegetation of the Cymbopogono-Brachypodietalia at lower altitude, near the sea. The concept of a high-rank syntaxon with the intermediate role between the eu-Mediterranean and continental vegetation was subsequently extended to the whole of Southern Europe by Barbero & Loisel (1972) who included the Scorzonero-Chrysopo- eschweizerbart_xxx 12 Massimo Terzi gonetalia into the European class Brachypodio-Brometea nom. illeg. (Art. 29c of the International Code of Phytosociological Nomenclature, ICPN, Weber et al. 2000). In the following years, the biogeographic context of the Scorzonero-Chrysopogonetalia was interpreted differently and the order was classified within the FestucoBrometea and the Thero-Brachypodietea or it was divided into two new orders, Scorzoneretalia villosae and Koelerietalia splendentis, which were classified in the aforementioned classes (e.g., Horvatić 1973; Blečić & Lakušić 1976; Royer 1991). In the following text, reference is made to the Scorzoneretalia villosae instead of the Scorzonero-Chrysopogonetalia for reasons explained be- low. The distribution range of syntaxa of the Scorzoneretalia villosae was at first limited to the western side of Croatia (Horvat 1931; Horvatić 1934, 1949), and it was subsequently extended to other countries: Italy (Ferlan & Giacomini 1957), Slovenia (Tomazić 1941), Bosnia and Herzegovina (Kovačević 1959), Serbia (Nikolić & Diklić 1966), Montenegro (Černjavski et al. 1949), Macedonia (Jovanović et al. 1986), Albania (Dring et al. 2004) and Bulgaria (Tzonev 2009). Many syntaxonomic revisions of the order have been performed at national or regional scales, the most influential being those of Horvatić (1958, 1963, 1975), Horvat (1962), Wendelberger (1965), Barbero & Loisel (1972), Horvat et al. (1974), Blečić & Lakušić (1976), Jovanović et al. (1986), Poldini (1989), Royer (1991), Feoli Chiapella & Poldini (1993), Poldini & Kaligarič (1997), Redžić (1999), Dring et al. (2004), Antonić et al. (2005) and Trinajstić (2008). Nonetheless, there has not as yet been no revision that takes into consideration all the associations across the entire distribution range of the order. Papers dealing with the Scorzoneretalia villosae very often refer to different syntaxonomic arrangements (see Terzi 2011) and indicate different character and differential species of high-rank syntaxa. Moreover, in many cases, new syntaxonomic schemes were proposed without any indication of the data set from which they were obtained nor the statistical methods utilised. This causes difficulties in comparing or transferring results from one region to another or when using syntaxonomic information for practical purposes, such as in the context of biodiversity conservation. In addition, inconsistencies also occur in syntaxa names, and many contradictory or incorrect names are, in fact, used in scientific and technical literature. To solve this problem, I reviewed the nomenclature for the order in a previous publication (Terzi 2011). In this study, I have additionally found other papers rarely quoted in scientific literature (e.g., Černjavski et al. 1949; Kovačević 1959; Tomić-Stanković 1970), where some pivotal names were validly published for the first time. For example, the order name Scorzoneretalia villosae was validly published for the first time by Kovačević (1959). The syntaxonomic and nomenclatural inconsistencies highlighted above are mainly due to the lack of an overall and supranational revision of phytosociological literature with modern statistical methods. The aim of this study was twofold: (1) to establish the syntaxonomic relationships among associations along the entire distribution range of the Scorzoneretalia villosae, and (2) to identify diagnostic species of high rank syntaxa using statistical methods. Data and Methods Data set The data set consisted of 936 relevés already assigned to the Scorzoneretalia villosae and recorded in Italy (398 relevés), Slovenia (115), Croatia (338), Bosnia and Herzegovina (42), Serbia (18), Montenegro (22) and Bulgaria (3) (Fig. 1 and Supplement S1). Incomplete relevés such as those from Albania quoted in Buzo (1991) were not taken into consideration. Some taxa were combined under the same tag if their differentiation in tables was uncertain or not possible; however, they were treated separately when discussing their diagnostic roles if some of them were traditionally dealt with as diagnostic species. I considered Koeleria splendens C. Presl also for the western Balkans even though some authors questioned its presence in that area (Brullo et al. 2009; see also Quintanar & Castroviejo 2013). Records of Koeleria lobata in the northeast of Italy (Feoli Chiapella & Poldini 1993) were assigned to K. splendens. In fact, according to Brullo et al. (2009), K. lobata should be excluded from the flora of Italy. Taxa quoted only at the genus level were omitted from the data set as well as bryophytes and lichens. Abundance-dominance values of the Braun-Blanquet scale were converted into the ordinal scale as proposed by van der Maarel (1979). Plot size Information regarding plot sizes was missing in 78 relevés. For the relevés reported by Poldini (1989) and Feoli-Chiapella & Poldini (1993), I considered an average plot size of 85 m 2 , because each relevé was recorded on an area ranging 70−100 m 2 (Poldini, personal communication). For the entire data set, plot size varied from 4 to 2000 m 2 . However in 90% of cases, it ranged between 10 and 150 m 2 with a median of 85 m 2 and a mean of 90 m 2 . These values are clearly higher than those proposed for herbaceous vegetation by Chytrý & Otýpková (2003). Even if the plot size could affect classification and ordination results (Dengler et al. 2009), the knowledge of eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 13 such effects is insufficient (Otýpková & Chytrý 2006). Relevés with an unusually large plot size (> 200 m 2 ) and the small-sized ones (< 10 m 2 ) were deleted from the data set. However, the type-relevés of associations described in literature were always kept even if their plot size exceeded the aforementioned thresholds. Resampling and outliers In order to reduce redundancy of information, relevés representing similar ecological conditions, as reflected by their floristic composition, were excluded from the matrix. Once the Sørensen distance was calculated between each pair of relevés on the basis of presence/absence of species data, starting from the lowest distance value up to the arbitrary threshold of 0.3 (see also Westhoff & van der Maarel 1980), one relevé for each pair was randomly deleted (De Cáceres et al. 2008); if the selection involved a nomenclatural type, it was always included. Because outlier relevés can influence multivariate analysis (McCune & Grace 2002), they were identified using the outlier analysis in PC-ORD 6.11 (McCune & Mefford 2011). Once the Sørensen distance matrix on presence/absence data was calculated, relevés that were more than two standard deviation units away from the mean were removed. Type relevés of the following associations turned out to be outliers and they were removed together with the remaining relevés of the associations: Lino-Gypsophiletum glomerati, Potentillo-Achilleetum clypeolatae, Poo-Saturejetum subspicatae, Physospermo-Saturejetum montanae, Saturejo-Festucetum dalmaticae and Artemisio-Salvietum officinalis. After resampling and outlier analysis, the data matrix consisted of 649 relevés. Cluster analysis Relevés were classified and, for the main clusters of relevés, IndSp were identified by ISA (Dufrêne & Legendre 1997). Cluster analysis and ISA were based on relevés (instead of synoptic tables) to achieve a higher accuracy of results. All the statistical analyses described below were performed by the software PC-ORD 6.11 (McCune & Mefford 2011). Two agglomerative clustering methods, which were previously suggested as good choices for dealing with community data, were used: the flexible beta method, β = –0.25, with Bray and Curtis distance measure with and without standardisation by relevé totals (i.e., Sørensen and Relative Sørensen distance measures); and Ward’s method on a chord distance matrix (Ward 1963, Legendre & Gallagher 2001, McCune & Grace 2002). Species values (y) were transformed (y’) as follows: y’ = y x , with x ranging from 1 (untransformed data) to 0.5 (lowered species value), 0.25 (near presence/absence) and 0 (presence/ absence). In total, 12 dendrogram solutions were ob- tained. Since this paper focuses on high rank syntaxa, I considered only the first 15 partitioning levels for every dendrogram, and each ISA was performed among relevant clusters of relevés in order to identify the partition level with the highest number of significant (p < 0.01) IndSp as a result of a Monte Carlo test with 5000 permutations. Fig. 1. Localities of relevés (square symbols). The shaded area corresponds to the distribution area of the Centaureion dichroanthae and Hypochoeridenion maculatae. The Scorzonerenion villosae, Chrysopogono-Saturejion subspicatae and Saturejion subspicatae lie in the remaining part of the distribution range of the Scorzoneretalia villosae (full squares), with the Chrysopogono-Saturejion subspicatae mostly at lower altitude. Empty squares indicate localities of relevés that should be excluded from the Scorzoneretalia villosae. Star symbols refer to the Danthonio-Brachypodion described by Boșcaiu (1972). Circles indicate the capital cities in the area. eschweizerbart_xxx 14 Massimo Terzi The ISA was performed on presence/absence data of taxa present in at least three relevés (Tichý & Chytrý 2006: 813). Of the 12 dendrograms, the one containing the node with the largest number of IndSp was chosen as the best-clustering solution. The number of IndSp has been suggested as a criterion to compare dendrograms (Aho et al. 2008, Tichý et al. 2010). The largest number of IndSp also identified the most informative node, where the selected dendrogram was pruned (McCune & Grace 2002). To increase interpretability of results – starting from the first level with all the relevés in only one cluster and descending the dichotomic hierarchy of the dendrogram – each significant IndSp was assigned to the cluster of relevés where its IndVal first reached the maximum value (Dufrêne & Legendre 1997). In this way, each significant IndSp was associated with only one cluster of relevés. The main clusters of relevés were interpreted in syntaxonomic terms. For each of them, I selected a set of diagnostic taxa. These were chosen among the significant IndSp associated with that cluster or with its further subdivisions on the basis of information reported in scientific literature (Supplement S2) and personal judgement. That is, among taxa already judged as character or differential taxa, I selected the ones whose diagnostic roles were coherent with results of the ISA. Although each IndSp can be considered a diagnostic species, the subjective selection was needed because the small size of the data set did not allow overall evaluation of the sociological roles of all plant taxa (Terzi et al. 2010). The terms ingressive and transgressive species were used according to the definitions given by Poldini & Sburlino (2005). Ordination For each association, the diagnosis containing the nomenclatural-type relevé or subordinately the original diagnosis were selected (Supplement S1). Association diagnoses with fewer than four relevés were ignored and, when available, another diagnosis for those associations was used. Given the importance of the Scorzonero-Danthonietum calycinae for the nomenclature of the order and its wide distribution range, more diagnoses were considered (see below). Some associations from western Romania, previously assigned to the Danthonio-Brachypodion and classified within the same Balkan order (Brachypodio-Chrysopogonetalia nom. inval.) together with alliances of the Scorzoneretalia villosae (Boșcaiu 1972), were also added for comparative purposes. In the association x taxa matrix, taxa variables were represented by percentage frequencies in the phytosociological tables. For the associations described only by synoptic tables, constancy classes were substituted with the central values of corresponding frequency ranges. Before ordination, outlier analysis in PC-ORD (McCune & Mefford 2011) was used to identify and remove outlier associations (Artemisio-Salvietum officinalis, Poo-Saturejetum subspicatae, Genisto-Caricetum mucronatae [from Horvat et al. 1974] and Leontodonto-Seslerietum calcariae). Nonmetric multidimensional scaling ordination (NMDS; Kruskal 1964; Mather 1976) was performed with the chord distance in the PC-ORD slow and thorough autopilot mode (McCune & Mefford 2011). Life-form and chorological spectra For each association, life-form and chorological spectra were calculated, weighted by species frequencies. Life forms and chorotypes were selected from works of Poldini (1991) and, to a lesser extent, Pignatti (1982), Horvatić et al. (1968), Assyov et al. (2006) and Lakušić & Redžić (1991). The following chorotypes were used: Alpine; Arctic-Alpine; Atlantic; Atlantic-Mediterranean; Circumboreal; Eurasian; European; Southeastern European, including Balkan species; Eurosiberian species; Illyrian species, composed of south- and north-Illyrian species sensu Poldini (1991) and endemics of the eastern and north Adriatic Region; Steno-Mediterranean; EuryMediterranean; Southern European orophyte, including Montane-Mediterranean sensu Pignatti (1982); Paleotemperate; Pontic species, including Mediterranean-Pontic species sensu Pignatti (1982); and widespread plants. Joint plots with an r 2 cut-off of 0.30 were used to show the strengths of the relationships between life-forms and chorotypes and ordination scores. Phytosociological nomenclature Decisions about nomenclature were taken following the 3rd edition of the ICPN (Weber et al. 2000), in addition to the suggestions of Willner et al. (2011). Complete syntaxon names are listed with specific epithets and names of authors in Appendix 1. Results and discussion Ward’s clustering The clustering solution obtained using Ward’s method on square-root-transformed data contained the node with the largest number of IndSp followed by those obtained with fourth-root transformed data and the flexible-beta method with relative Sørensen distance on presence/absence data (491, 489 and 486 IndSp, respectively). Once the three dendrograms were pruned, they showed roughly similar groups of associations. Main differences existed in the positions of relevés of the Ononido-Brometum condensati, Teucrio-Chrysopogonetum grylli, Leontodonto-Seslerietum calcariae and in some other asso- eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 15 ciations described by Trinajstić & Šugar (1972), Trinajstić (1977, 1999, 2005) and Lakušić & Redžić (1991). These differences have been considered in the interpretation of results. The dendrogram obtained with Ward’s method on square-root data was selected as the best solution and will be addressed in the following sections. The dendrogram (Fig. 2) was cut at the seventh partition level resulting in eight clusters of relevés. Each association was assigned to a cluster on the basis of the nomenclatural-type positions. Associations not yet typified were assigned to clusters containing the vast majority of their relevés. Cluster 6H: Avenulo-Brometum erecti, Chamaecytiso-Chrysopogonetum grylli, Gladiolo-Molinietum arundinaceae, Onobrychido arenariae-Brometum erecti, Schoeno-Chrysopogonetum grylli, Gentianello-Brometum erecti and the relevés assigned to the AvenuloBrometum by Lasen (1995) that, according to Pignatti & Pignatti (2014), would be ascribed to the Thlaspio-Trifolietum pratensis. This cluster can be considered representative of the Hypochoeridenion maculatae. Cluster 6V1: Scorzonero-Danthonietum calycinae (relevés from Poldini 1989; Poldini & Kaligarič 1997). Cluster 6V2: Scorzonero-Danthonietum calycinae (other relevés assigned to this association), GlobularioChrysopogonetum grylli, Festuco-Armerietum canescentis, Scorzonero-Hypochoeridetum maculatae nom. nud. (only one relevé), Carici-Scabiosetum leucophyllae, Globulario-Scabiosetum leucophyllae, Stipo-Genistetum dalmaticae, Ononido-Brometum condensati, TeucrioChrysopogonetum grylli, Artemisio-Rutetum graveolentis, Thymo-Teucrietum chamaedryos, Achilleo-Dorycnietum herbacei. Cluster 6V1 and part of cluster 6V2 are representative of Scorzonerenion villosae; some associations of this group must be classified within other alliances or orders. Cluster 5C1: Asphodelo-Chrysopogonetum grylli, Bromo-Chrysopogonetum grylli, Koelerio-Festucetum illyricae, Bromo-Festucetum lapidosae, Stipo-Salvietum officinalis, Narcisso-Asphodeletum microcarpi, Festucetum illyrico-valesiacae, Koelerio-Brachypodietum retusi and Salvio-Seslerietum juncifoliae. Cluster 5C2: Dichanthio-Cleistogenetum serotinae, Salvio-Euphorbietum fragiferae, Seseli-Artemisietum albae, Centaureo-Chrysopogonetum grylli and LactucoBothriochloetum ischaemum. Cluster 5C represents the Chrysopogono-Saturejion subspicatae. Cluster 5S1: Centaureo-Caricetum humilis (relevés from Trinajstić 1987; Trinajstić & Pavletić 1990; Trinajstić et al. 1993; and few others from Poldini 1989), AstragaloSeslerietum robustae, Seslerio-Juniperetum sibiricae, Bromo-Seslerietum interruptae, Stipo-Caricetum humilis, Minuartio-Genistetum pulchellae, Genisto-Globularietum bellidifoliae, Genisto-Seslerietum tenuifoliae, Genisto-Seslerietum kalnikensis, and Seslerio-Caricetum hu- milis. Cluster 5S2: Centaureo-Caricetum humilis (other relevés assigned to this association), Saturejo-Caricetum humilis. The cluster 5S is representative of the Saturejion subspicatae. Cluster 5D: Bupleuro-Brometum condensati, Centaureo-Globularietum cordifoliae, Leontodonto-Seslerietum calcariae, Bromo-Stipetum eriocaulis, Saturejo-Brometum condensati and the relevés assigned to Genisto-Caricetum mucronatae by Poldini (1989). The cluster represents the Centaureion dichroanthae. Indicator Species Analysis The results of the ISA (Supplement S2) showed that IndSp of the first clustering level (all the relevés belonging to the same cluster, 3Z in Fig. 2) included taxa of the Festuco-Brometea and others already considered diagnostic for the Scorzoneretalia villosae, such as Salvia pratensis Fig. 2. Ward’s clustering (chord distance) of relevés based on square-root-transformed species data. Cluster 4Z = suborder Scorzonerenalia villosae and alliance Scorzonerion villosae; cluster 4K = suborder Koelerienalia splendentis; cluster 5C = Chrysopogono-Saturejion subspicatae; cluster 5S = Saturejion subspicatae; cluster 5D = Centaureion dichroanthae; 6H = Hypochoeridenion maculatae; 6V = Scorzonerenion villosae. eschweizerbart_xxx 16 Massimo Terzi subsp. bertolonii (together with S. pratensis subsp. pratensis in the data set), Plantago holosteum, Festuca illyrica (with F. stricta subsp. sulcata in the dataset), Stachys officinalis, Scabiosa triandra, Veronica barrelieri, Medicago prostrata, Noccaea praecox, and, transgressive from the class, Eryngium amethystinum, Dorycnium pentaphyllum subsp. germanicum, Inula hirta, Linum tenuifolium, and Chrysopogon gryllus. With the first dendrogram partition, the cluster 4Z resulted as floristically well defined due to the many IndSp and the high IndVal. Some of the IndSp have been considered character species of meso-xerophytic syntaxa of the Scorzoneretalia villosae (Hypochaeris maculata, Dorycnium pentaphyllum subsp. herbaceum, Danthonia alpina), or are transgressive-differential from the FestucoBrometea (e.g., Ononis spinosa, Filipendula vulgaris, Plantago media, Euphorbia verrucosa) or ingressive-differential from other classes (e.g., Buphthalmum salicifolium, Agrostis capillaris, Trifolium rubens). There are also many species that are widespread in mesophilous alliances of the Festuco-Brometea and ingressive from the Molinio-Arrhenatheretea. IndSp of further subdivisions of cluster 4Z are numerous, indicative of meso-xerophytic communities and some of relatively acidic soil conditions (e.g., Genista germanica, Danthonia decumbens, Festuca filiformis), but few can be listed as character taxa (e.g., Scorzonera villosa subsp. villosa, Centaurea jacea subsp. weldeniana, Knautia illyrica). For this reason, only one alliance (Scorzonerion villosae), divided into two sub-alliances (Hypochoeridenion maculatatae and Scorzonerenion villosae), was considered. It is interesting to note that some IndSp of clusters 4Z and 6H were included among the character species of the Brachypodietalia pinnati (Supplement S2 columns 15 and 16). Very few IndSp, without high IndVal and transgressive from the class, were associated with cluster 6V2. In effect, this cluster includes some associations that must be excluded from the alliance. The Artemisio-Rutetum graveolentis, Thymo-Teucrietum chamaedryos and AchilleoDorycnietum herbacei were originally classified within the Saturejion montanae (presumably instead of the Saturejenion montanae) and the Saturejion subspicatae even if they contained few species of the Scorzoneretalia villosae. The Carici-Scabiosetum leucophyllae was originally classified within the Saturejion subspicatae but then moved to the Xerobromion erecti (Redžić et al. 1984, 2013; Redžić 1999). There are important floristic differences with other central European associations of the Xerobromion erecti and Redžić (1999) proposed a Balkan suballiance Fumano-Scabiosenion leucophyllae. In fact, the relationships between the Scorzoneretalia villosae and Balkan associations classified within the Xerobromion, and the Brometalia erecti / Artemisio-Brometalia erecti (Mucina et al. 2009) in general, remain to be clarified; the Carici-Scabiosetum leucophyllae and Globulario-Scabiosetum leucophyllae share important species with the Scorzoneretalia villosae, where they are provisionally arranged. Two other associations of this group, the Stipo- GenistetumdalmaticaeandtheTeucrio-Chrysopogonetum grylli, have been provisionally moved to the Saturejion subspicate and the Centaureion dichroanthae, respectively, due to the presence of a few but important diagnostic species of these alliances, such as Centaurea rupestris, Satureja subspicata, and Cytisus purpureus (see Redžić et al. 1984; Sburlino et al. 2008). On the other side of the dendrogram, IndSp of cluster 4K grouped taxa already regarded as diagnostic to more xerothermic syntaxa of the Scorzoneretalia villosae (i.e., Koelerietalia splendentis in the syntaxonomic scheme of Horvatić 1973). IndSp of cluster 5C (Chrysopogono-Saturejion subspicatae) or of its further subdivisions were composed of many Mediterranean and Illyrian taxa. Some can be considered diagnostic of the alliance. Others are ingressive from the Mediterranean Thero-Brachypodietea, while others are common to southern xerothermic syntaxa of the Festuco-Brometea (e.g., Artemisia alba, Melica ciliata, Petrorhagia saxifraga, Bothriochloa ischaemum, Asperula aristata). Cluster 5C2 includes associations of the northern part of the alliance range (Karst area surrounding Trieste and Gorizia and the Island of Krk), which is an area without proper summer drought and with cooler winters than in Dalmatia (Hršak 2003; Poldini 2009). Nonetheless, due to edaphic and mesoclimatic conditions (Ferlan & Giacomini 1957; Poldini 1989, 2009), associations of this cluster show high percentage of Mediterranean chorotypes (Supplement S3) and can be assigned to the Chrysopogono-Saturejion subspicatae owing to the presence of important diagnostic taxa of this alliance (Table 1). The IndSp of cluster 5C+5D were shared by the Saturejion subspicatae and the Centaureion dichroanthae (e.g. Genista sericea, Inula ensifolia, Scorzonera austriaca, Plantago argentea). The Centaureion dichroanthae (cluster 5D) was differentiated by ingressive taxa from the Elyno-Seslerietea and de-Alpine taxa, such as Globularia cordifolia, Hieracium porrifolium, Polygala nicaeensis subsp. carniolica and Carduus defloratus. Despite some floristic similarities with the Saturejion subspicatae, it was considered an autonomous alliance, vicariant in the pre-Alpine region (shaded area in Figure 1), for both the numerous IndSp and Alpine taxa. A very recent study by Pignatti & Pignatti (2014) extended the distribution area of the Centaureion dichroanthae up to the Dolomites, thereby integrating new associations with relevés not included in my data set. Nevertheless, based on my results but different from their findings, the Bromo-Stipetum eriocaulis and the Avenulo-Brometum erecti sensu Lasen 1995 non Feoli Chiapella et Poldini 1993 were classified as originally proposed by Lasen (1995). The Centaureion dichroanthae (cluster 5D) also included the relevés assigned to the Genisto-Caricetum mucronatae by Poldini (1989). The presence of many species of the Centaureion eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 17 dichroanthae within this association had already been noted (Poldini 1989). Unfortunately, the original diagnosis of the Genisto-Caricetum consisted only of a synoptic table (Horvat et al 1974), and there were no other relevés from its original area (Gorski Kotar, Croatia). In effect, Euphorbia triflora subsp. triflora turned out to be among IndSp of the Centaureion dichroanthae, even though it is at the edge of its range in the Trnovski Gozd (Slovenia). Regardless, on the basis of the diagnosis given by Poldini (1989), the Genisto-Caricetum mucronatae can be classified within the Centaureion dichroanthae. The IndSp belonging to the clusters derived from further divisions of cluster 5S were assigned to the Saturejion subspicatae (Table 1). Numerous IndSp (but with low IndVal), many of which are thermophilous taxa, were associated with cluster 5S1, which represents a transition towards the more thermo-xeric Chrysopogono-Saturejion subspicatae. NMDS The three-axis solution of the NMDS ordination attained a minimum stress of 11.7, indicating a fairly usable and good ordination (McCune & Grace 2002). The proportion of variance represented by the three axes were 36.9%, 25.4% and 15.5%, respectively, thus explaining 77.8% of total variation. For simplification purposes, I presented only the first two dimensions (Fig. 3). The relationships between ordination scores and chorological spectra (Fig. 3, Supplement S3) showed a gradient along axis 1 from the chorotypes Steno-Mediterranean (r 2 = 0.40) and Illyrian (r 2 = 0.60) to Eurosiberian (r 2 = 0.77), Eurasian (r 2 =0.76) and European (r 2 = 0.59); along axis 2, a second gradient from Paleotemperate (r 2 = 0.36) and Eury-Mediterranean (r 2 = 0.51) to Orophyte (r 2 = 0.66) was present. Moreover, there were positive correlations of therophytes (r 2 = 0.45) with axis 2 and hemicryptophytes (r 2 = 0.62) with axis 1 and a negative correlation of chamaephytes (r 2 = 0.56) with axis 1. Three main groups of associations, roughly corresponding to clusters 4Z, 5C and 5S+5D, occupied different parts of the diagram (Fig. 3). Associations of the clusFig. 3. Nonmetric multidimensional scaling ordination diagram (axes 1 and 2). Empty squares indicate Chrysopogono-Saturejion subspicatae, full circles Saturejion subspicatae; empty circles Centaureion dichroanthae; triangles Scorzonerion villosae; full squares Danthonio-Brachypodion. Abbreviations: eua = Eurasian; eur = European; esi = Eurosiberian species; ill = Illyrian species; mds = Steno-Mediterranean; mde = Eury-Mediterranean; oro = Southern European orophyte; pal = Paleotemperate; h = hemicryptophyte; t = therophyte; ch = chamaephyte. Syntaxa abbreviations in Appendix 1. eschweizerbart_xxx 18 Massimo Terzi ter 4Z were on the right side of the ordination space, together with associations of the Danthonio-Brachypodion. This group, composed of meso-xerophytic associations, showed the lowest percentage of Illyrian and Mediterranean species and high percentages of Eurasian, European and Eurosiberian species (Fig. 3; Supplement S3). As expected, orophilous species were well-represented within the associations of the Saturejion subspicatae and the Centaureion dichroanthae, which are partly overlapping in the upper part of the diagram. The Centaureion dichroanthae is differentiated by higher percentages of Alpine species (Supplement S3). Associations of cluster 5S1 are located in the upper-left side of the diagram with some of its associations close to the Chrysopogono-Saturejion subspicatae, as noted above. These associations showed the highest percentage of Illyrian species; Mediterranean chorotypes were more prevalent within the Chrysopogono-Saturejion subspicatae. Based on the data, the floristic autonomy of the Festucion illyricae seems questionable, because this alliance lacks character species, while its associations (FestucoLinetum flavi and Festucetum illyrico-valesiacae) share taxa with both the Scorzonerion villosae (Centaurea jacea subsp. weldeniana, Plantago media, Dorycnium pentaphyllum subsp. herbaceum, Knautia illyrica, Prunella laciniata) and the Chrysopogono-Saturejion subspicatae (Koeleria splendens, Ornithogalum orthophyllum subsp. kochii, Bupleurum veronense, Potentilla tommasiniana). These associations, together with the Festuco-Poetum bulbosae, Ononido-Brometum condensati and Euphorbio-Chrysopogonetum grylli, are also intermediate between these two alliances from a chorological standpoint. The ratio of the sum of Eurasian, European and Eurosiberian species and the sum of Mediterranean species is generally equal to or less than 1 in the ChrysopogonoSaturejion subspicatae and near to or more than 2 in the Scorzonerion villosae. However, a precise comparative analysis is difficult when dealing only with synoptic tables, which often lack some of the rarer taxa (see synoptic tables in Horvatić 1963 and Horvat et al. 1974). For this reason, the classification of these associations has to be considered as provisional, and new data are required. Syntaxonomy, ecology and distribution The numerical analysis of the Scorzoneretalia villosae differentiated two main groups of associations, corresponding to meso-xerophytic meadows (Scorzonerion villosae) on the one hand and sub-Mediterranean thermo-xerophytic grasslands (Chrysopogono-Saturejion subspicatae) and pre-Alpine/ Dinaric Mediterranean-montane pastures on the other (Centaureion dichroanthae and Saturejion subspicatae). Pastures and stony grasslands on shallow calcareous soils are classified within the Chrysopogono-Saturejion subspicatae, Saturejion subspicatae and Centaureion dichroanthae. The Chrysopogono-Saturejion subspicatae occurs along the eastern and northern Adriatic coast; at higher altitude, the alliance gives way to the Saturejion subspicatae (Dinarides) and the Centaureion dichroanthae (southeastern part of pre-Alps: shaded area in Fig. 1). The Scorzonerion villosae was originally conceived to include the Illyrian-Dinaric dry grasslands on deep and partly decalcified terra rossa soil and on variably acidic soils (Horvatić 1949, 1958, 1963). Feoli-Chiapella & Poldini (1993) unified the Scorzonerion villosae with the Hypochoeridion maculatae and extended the alliance distribution area up to the pre-Alpine region in north-eastern Italy and Slovenia (shaded area in Fig. 1). This resultant alliance was floristically well differentiated, with few character species and many differential ones shared with other meso-xerophytic alliances of the Festuco-Brometea that are often shared with mesotrophic meadows belonging to the Molinio-Arrhenatheretea. Similar findings have been reported by Pipenbaher et al. (2011), specifically for the Slovenian karst area. Associations of the Scorzonerion villosae showed a prevalence of hemicryptophytes and high percentages of European, Eurasian and Eurosiberian taxa. On the other hand, Mediterranean and Illyrian taxa are more concentrated in the other alliances. The Chrysopogono-Saturejion subspicatae has a higher percentage of Mediterranean taxa with many ingressive taxa from the Thero-Brachypodietea s.l., while orophilous (and Mediterranean-montane) and Alpine taxa penetrate into the Saturejion subspicatae and Centaureion dichroanthae. These differences were translated into syntaxonomic terms with two suborders of the Scorzoneretalia villosae, Scorzonerenalia villosae (including Scorzonerion villosae) and Koelerienalia splendentis (including the other three alliances). It is interesting to note that already Horvat and Horvatić (in Horvatić 1958: 69) proposed separating the associations of the Scorzonerion villosae from those of the Chrysopogono-Saturejion subspicatae (part of which was later moved to Saturejion subspicatae) at the order level. Some years later, Horvatić (1973, 1975) proposed a new syntaxonomic scheme with the Saturejion subspicatae and Scorzonerion villosae being assigned to the Scorzoneretalia villosae and the Chrysopogono-Saturejion subspicatae being assigned to the Koelerietalia splenden- tis. The latter has been reduced here to the rank of suborder and the alliances Centaureion dichroanthae and Saturejion subspicatae have been assigned to it. With increasing altitude (or distance from the sea), the Mediterranean influence decreases and mesophilous species of the Scorzonerion villosae may occurr in communities of the Koelerienalia splendentis. However, the overall floristic and chorological patterns support the arrangement of alliances in the two suborders as described above. eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 19 Both suborders are placed within the the Scorzoneretalia villosae and the Festuco-Brometea. This scheme refers to a classical interpretation of the class, with geographically defined orders and with the Scorzoneretalia villosae lying between the western suboceanic Brometalia erecti and the eastern sub-continental Festucetalia valesiacae (Royer 1991; see also Dengler et al. 2012). Braun-Blanquet (1974) refuted the floristic autonomy of Scorzoneretalia villosae and considered only one alliance, Chrysopogono-Saturejion subspicatae, within the Brometalia erecti. For many other authors, the floristic autonomy of Scorzoneretalia villosae is due to a set of subMediterranean and Illyrian species (Horvat 1962; Horvat et al. 1974; Barbero & Loisel 1972; Royer 1991). Most Illyrian taxa are concentrated within the xerophytic Koelerienalia splendentis, which is, consequently, better differentiated than the Scorzonerenalia villosae. The latter has fewer Illyrian and sub-Mediterranean taxa but shares many taxa with neighbouring alliances, especially with Balkan associations of the Bromion erecti. The transition between the Bromion erecti and the Scorzonerion villosae is abrupt in some areas but gradual in others; it has been related to decreasing inland temperature (Horvat et al. 1974; Gaži-Baskova & Šegulja 1978; Redžić 1999). Pipenbaher et al. (2013) directly compared plant traits and floristic compositions of the Slovenian records of the associations Scorzonero-Danthonietum calycinae and Onobrychido-Brometum erecti T. Müller 1966, concluding that two orders are justified for these vegetation types. However, while in Slovenia the boundary between the Scorzonerion villosae and the Bromion erecti is clearly related to the bioclimatic transition from Mediterranean to more continental types, in the western Balkan Peninsula the floristic relationships between the two alliances are more complex (Kovačević 1959; Ritter-Studnička 1972; Ilijanić et al. 1972; Trinajstić et al. 1981; Lakušić et al. 1982; Royer 1991). Over time, Mediterranean plants must have migrated inland (i.e. Lathyrus latifolius, Eryngium amethystinum, Scabiosa triandra), across the Dinaric Alps penetrating into Balkan communities of the Brometalia erecti (Horvat et al. 1974; Royer 1991). Ilijanić et al. (1972) highlighted the similarities between the Globulario-Chrysopogonetum grylli, recorded in a karst area west of Karlovac (Croatia) and originally classified within the Brometalia erecti, and the Scorzonero-Danthonietum calycinae, with taxa such as Danthonia alpina, Chrysopogon gryllus, Filipendula vulgaris, Trifolium montanum, Plantago media, Dorycnium pentaphyllum subsp. herbaceum, Scabiosa triandra, Globularia bisnagarica, Brachypodium pinnatum and Prunella laciniata, among others. Many of these taxa can be considered diagnostic of the Scorzoneretalia villosae or its subordinated syntaxa. The nomenclatural reconsideration of the order leads to the conclusion that the type relevé of the ScorzoneroDanthonietum calycinae, and consequently of the Scorzonerion villosae, was recorded in the area of Bosanski Petrovac, in Bosnia (Kovačević 1959), and brings the Scorzonerenalia villosae nearer to other meso-xerophytic alliances of the Balkans. For example, plant communities from the same area which had been assigned to the Bromo-Plantaginetum mediae (Kovačević 1959), are very similar to the Scorzonero-Danthonietum calycinae. Boșcaiu (1972) reduced the Brachypodio-Chrysopogonetea to the order level (contravening ICPN Art. 27, Note 1; Weber et al. 2000) and proposed to extend its distribution range as far as western Romania, including the Danthonio-Brachypodion. The new order would constitute a Balkan vicariant of the western Brometalia erecti (Boșcaiu 1972). Some authors (Sanda et al. 2008) followed this approach. It is now clear that the similarities pointed out by Boșcaiu (1972) regarded only the suborder Scorzonerenalia villosae even though, among the diagnostic species of the Danthonio-Brachypodion and Brachypodio-Chrysopogonetalia (Boșcaiu 1972), only Danthonia alpina and Chrysopogon gryllus had a significant IndVal in my analysis (Fig. 3, Supplement S2). The DanthonioBrachypodion recently has been considered part of the Cirsio-Brachypodion pinnati, within the Brachypodietalia pinnati (Dengler et al. 2012), following a proposal to group all meso-xerophytic syntaxa of the Festuco-Brometea within only one order. The name of the meso-xerophytic order would be Brometalia erecti, a name proposed to be rejected as nomen ambiguum and substituted with Brachypodietalia pinnati as the next younger valid name (Dengler et al. 2003). Results of ISA (Supplement S2: columns 15 and 16) showed that some diagnostic species of Scorzonerenalia villosae coincide with those identified for the Brachypodietalia pinnati. Floristic and chorological similarities of the Scorzonerenalia villosae with Balkan associations of the Bromion erecti and further eastwards with the Danthonio-Brachypodion might suggest to group all these communities within only one order. Consequently, the Scorzonerenalia villosae (and thus the order name), or at least its more mesophilous associations, could be moved to the Brachypodietalia pinnati while the remaining xerophytic alliances would be assigned to the Illyrian xerophytic order Koelerietalia splendentis. However, the most appropriate model for the FestucoBrometea should be determined by means of a large-scale comparative study. No such revision has yet been carried out, with the exception of the thorough works performed by Royer (1991) and, for the Balkan Peninsula, by Horvat et al. (1974). Both these studies support the classical concept of the class with geographically defined orders. Therefore, the traditional approach is followed here, considering two suborders within the Scorzoneretalia villo- sae. The distribution range of the Scorzoneretalia villosae (Fig. 1) covers the western part of the Balkan Peninsula, omitting the associations described by Tzonev (2009) in eschweizerbart_xxx 20 Massimo Terzi Bulgaria and the Artemisio-Salvietum officinalis in Serbia. The latter contains many taxa indicative of a different ecological context (Linaria concolor, Koeleria simonkaii, Euphorbia taurinensis, Achillea clypeolata, Erysimum crepidifolium, Achillea crithmifolia, Dianthus pelviformis, Thymus praecox subsp. jankae), and diagnostic taxa of the Scorzoneretalia villosae were lacking almost entirely. North- and westward, the order Scorzoneretalia villosae follows the south-eastern pre-Alpine sectors (Feoli Chiapelli & Poldini 1993; Lasen 1995; Pignatti & Pignatti 2014) where it came in connection with the Festucetalia valesiacae. Its syntaxonomic relationships with the Diplachnion, especially with associations descibed by Meyer (1976) along the southern pre-Alpine lakes, remain to be solved. Regarding the Italian Peninsula, some authors extended the order range to xerophytic and meso-xerophytic basophilous grasslands of the Apennines (Bonin 1978; Biondi & Galdenzi 2012). However, preliminary results of a comparative study among xerophytic grasslands of the amphi-Adriatic area (Terzi & Di Pietro 2013) highlighted important floristic differences between the Balkan and peninsular Italian sides of the Adriatic Sea, notably Illyrian/south-eastern European taxa on the Balkan side (e.g., Chrysopogon gryllus, Festuca illyrica, Festuca valesiaca, Genista spp., Scorzonera villosa subsp. villosa, Stipa eriocaulis) and other taxa, mostly Italian endemics, on the other side (e.g., Festuca circummediterranea, Phleum ambiguum, Cerastium suffruticosum, Crepis lacera, Scorzonera villosa subsp. columnae, Thymus spinulosus). As some of these taxa are often dominant, a differentiation at the order level was proposed (Terzi & Di Pietro 2013). This idea has been strengthened by the recent description of some new endemic orders for peninsular Italian grasslands (Ubaldi 2011; Biondi et al. 2014). Syntaxonomic scheme and phytosociological nomenclature Based on these results, the syntaxonomic scheme below is proposed together with a set of diagnostic taxa. The classification of associations described by few relevés or by synoptic tables is only provisional, and more in-depth studies are required to determine their correct syntaxonomic positions. Moreover, associations quoted in Pignatti & Pignatti (2014) but not included in the analysis, were added to the scheme for completeness but marked by an asterisk. Numbers within square brackets refer to the nomenclatural notes in Appendix 2. 1F. Class: Festuco-Brometea Br.-Bl. & Tx. ex Klika & Hadač 1944 3Z. Order: Scorzoneretalia villosae Kovačević 1959 [1] Nomenclatural synonym: Scorzonero villosae-Chrysopogonetalia grylli Horvatić & Horvat in Horvatić 1963; Scorzoneretalia villosae Horvatić 1973. Holotypus: Scorzonerion villosae Horvatić ex Kovačević 1959. Diagnostic taxa: Anthyllis vulneraria subsp. polyphylla; Centaurea jacea subsp. gaudinii; Chrysopogon gryllus; Cyanus triumfettii; Dorycnium pentaphyllum subsp. germanicum; Eryngium amethystinum; Euphorbia nicaeensis; Festuca illyrica; Festuca valesiaca; Leucanthemum platylepis; Medicago prostrata; Noccaea praecox; Plantago argentea; Plantago holosteum; Potentilla heptaphylla subsp. australis; Salvia pratensis subsp. bertolonii; Scabiosa triandra; Seseli montanum subsp. tommasinii; Stachys officinalis subsp. serotina; Veronica barrelieri. 4K. Suborder: Koelerienalia splendentis (Horvatić 1973) stat. nov. hoc loco (Horvatić 1973: 7) Holotypus: Chrysopogono grylli-Koelerion splendentis Horvatić 1973 (that is a syntaxonomic synonym of Chrysopogono grylli-Saturejion subspicatae Horvat & Horvatić ex Černjavski, Grebenščikov & Pavlović 1949). Diagnostic taxa: Dianthus sylvestris subsp. tergestinus; Euphrasia illyrica; Genista holopetala; Genista sericea; Genista sylvestris subsp. sylvestris; Globularia cordifolia; Hyacinthella dalmatica; Inula ensifolia; Koeleria splendens; Linum narbonense; Ornithogalum orthophyllum subsp. kochii; Potentilla heptaphylla subsp. australis; Potentilla tommasiniana; Satureja montana subsp. variegata; Scorzonera austriaca; Seseli kochii; Stachys recta subsp. subcrenata; Stipa eriocaulis; Teucrium montanum; Trinia glauca. 5C. Alliance: Chrysopogono grylli-Saturejion subspicatae Horvat & Horvatić ex Černjavski, Grebenščikov & Pavlović 1949 [5] Syntaxonomic Synonym: Chrysopogono grylli-Koelerion splendentis Horvatić 1973. Lectotypus: Bromo erecti-Chrysopogonetum grylli Horvatić 1934. Diagnostic taxa: Achillea nobilis; Astragalus muelleri; Bupleurum veronense; Carduus nutans subsp. micropterus; Centaurea cristata; Centaurea spinosociliata; Centaurea tommasinii; Dianthus ciliatus; Euphorbia fragifera; Festuca lapidosa; Genista sylvestris subsp. dalmatica; Onobrychis arenaria subsp. tommasinii; Onosma echioides subsp. dalmatica; Salvia officinalis; Satureja montana subsp. variegata. Associations: ac – Bromo erecti-Chrysopogonetum grylli Horvatić 1934 [6]; bf – Bromo erecti-Festucetum lapidosae Trinajstić 1992; cc – Centaureo cristatae-Chrysopogonetum grylli Ferlan & Giacomini 1957 [7]; dc – Dichanthio ischaemum-Cleistogenetum serotinae Horvatić ex Trinajstić in Poldini 1975 nom. mut. propos.; fi – Festucetum illyrico-valesiacae Horvat in Horvat et al. 1974 corr. Trinajstić 2000; fl – Festuco-Linetum flavi RitterStudnička 1972; ha – Helichryso italici-Armerietum dalmaticae Horvatić 1963; kb – Koelerio macranthaeBrachypodietum retusi ass. nov. hoc loco [9]; kf – eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 21 Table 1. Abridged synoptic table of the Scorzoneretalia villosae, from the level of suballiance to the level of class. Diagnostic taxa are selected from IndSp associated to the clusters in Figure 2, corresponding to the following syntaxa: 5C = Chrysopogono-Saturejion subspicatae; 5S = Saturejion subspicatae; 5D = Centaureion dichroanthae; 6H = Hypochoeridenion maculatae; 6V = Scorzonerenion villosae. The percentage frequencies of taxa are given in columns. For each taxon, the IndVal and the associated cluster are indicated in the last two columns. The list of IndSp is reported in the Supplement S2. 5C 5S 5D 6H 6V IndVal Cluster Number of relevés 159 198 51 98 142 Alliance: Chrysopogono grylli-Saturejion subspicatae Satureja montana subsp. variegata 42 15 21 1 4 75 5C2 Bupleurum veronense 40 4 . . 4 35 5C Salvia officinalis 31 8 . . . 27 5C1 Onosma echioides subsp. dalmatica 18 4 . . 7 13 5C Euphorbia fragifera 15 4 . . 1 19 5C2 Centaurea cristata 15 6 . . . 16 5C2 Carduus nutans subsp. micropterus 14 5 . . 2 23 5C1 Genista sylvestris subsp. dalmatica 11 5 . . 4 13 5C1 Centaurea spinosociliata 9 3 . . . 14 5C1 Centaurea tommasinii 9 1 . . 3 13 5C1 Astragalus muelleri 7 2 . . . 10 5C1 Festuca lapidosa 4 . . . . 8 5C1 Achillea nobilis 4 1 . . 2 6 5C1 Onobrychis arenaria subsp. tommasinii 3 . . . . 7 5C2 Alliance: Saturejion subspicatae Centaurea rupestris 9 51 8 . 8 32 5S Sesleria tenuifolia subsp. tenuifolia 3 42 . . 1 38 5S1 Satureja subspicata . 42 2 . 1 39 5S Anthyllis montana subsp. jacquinii . 29 4 . 1 25 5S Jurinea mollis 3 20 . . . 16 5S Muscari botryoides 5 19 . 2 4 11 5S Edraianthus tenuifolius 5 16 . . 2 29 5S1 Gentiana verna subsp. tergestina . 14 4 . 4 11 5S2 Pulsatilla montana . 13 . 1 2 13 5S2 Globularia meridionalis . 11 . . . 26 5S1 Crepis chondrilloides 1 11 . . . 9 5S Bunium alpinum subsp. montanum 2 10 . . 1 23 5S1 Narcissus poeticus subsp. radiiflorus . 9 . 5 1 7 5S Astragalus croaticus . 7 . . . 19 5S1 Iris pallida subsp. illyrica 3 6 . . . 4 5S1 Klasea radiata subsp. cetinjensis . 4 . . . 10 5S1 Alliance: Centaureion dichroanthae Sesleria caerulea . . 87 16 . 80 5D Cytisus purpureus . 3 54 16 3 45 5D Stachys recta subsp. labiosa 1 . 52 7 1 48 5D Hieracium porrifolium . . 44 . . 44 5D Carex mucronata . 1 38 1 . 37 5D Lomelosia graminifolia subsp. graminifolia . 1 35 3 . 33 5D Polygala nicaeensis subsp. carniolica . . 31 2 . 30 5D Leontodon incanus . 2 31 1 . 29 5D eschweizerbart_xxx 22 Massimo Terzi 5C 5S 5D 6H 6V IndVal Cluster Number of relevés 159 198 51 98 142 Euphorbia triflora subsp. kerneri . . 25 5 . 23 5D Cytisus pseudoprocumbens . 7 23 7 4 15 5D Carduus defloratus . . 21 3 . 20 5D Gypsophila repens . . 19 3 . 18 5D Centaurea dichroantha . . 19 6 . 17 5D Moltkia suffruticosa . . 19 . . 19 5D Calamagrostis varia . 1 19 3 . 17 5D Allium ericetorum 1 3 17 4 . 12 5D Gentiana clusii . 2 15 6 . 12 5D Potentilla pusilla 1 . 12 1 2 8 5D Erysimum sylvestre . 4 10 . . 7 5D Euphrasia cuspidata . . 8 . . 8 5D Suborder: Koelerienalia splendentis Teucrium montanum 38 63 71 20 8 43 4K Koeleria splendens 60 50 15 4 17 40 4K Globularia cordifolia 5 36 79 11 3 48 5D Stipa eriocaulis 24 30 48 2 4 27 4K Scorzonera austriaca 6 32 37 5 4 25 5D+5S Seseli kochii 13 12 42 3 1 21 5D Potentilla heptaphylla subsp. australis 16 21 25 5 6 15 4K Genista sericea 7 36 19 5 . 26 5D+5S Inula ensifolia 2 21 33 . 1 21 5D+5S Dianthus sylvestris subsp. tergestinus 26 24 . 1 5 19 4K Genista sylvestris subsp. sylvestris 13 32 4 . 2 20 4K Trinia glauca 1 17 19 4 4 14 5D+5S Potentilla tommasiniana 9 24 2 . 1 14 4K Stachys recta subsp. subcrenata 15 19 . . 1 14 4K Linum narbonense . 11 13 2 1 11 5D+5S Ornithogalum orthophyllum subsp. kochii 7 5 . . 2 8 5C1 Euphrasia illyrica 2 5 2 . . 3 4K Hyacinthella dalmatica 3 . . . . 5 5C1 Suballiance: Hypochoeridenion maculatae Centaurea scabiosa subsp. fritschii 2 1 15 47 4 31 6H Cirsium pannonicum . 5 2 41 13 28 6H Knautia ressmannii . . 15 40 . 29 6H Rhinanthus alectorolophus subsp. freynii 1 1 2 35 10 24 6H Prunella grandiflora . 9 10 31 4 18 6H Carex montana . 4 8 27 4 17 6H Achillea roseoalba . . . 18 . 18 6H Linum viscosum . 1 6 14 1 10 6H Alliance: Scorzonerion villosae and Suballiance: Scorzonerenion villosae Filipendula vulgaris 1 29 2 57 43 38 4Z Plantago media 5 18 4 45 50 39 4Z Table 1. cont. eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 23 5C 5S 5D 6H 6V IndVal Cluster Number of relevés 159 198 51 98 142 Ononis spinosa 4 4 2 27 42 32 4Z Euphorbia verrucosa . 14 4 44 21 25 4Z Trifolium rubens 1 5 2 30 28 26 4Z Hypochaeris maculata 1 8 6 35 19 21 4Z Scorzonera villosa subsp. villosa 11 30 . 7 46 30 6V2 Knautia illyrica 1 30 8 8 45 39 6V2 Centaurea jacea subsp. weldeniana 4 14 . 1 45 44 6V2 Danthonia alpina . 6 . 12 30 20 4Z Dorycnium pentaphyllum subsp. herbaceum 8 8 6 12 27 16 4Z Ferulago campestris 3 6 2 13 20 25 6V2 Prunella laciniata 4 2 . 4 29 19 6V Lathyrus latifolius . 2 . 1 29 33 6V2 Tragopogon tommasinii . 3 . . 7 11 6V2 Order: Scorzoneretalia villosae Salvia pratensis 32 35 15 54 55 40 3Z Eryngium amethystinum 69 46 25 11 32 42 3Z Chrysopogon gryllus 48 10 21 37 62 36 3Z Festuca illyrica + F. stricta subsp. sulcata 32 41 17 56 31 37 3Z Plantago holosteum 38 48 21 15 30 34 3Z Anthyllis vulneraria subsp. polyphylla 2 23 56 34 13 30 5D Stachys officinalis 4 35 10 45 27 25 3Z Scabiosa triandra 18 19 8 34 32 23 3Z Centaurea jacea subsp. gaudinii 1 9 44 37 2 27 5D Dorycnium pentaphyllum subsp. germanicum 19 47 2 3 20 24 3Z Festuca valesiaca 43 17 2 4 15 51 5C1 Veronica barrelieri 8 16 12 9 11 12 3Z Medicago prostata 23 14 2 1 14 13 3Z Noccaea praecox 9 7 17 11 4 8 3Z Plantago argentea . 31 19 18 6 21 5D+5S Cyanus triumfettii . 23 23 16 8 16 5D+5S Leucanthemum platylepis 1 29 . 5 27 23 5S2 Euphorbia nicaeensis 4 26 . . 10 21 5S2 Seseli montanum subsp. tommasinii 6 6 . . 1 7 5C1 Class: Festuco-Brometea Bromopsis erecta s.l. + B. condensata 79 86 81 87 82 83 3Z Lotus corniculatus 26 52 46 85 66 53 3Z Sanguisorba minor 52 43 40 39 48 45 3Z Carex humilis 17 84 75 24 13 58 5D+5S Helianthemum nummularium subsp. obscurum 21 33 58 43 39 35 3Z Brachypodium pinnatum + B. rupestre 11 17 23 87 51 54 4Z Thymus longicaulis s.l. 58 34 42 11 37 38 3Z Galium lucidum 33 47 63 8 30 35 3Z Teucrium chamaedrys 26 33 60 24 32 32 3Z Galium verum 4 7 31 78 39 47 4Z Table 1. cont. eschweizerbart_xxx 24 Massimo Terzi 5C 5S 5D 6H 6V IndVal Cluster Number of relevés 159 198 51 98 142 Briza media 1 14 6 81 44 52 4Z Euphorbia cyparissias 28 28 33 30 23 27 3Z Asperula cynanchica 24 19 33 44 15 24 3Z Hippocrepis comosa 25 29 25 31 23 27 3Z Globularia bisnagarica 9 25 38 24 17 20 3Z Anthericum ramosum 7 34 35 29 9 21 3Z Carex flacca 1 6 12 53 30 35 4Z Leontodon crispus 23 27 23 8 16 21 3Z Carex caryophyllea 8 11 13 37 22 21 4Z Linum tenuifolium 20 14 38 2 12 15 3Z Asperula purpurea 19 14 29 5 9 25 5C2 Sedum sexangulare 48 8 6 5 8 37 5C Pilosella officinarum 20 8 8 19 18 18 5C1 Carlina acaulis 2 14 21 26 6 12 3Z Petrorhagia saxifraga 42 8 6 2 10 31 5C Campanula glomerata 1 6 8 45 4 31 6H Pimpinella saxifraga + P. alpina 2 3 12 39 6 24 6H Allium lusitanicum 9 18 23 2 1 14 4K Bothriochloa ischaemum 35 3 6 3 6 52 5C2 Asperula aristata 18 18 8 1 6 16 5C1 Medicago falcata 1 6 8 10 15 10 4Z Centaurea jacea 3 1 4 22 4 13 6H Koeleria pyramidata . 5 21 72 27 42 6H Trifolium montanum . 18 4 61 32 37 4Z Fumana procumbens + F. ericoides 30 15 44 . 6 21 4K Linum catharticum . 8 21 43 14 21 6H Koeleria macrantha 12 9 21 . 10 10 3Z Artemisia alba 19 7 23 . 2 30 5C2 Thymus pulegioides 1 5 . 31 13 19 6H Dianthus sylvestris . 5 37 1 1 32 5D Melica ciliata 23 12 4 . 2 16 5C Medicago lupulina 4 1 . 19 15 15 4Z Trifolium campestre 11 5 . 5 14 12 5C1 Ranunculus bulbosus 1 2 . 16 11 12 4Z Echinops ritro 4 12 4 . 4 11 5S1 Anthyllis vulneraria 26 34 . . 13 21 4K Polygala nicaeensis 9 35 . . 24 19 5S Teucrium capitatum subsp. capitatum 36 6 . . 6 55 5C1 Polygala comosa . . 13 21 6 11 6H Galium corrudifolium 19 18 . . 2 26 5C1 Satureja montana 13 20 . . 3 18 5S1 Carex hallerana 19 8 . . 4 17 5C1 Kengia serotina 18 . 8 . 1 35 5C2 Paronychia kapela 7 12 . . 1 25 5S1 Table 1. cont. eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 25 5C 5S 5D 6H 6V IndVal Cluster Number of relevés 159 198 51 98 142 Alyssum montanum 14 3 2 . . 13 5C2 Poa bulbosa 8 2 . . 4 12 5C1 Armeria canescens 1 6 . . 2 13 5S1 Thymus praecox . . 17 3 . 16 5D Argyrolobium zanonii 9 . . . 1 12 5C2 Thymus striatus . 5 . . 1 14 5S1 Lactuca viminea 6 . . . . 12 5C2 Onobrychis alba subsp. laconica . 4 . . . 12 5S1 Table 1. cont. Koelerio splendentis-Festucetum illyricae Horvatić 1963 corr. Trinajstić 1992; na – Narcisso tazettae-Asphodeletum microcarpi Šegulja 1969; se – Salvio officinalis-Euphorbietum fragiferae Lausi & Poldini 1962; ss – Salvio officinalis-Seslerietum juncifoliae Trinajstić 1977 (transition to Saturejion subspicatae); sd – Saturejo montanaeDichanthietum ischaemum Horvat in Horvat et al. 1974 nom. corr.; so – Stipo bromoidis-Salvietum officinalis Horvatić 1963. 5S. Alliance: Saturejion subspicatae Tomić-Stanković 1970 [3] Lectotypus: Centaureo rupestris-Caricetum humilis Horvat 1931. Diagnostic taxa: Anthyllis montana subsp. jacquinii; Astragalus croaticus; Bunium alpinum subsp. montanum; Centaurea rupestris; Crepis chondrilloides; Edraianthus tenuifolius; Gentiana verna subsp. tergestina; Globularia meridionalis; Iris pallida subsp. illyrica; Jurinea mollis; Klasea radiata subsp. cetinjensis; Muscari botryoides; Narcissus poeticus subsp. radiiflorus; Pulsatilla montana; Satureja subspicata; Sesleria tenuifolia subsp. tenuifolia. Associations: as – Astragalo croatici-Seslerietum robustae Trinajstić ex Terzi 2011; bs – Bromo erecti-Seslerietum interruptae Trinajstić ex Terzi 2011; cr – Centaureo rupestris-Caricetum humilis Horvat 1931 [4]; gk – Genisto sericeae-Seslerietum kalnikensis Dakskobler & Peljhan ex Terzi ass. nov. hoc loco [8]; gs – Genisto sericeae-Seslerietum tenuifoliae Poldini 1980; gg – Genisto-Globularietum bellidifoliae Tomić-Stanković 1970; mg – Minuartio capillaceae-Genistetum pulchellae Šegulja & Bedalov ex Terzi 2011; pc – Pediculari acaulis-Caricetum humilis Horvat in Horvat et al. 1974; sm – Saturejo subspicataeCaricetum humilis Trinajstić 1999; su – Saturejo subspicatae-Edraianthetum tenuifolii Horvat in Horvat et al. 1974; sj – Seslerio robustae-Juniperetum sibiricae Domac 1962; sc – Seslerio tenuifoliae-Caricetum humilis Horvat 1930; st – Stipo eriocaulis-Caricetum humilis Trinajstić ex Terzi 2011; sg – Stipo pennatae-Genistetum dalmaticae Redžić et al. ex Terzi 2011 5D. Alliance: Centaureion dichroanthae Pignatti 1952 Holotypus: Centaureo dichroanthae-Globularietum cordifoliae Pignatti 1952. Diagnostic taxa: Allium ericetorum; Calamagrostis varia; Carduus defloratus; Carex mucronata; Centaurea dichroantha; Cytisus pseudoprocumbens; Cytisus purpureus; Erysimum sylvestre; Euphorbia triflora subsp. kerneri; Euphrasia cuspidata; Gentiana clusii; Gypsophila repens; Hieracium porrifolium; Leontodon incanus; Lomelosia graminifolia subsp. graminifolia; Moltkia suffruticosa; Polygala nicaeensis subsp. carniolica; Potentilla pusilla; Sesleria caerulea; Stachys recta subsp. labiosa. Associations: si – Bromo condensati-Stipetum eriocaulis Lasen ex Terzi ass. nov. hoc loco [8]; bb – Bupleuro ranunculoides-Brometum condensati ass. nov. hoc loco [9]; cg – Centaureo dichroanthae-Globularietum cordifoliae Pignatti 1952; gc – Genisto-Caricetum mucronatae Horvat in Horvat, et al. 1974 (sensu Poldini 1989); Laserpitido-Festucetum alpestris Pedrotti 1970*; ls – Leontodonto brumatii-Seslerietum calcariae Dakskobler et al. 2012; sb – Saturejo variegatae-Brometum condensati Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993; tc – Teucrio capitati-Chrysopogonetum grylli Sburlino et al. 2008 (transition to Chrysopogono-Saturejion subspi- catae). 4Z. Suborder: Scorzonerenalia villosae subord. nov. hoc loco Holotypus: Scorzonerion villosae Horvatić ex Kovačević 1959 (Kovačević 1959: 18). Same diagnostic taxa of Scorzonerion villosae. 5V. Alliance: Scorzonerion villosae Horvatić ex Kovačević 1959 [1] Holotypus: Scorzonero villosae-Danthonietum calycinae Kovačević 1959. Diagnostic taxa: Centaurea jacea subsp. weldeniana; Cirsium pannonicum; Danthonia alpina; Dorycnium pentaphyllum subsp. herbaceum; Euphorbia verrucosa; Ferulago campestris; Filipendula vulgaris; Hypochaeris maculata; Knautia illyrica; eschweizerbart_xxx 26 Massimo Terzi Lathyrus latifolius; Ononis spinosa; Plantago media; Prunella laciniata; Scorzonera villosa subsp. villosa; Tragopogon tommasinii; Trifolium rubens. 6V. Suballiance: Scorzonerenion villosae Poldini & Feoli Chiapella 1993 Holotypus: Scorzonero villosae-Danthonietum calycinae Kovačević 1959. Same diagnostic taxa of Scorzonerion villosae. Associations: ec – Euphorbio nicaeensis-Chrysopogonetum grylli Horvatić 1963; fp – Festuco illyricae-Poetum bulbosae Horvat in Horvat et al. 1974 corr. Terzi 2011; fa – Festuco-Armerietum canescentis Trinajstić & Sugar 1972; ge – Globulario elongatae-Chrysopogonetum grylli Ilijanić et al. ex Terzi 2011; oa – Ononido antiquorumBrometum condensati Horvatić (1934) 1963; ds – Scorzonero villosae-Danthonietum calycinae Kovačević 1959 [1, 2]. Uncertain position: cs – Carici vernae-Scabiosetum leucophyllae Redžić et al. ex Terzi 2011; gl – Globulario cordifoliae-Scabiosetum leucophyllae Redžić et al. ex Terzi 2011 6H. Suballiance: Hypochoeridenion maculatae Poldini & Feoli Chiapella ex Terzi 2011 Holotypus: Onobrychido arenariae-Brometum erecti Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993. Diagnostic taxa: Achillea roseoalba; Carex montana; Cirsium pannonicum; Centaurea scabiosa subsp. fritschii; Knautia ressmannii; Linum viscosum; Prunella grandiflora; Rhinanthus alectorolophus subsp. freynii. Associations: ab – Avenulo praeustae-Brometum erecti Poldini & Feoli Chiapella ex Terzi 2011; ch – Chamaecytiso hirsuti-Chrysopogonetum grylli Pignatti ex Feoli Chiapella & Poldini 1993; gb – Gentianello pilosae-Brometum erecti Dakskobler & Završnik 2009; gm – Gladiolo palustris-Molinietum arundinaceae Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993; ob – Onobrychido arenariae-Brometum erecti Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993; sn – Schoeno nigricantis-Chrysopogonetum grylli Pignatti ex Feoli Chiapella & Poldini 1993 (transition to Centaureion dichroanthae); ts – Thlaspio-Trifolietum pratensis Zanotto 1960*. Conclusion The numerical analysis of relevés and associations previously assigned to the Scorzoneretalia villosae highlights two main groups of associations classified within the new meso-xerophytic Scorzonerenalia villosae and the xerophytic Koelerienalia splendentis. The latter is well differentiated by the presence of numerous sub-Mediterranean and Illyrian species, while the Scorzonerenalia villosae, except from few Illyrian and south-eastern European diagnostic taxa, shares many taxa with mesophytic syntaxa of the Festuco-Bometea. The results of this study clarify the syntaxonomy and nomenclature of the Scorzoneretalia villosae but also demonstrate the need for a syntaxonomic revision of the Festuco-Brometea, especially of its more mesophilous associations. Apart from the classical model of the class, with geographically defined orders, other proposals suggest a single order for the meso-xerophytic plant communities of the class (Dengler et al. 2003) or a specific Balkanic order for the more mesophilous communities (Boșcaiu 1972). These issues were beyond the scope of this paper but it emerged that the more mesophilous associations of the Scorzonerenalia villosae (together with the order and suborder names) would have to be involved in such a revision. Acknowledgments I would like to thank L. Poldini (University of Trieste) and R. Di Pietro (University of Rome) for useful discussion on a preliminary draft of this paper and three anonymous referees and the editors, E. Bergmeier and J. Dengler, for their helpful suggestions and comments; L. Sutcliffe is thanked for linguistic revision of the manuscript. References Aho, K., Roberts, D.W. & Weaver, T. 2008. Using geometric and non-geometric internal evaluators to compare eight vegetation classification methods. Journal of Vegetation Science 19: 549–562. Antonić, O., Kušan, V., Bakran-Petricioli, T., Alegro, A., Gottstein-Matočec, S., Peternel, H. & Tkalčec, Z. 2005. Klasifikacija staništa Republike Hrvatske [Habitat classification of the Republic of Croatia]. Drypis 1: 1–12. Assyov, B., Petrova, A.S., Dimitrov, D. & Vassilev, R. 2006. Conspectus of the Bulgarian vascular flora. Distribution maps and floristic elements. Third edition. Bulgarian Biodiversity Foundation, Sofia, BG. Bajić, D. 1960. Brdske i dolinske livade i pašnjaci u slivu reka Une i Sane [Meadows and pastures of mountains and valleys in the basin of the rivers Una and Sana]. Radovi Poljoprivrednog Fakulteta Univerziteta u Sarajevu 8–9: 237–268. Barbero, M. & Loisel, R. 1972. Contribution à l’étude des pelouses à Brome méditerranéennes et méditerranéo-montagnardes. Anales del Instituto Botánico A. J. Cavanilles 28: 91–165. Biondi, E. & Galdenzi, D. 2012. Phytosociological analysis of the grasslands of Montagna dei Fiori (central Italy) and syntaxonomic review of the class Festuco-Brometea in the Apennines. Plant Sociology 49: 91–112. Biondi, E., Allegrezza, M., Casavecchia, S., Galdenzi, D., Gasparri, R., Pesaresi, S., Vagge, I. & Blasi, C. 2014. New and validated syntaxa for the checklist of Italian vegetation. Plant Biosystems 148: 318–332. Blečić, V. & Lakušić, R. 1976. Prodromus biljnih zajednica Crne Gore [Prodromus of plant communities of Montenegro]. Glasnik Republičkog Zavoda za Zaštitu Prirode i Prirodnjačkog Muzeja u Titogradu 9: 57–98. eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 27 Bonin, G. 1978. Contribution à la connaissance de la végétation des montagnes de l’Apennin centreméridional (tableaux et figures). Ph.D. thesis, Univ. Droit d’Economie et de Sciences, Aix-Marseille. Centre Regional de Documentation Pedagogique, Marseille, FR. Boșcaiu, N. 1972. Pajiștile xerice (Festuco-Brometea Br.-Bl. 43) din depresiunea Caransebeș-Mehadia [Xeric grasslands (Festuco-Brometea Br.-Bl. 43) in the depression of CaransebeșMehadia]. Acta Horti Botanici Bucurestiensis 1970–1971: 449–468. Braun-Blanquet, J. 1974. Die höheren Gesellschaftseinheiten der Vegetation des südeuropaïsch-westmediterranen Raums. Station International De Géobotanique Méditerranéenne et Alpine [communication no. 204], Montpellier, FR. Brullo, S., Giusso del Gado, G.P. & Minissale, P. 2009. Taxonomic revision of the Koeleria splendens C. Presl group (Poaceae) in Italy based on morphological characters. Plant Biosystems 143: 140–161. Buzo, K. 1991. Bimësia e kullotave dhe e livadheve natyrore të Shqiperisë [The vegetation of natural pastures and meadows of Albania]. Shtëpia Botuese e Librit Universitar, Tirana, AL. Černjavski, P., Grebenščikov, O. & Pavlović, Z. 1949. O vegetaciji i fiori Skadarskog podrucja [Vegetation and flora of the Skadar area].Glasnik Prirodnjačkog Muzeja Srpske Zemlje, B, 1–2: 5–91. Chytrý, M. & Otýpková, Z. 2003. Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science 14: 563–570. Conti, F., Abbate, G., Alessandrini, A. & Blasi, C. 2005. An annotated check-list of the Italian vascular flora. Palombi Editore, Roma, IT. Dakskobler, I. & Peljhan, J. 2007. Viola pyrenaica Ramond ex Dc in the northern part of the Dinaric Mountains (The Plateaus of Trnovski Gozd and Nanos, Slovenia). Hacquetia 6: 143–169. De Cáceres, M., Font, X. & Oliva, F. 2008. Assessing species diagnostic value in large data sets: a comparison between phi coefficient and Ochiai index. Journal of Vegetation Science 19: 779–788. Dengler, J., Berg, C., Eisenberg, M., Isermann, M., Jansen, F., Koska, I., Löbel, S., Manthey, M., Päzolt, J., (…) & Wollert, H. 2003. New descriptions and typifications of syntaxa within the project Plant communities of Mecklenburg-Vorpommern and their vulnerability. Part I. Feddes Repertorium 114: 587–631. Dengler, J., Löbel, S. & Dolnik, C. 2009. Species constancy depends on plot size – a problem for vegetation classification and how it can be solved. Journal of Vegetation Science 20: 754–766. Dengler, J., Becker, T., Ruprecht, E., Szabó, A., Becker, U., Beldean, M., Bita-Nicolae, C., Dolnik, C., Goia, I., (…) & Uğurlu, E. 2012. Festuco-Brometea communities of the Transylvanian Plateau (Romania) – a preliminary overview on syntaxonomy, ecology, and biodiversity. Tuexenia 32: 319–359. Dring, J., Hoda, P., Mersinllari, M., Mullaj, A., Pignatti, S. & Rodwell, J. 2002. Plant communities of Albania: a preliminary overview. Annali di Botanica (Rome) 2: 7–30. Dufrêne, M. & Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366. Feoli Chiapella, L. & Poldini, L. 1993. Prati e pascoli del Friuli (NE Italia) su substrati basici [Grasslands of Friuli (NE Italy) on basic substrates]. Studia Geobotanica 13: 3–140. Ferlan, L. & Giacomini, V. 1957. Appunti fitosociologici su esempi di „pascolo carsico“: Chrysopogoneto-Centaureetum cristatae [Phytosociological notes on karst pasture types: Chrysopogoneto-Centaureetum cristatae]. In: Anonymous (ed.) Convegno Friulano di Scienze Naturali (Proceedings of the first Friulian Meeting on Natural Science) 4–5 Sept 1955, Udine, pp. 159–183. Tip. Domenico del Bianco & figlio, Udine, IT. Gaži-Baskova, V. & Šegulja, N. 1978. Sindinamika vegetacije brdskih travnjaka na podrucju Hrvatskog primorja [The syndinamic of vegetation of mountain grasslands in the Dinaric Region of Hrvatsko Primorje]. Godišnjak Biološkog Instituta Univerziteta u Sarajevu 31: 37–47. Horvat, I. 1931. Die Berg-Wiesen und Heiden in Kroatien. Acta Botanica Croatica 6: 76–90. Horvat, I. 1962. Vegetacija planina Zapadne Hrvatske [Mountain vegetation of West Croatia]. Acta Biologica (Zagreb) 30: 5–179. Horvat, I., Glavač, V. & Ellenberg, H. 1974. Vegetation Südosteuropas. G. Fischer, Stuttgart, DE. Horvatić, S. 1934. Flora i vegetacija otoka Paga [Flora and vegetation of the island of Pag ]. Prirodoslovna Istraživanja 19: 116–372. Horvatić, S. 1949. Istraživanje vegetacije u istri god [Survey of the vegetation of Istria]. 1948. Ljetopis Jugoslavenske Akademije Znanosti i Umjetnosti 55: 105–109. Horvatić, S. 1958. Geographisch-typologische Gliederung der Niederungs-Wiesen und Weiden Kroatiens. Pflanzengeographischen Gebiete Kroatiens. Angewandte Pflanzensoziologie (Vienna) 15: 63–73. Horvatić, S. 1963. Vegetacijska karta otoka Paga s općim pregledom vegetacijskih jedinica Hrvatskog primorja [Vegetation map of the island of Pag, with a review of the vegetation units of the coast of Croatia]. Acta Biologica (Zagreb) 4: 3–187. Horvatić, S. 1973. Syntaxonomic analysis of the vegetation of dry grassland and stony meadows in Eastern Adriatic coastal Karts district based on the latest phytocoenological research. Fragmenta Herbologica Jugoslavica 32: 1–15. Horvatić, S. 1975. Neuer Beitrag zur Kenntnis der Syntaxonomie der Trocken-Rasen und Steintriften Gesellschaften des ostadriatischen Karstgebietes. In: Jordanov, D., Bondev, I., Kozuharov, S., Kuzmanov, B., Palamarev, E. & Velcev, V. (eds.) Problems of Balkan flora and vegetation, pp 300–310. Bulgarian Academy of Sciences. Sofia, BG. Horvatić, S., Ilijanić, L. & Marković-Gospodarić, L. 1968. Biljni pokrov okoline Senja [Vegetation in the area of Senj]. Senjski Zbornik 3: 298–323. Hršak, V. 2003. Multivariate analysis of phyto-climatic patterns of the Croatian part of the eastern Adriatic coast. Plant Biosystems 137: 281–292. Ilijanić, L., Gaži, V. & Topić, J. 1972. Grasslands containing Chrysopogon gryllus in continental regions of West Croatia. Acta Botanica Croatica 31: 155–164. Jovanović, B., Lakušić, R., Rizovski, .R, Trinajstić, I. & Zupančič, M. 1986. Prodromus Phytocoenosum Jugoslaviae: ad mappam vegetationis m 1:200 000 [Prodromus of phytocoenoses of Yugoslavia: vegetation map at 1:200 000]. Naučno veće vegetacijske karte Jugoslavije, Bribir-Ilok, HR. Kovačević, J. 1959. Pregled tipova travnjaka s agroekološkog gledišta područja bivših bosanskih kotare Sanski Most, Mrkonjić-Grad, Bosanski Petrovac I Lijevča Polja [Overview of grassland types in the former Bosnian districts of Sanski Most, Mrkonjic-Grad, Bosanski Petrovac and Lijevče eschweizerbart_xxx 28 Massimo Terzi Polje from an agroecological viewpoint]. Godišnjak Biološkog Instituta Univerziteta u Sarajevu 1–2: 3–46. Kruskal, J.B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27. Lakušić, R., Muratspahić, D., Pavlović, I. & Redžić, S. 1982. Vegetacija ekosistema kraških polja Hercegovine [The vegetation of ekosystems in karst poljes of Herzegovina]. Godišnjak Biološkog Instituta Univerziteta u Sarajevu 35: 81–92. Lakušić, R. & Redžić, S. 1991. Vegetacija refugijalno-reliktnih ekosistema siva rijeke Une [Vegetation of the refugial-relict ecosystems of the Una river system]. Bilten Društvo Ekologa Bosne i Hercegovine, B, 6: 25–73. Lasen, C. 1995. Note sintassonomiche e corologiche sui prati aridi del massiccio del Grappa [Chorological and syntaxonomical remarks on the xerophytic grasslands in the Grappa Massif]. Fitosociologia 30: 181–199. Legendre, P. & Gallagher, E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280. Mather, P.M. 1976. Computational methods of multivariate analysis in physical geography. J. Wiley & Sons, London, UK. McCune, B. & Grace, J.B. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregón, US. McCune, B. & Mefford, M.J. 2011. PC-ORD. Multivariate analysis of ecological data. Version 6.0. MjM Software, Gleneden Beach, Oregon, US. Meyer, M. 1976. Pflanzensoziologische und ökologische Untersuchungen an insubrischen Trockenwiesen karbonathaltiger Standorte. Veröffentlichungen des Geobotanischen Instituts der Eidgenössischen Technischen Hochschule, Stiftung Rübel, in Zürich 57: 1–145. Mucina, L., Dengler, J., Bergmeier, E., Čarni, A., Dimopoulos, P., Jahn, R. & Matevski V. 2009. New and validated highrank syntaxa from Europe. Lazaroa 30: 267–276. Nikolić, V. & Diklić, N. 1966. Zajednica žalfije i rudinskog pelina, Artemisio-Salvietum officinalis (Salvia officinalisArtemisia lobelii Grebenščikov, 1950) u Sićevačkoj klisuri [Communities with Artemisia and Salvia, Artemisio-Salvietum officinalis (Salvia officinalis-Artemisia lobelia Grebenščikov, 1950) in the Sićevo Gorge]. Glasnik Prirodnjačkog Muzeja u Beogradu, B, 21: 5–21. Otýpková, Z. & Chytrý, M. 2006. Effects of plot size on the ordination of vegetation samples. Journal of Vegetation Science 17: 465–472. Pignatti, E. & Pignatti, S. 2014. Plant life of the Dolomites. Vegetation structure and ecology. Springer, Heidelberg, DE. Pignatti, S. 1982. Flora d’Italia [The Flora of Italy]. Ed. Agricole, Bologna, IT. Pipenbaher, N., Kaligarič, M., Mason, N.W.H., Škornik, S. & Norman, W.H. 2013. Dry calcareous grasslands from two neighboring biogeographic regions: relationship between plant traits and rarity. Biodiversity and Conservation 22: 2207–2221. Pipenbaher, N., Kaligarič, M. & Škornik, S. 2011. Floristic and functional comparision of karst pastures and karst meadows from the North Adriatic karst. Acta Carsologica 40: 515–525. Poldini, L. 1989. La vegetazione del Carso isontino e triestino [Vegetation of Trieste and Gorizia karst]. Ed. Lint, Trieste, IT. Poldini, L. 1991. Atlante corologico delle piante vascolari nel Friuli-Venezia Giulia [Chorological atlas of vascular plants in the region Friuli-Venezia Giulia]. Regione Autonoma Friuli-Venezia Giulia, Udine, IT. Poldini, L. 2009. La diversità vegetale del Carso fra Trieste e Gorizia [Plant diversity of the Karst between Trieste and Gorizia]. Goliardiche, Trieste, IT. Poldini, L. & Kaligarič, M. 1997. New contribution on the typology of the vegetation of dry grasslands (Scorzoneretalia villosae H-ić1975) in the north Adriatic Karst. Gortania 19: 119–148. Poldini, L. & Sburlino, G. 2005. Terminologia fitosociologica essenziale [Essential phytosociological terminology]. Fitosociologia 42: 57–69. Quintanar, A. & Castroviejo, S. 2013. Taxonomic revision of Koeleria (Poaceae) in the western Mediterranean Basin and Macaronesia. Systematic Botany 38: 1029–1061. Redžić, S. 1999. The syntaxonomic differentiation of the Festuco-Brometea Br.-Bl. & R. Tx. 1943 ex Klika & Hadač1944 in the Balkans. Annali di Botanica (Rome) 57: 167–180. Redžić, S., Lakušić, R., Muratspahić, D., Bjelčić, Z. & Omerović, S. 1984. Struktura I dinamika fitocenoza u ekosistemima Cincara i Vitoroga [Structure and dynamics of phytocoenoses in the ecosystems of the mountains Cincar and Vitorog]. Godišnjak Biološkog Instituta Univerziteta u Sarajevu 37: 123–177. Redžić, S., Trakić, S. & Barudanović, S. 2013. Patterns of vegetation diversity of grasslands and pastures – Crvanj Mt. (Herzegovina, Western Balkan). Scientific Research and Essays 8: 1944–1965. Ritter-Studnička, H. 1972. Neue Pflanzengesellschaften aus den Karstfeldern Bosniens und der Hercegovina. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 92: 108–154. Royer, J.M. 1991. Synthèse eurosibérienne, phytosociologique et phytogéographique de la classe des Festuco-Brometea. Dissertationes Botanicae 178: 1–296. Sanda, V., Öllerer, K. & Burescu, P. 2008. Fitocenozele din România [Phytocoenoses of Romania]. Ars Docendi, Bucharest, RO. Sburlino, G., Buffa, G., Filesi, L. & Gamper, U. 2008. Phytocoenotic originality of the N-Adriatic coastal sand dunes (Northern Italy) in the European context: The Stipa veneta rich communities. Plant Biosystems 142: 533–539. Terzi, M. 2011. Nomenclatural revision for the order Scorzonero-Chrysopogonetalia. Folia Geobotanica 46: 411–444. Terzi, M. & Di Pietro, R. 2013. Floristic characterization of the dry grasslands of the class Festuco-Brometea Br.-Bl. et Tx. ex Klika et Hadac 1944 in the Adriatic Region. In: Calabrese, G., Pacucci, C., Occhialini, W. & Russo, G. (eds) IX National Biodiversity Conference, Vol. 3, pp. 104–111. ChieamIamb, Bari, IT. Terzi, M., Di Pietro, R. & D’Amico, F.S. 2010. Application of Indicator Species Analysis to communities with Stipa austroitalica Martinovsky and relevant syntaxonomic problems. Fitosociologia 47: 3–28. Tichý, L. & Chytrý, M. 2006. Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science 17: 809–818. Tichý, L., Chytrý, M., Hájek, M., Talbot, S.S. & Botta-Dukát, Z. 2010. OptimClass: using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. Journal of Vegetation Science 21: 287–299. Tomažic, G. 1941. Senozeti in pasniki na plitvih in suhih tleh Slovenije [Pastures and grasslands on shallow and dry soils in Slovenia]. Zbornik Prirodoslovnega Društva 2: 76–82. eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 29 Tomić-Stanković, K. 1970. Vegetacija Lovčena u Crnoj Gori [Vegetation of Mt. Lovčen in Montenegro]. Zajednica Naucnih Ustanova Kosova Studije Knjiga 17: 7–93. Trinajstić, I. 1977. Osnovne značajke biljnog pokrova otaka Hvara I njegov fitogeogravski položaj okviru Evropskog dijela Sreddozemlja [Overview of the vegetation of the Island of Hvar and its phytogeographical position in the European part of the Mediterranean Basin]. Poljoprivreda i Šumarstvo 23: 1–36. Trinajstić, I. 1987. Sintaksonomski pregled biljnih zajednica planine Biokovo [Syntaxonomic revision of plant communities in the mountains of Biokovo]. Acta Biokovica 4: 143– 174. Trinajstić, I. 1999. As. Saturejo-Caricetum humilis Trinajstić (1981, nom.sol.) 1999, ass. nov. – sintaksonomska analiza flornoga sastava [As. Saturejo-Caricetum humilis Trinajstić (1981, nom. sol.) 1999, ass. nov. – syntaxonomical analysis of floristic composition]. Agronomski Glasnik 1–2: 23–34. Trinajstić, I. 2005. Travnjaci as. Koelerio macranthae-Brachypodietum retusi Trinajstić, ass. nov. u Hrvatskom primorju [Grasslands of the ass. Koelerio macranthae-Brachypodietum retusi Trinajstić, ass. nov. in Croatian littoral]. Agronomski Glasnik 5: 347–357. Trinajstić, I. 2008. Biljne zajednice republike Hrvatske [Plant communities of Croatia]. Akademija Šumarskih Znanosti, Zagreb, HR. Trinajstić, I. & Pavletić, Z. 1990. Prilog poznavanju sastava i građe As. Carici-Centaureetum rupestris Ht. 1931 u pretplaninskom pojasu Biokova [On the structure of the Ass. Carici-Centaureetum rupestris Ht. 1931 in the subalpine part of the Biokovo mountains]. Acta Botanica Croatica 49: 75–80. Trinajstić, I. & Šugar, I. 1972. Prilog poznavanju vegetacije suhih travnjaka na planini Dinari u Hrvatskoj [A contribution to the knowledge of dry grasslands of the Dinarid mountains in Croatia]. Acta Botanica Croatica 31: 165–171. Trinajstić, I, Pavletić, Z. & Šugar, I. 1981. Prilog poznavanju floristickog sastava i rasprostranjenosti as. Bromo-Danthonietum alpinae Sugar u gorskim predjelima Hrvatske [A contribution to the knowledge of floristic composition and distribution of the ass. Bromo-Danthonietum alpinae Sugar in the mountainous regions of Croatia]. Acta Botanica Croatica 40: 155–163. Trinajstić, I., Pavletić, Z. & Kamenjarin, J. 1993. Fitocenološka istraživanja As. Carici-Centaureetum rupestris Ht. 1931 (Saturejon subspicatae) na Kozjaku povrh Splita [Plant-sociological investigations of the ass. Carici-Centaureetum rupestris Ht. 1931 (Saturejon subspicatae) on the mountain of Kozjak near Split]. Acta Botanica Croatica 52: 75–80. Tzonev, R.T. 2009. Syntaxonomy of the natural and semi-natural vegetation of the Middle Danube Plain in Bulgaria. Biotechnology & Biotechnological Equipment 23: 354–359. Ubaldi, D. 2011. Le vegetazioni erbacee e gli arbusteti italiani [Herbaceous and shrub vegetation in Italy]. Aracne Ed., Rome, IT. van der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114. Ward, J.J. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Associationc 58: 236–244. Weber, H.E., Moravec, J. & Theurillat, J.P. 2000. International Code of Phytosociological Nomenclature. 3 rd edition. Journal of Vegetation Science 11: 739–768. Wendelberger, G. 1965. Zur Vegetationsgliederung Südosteuropas. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark 95: 245–286. Westhoff, V. & van der Maarel, E. 1978. The Braun-Blanquet approach. In: Whittaker, R.H. (ed.) Classification of plant communities, pp. 287–399. Junk, The Hague, NL. Willner, W., Grabherr, G., Pallas, J. & Weber, H.E. 2011. Report of the Committee for Nomina Conservanda, Ambigua, Inversa and Mutata:1. Phytocoenologia 41: 59–70. Appendix 1: List of syntaxon names quoted in the text. Abbreviations of syntaxon names used in Figures and Tables in square brackets. Syntaxon abbreviations consist of a number, indicating the rank (1 class, 3 order, 4 suborder, 5 alliance, 6 suballiance), followed by a capital letter; abbreviations of associations consist of 2 lower-case letters. The abbreviation “0B” indicates the surclass Festuco-Brachypodio-Brometales described by Barbero and Loisel (1972). Classes: Brachypodio-Brometea Barbero et Loisel 1972 nom. illeg. (Art. 29c) [1L]; Brachypodio-Chrysopogonetea Horvatić 1963 [1B]; Calluno-Ulicetea Br.-Bl. & Tx. ex Klika & Hadač 1944 [1U]; Elyno-Seslerietea Br.-Bl. 1948 [1S]; Erico carneae-Pinetea sylvestris Horvat 1959 [1E]; Festuco-Brometea Br.-Bl. & Tx. ex Klika & Hadač 1944 [1F; 1Fx and 1Fm indicate xerophytic and mesophytic syntaxa of the class, respectively]; Molinio-Arrhenatheretea Tx. 1937 [1M]; Thero-Brachypodietea Br.-Bl. 1947 [1T; sensu lato]; Trifolio-Geranietea sanguinei T. Müller 1962 [1G]. Orders: Artemisio albae-Brometalia erecti Ubaldi ex Dengler (‘Denggler’) & Mucina in Mucina et al. 2009; Brachypodietalia pinnati Korneck 1974 [3C]; Brachypodio-Chrysopogonetalia (Horvatić 1958) Boșcaiu 1972 nom. inval. (Art. 3m; note 1 of Art. 27); Brometalia erecti Koch 1926 [3F]; Cymbopogono hirti-Brachypodietalia ramosi Horvatić 1963; Festucetalia valesiacae Br.-Bl. & Tx. ex Br.-Bl. 1950 [3V]; Koelerietalia splendentis Horvatić 1973 [3K]; Scorzoneretalia villosae Kovačević 1959 [3Z]; Scorzoneretalia villosae Horvatić 1973 nom. illeg. (synonym of Scorzoneretalia villosae Kovačević 1959); Scorzonero villosae-Chrysopogonetalia grylli Horvatić & Horvat in Horvatić 1963 (synonym of Scorzoneretalia villosae) [3S]. Suborders: Koelerienalia splendentis (Horvatić 1973) Terzi 2015 [4K]; Mesobromenalia erecti Royer 1991 nom. inval. (Art. 3h) [4M]; Scorzonerenalia villosae Terzi 2015; eschweizerbart_xxx 30 Massimo Terzi Alliances: Bromion erecti Koch 1926 [5B]; Centaureion dichroanthae Pignatti 1952 [5D]; Chrysopogono grylliDanthonion calycinae Kojić 1959 [5T]; Chrysopogono grylli-Koelerion splendentis Horvatić 1973 (included within Chrysopogono grylli-Saturejion subspicatae) [5K]; Chrysopogono grylli-Saturejion subspicatae Horvat & Horvatić ex Černjavski et al. 1949 (syn. Chrysopogono grylli-Koelerion splendentis Horvatić 1973) [5C]; Cirsio-Brachypodion pinnati Hadač & Klika in Klika & Hadač 1944; Danthonio-Brachypodion Boșcaiu 1972; Diplachnion Br.-Bl. 1961; Festucion illyricae Trinajstić 2000 [5F]; Hypochoeridion maculatae Horvatić ex Terzi 2011 [5H]; Mesobromion erecti Oberd. 1949 (synonym of Bromion erecti) [5M]; Saturejion montanae Horvat in Horvat et al. 1974 [5J]; Saturejion subspicatae Tomić-Stanković 1970 [5S]; Scorzonerion villosae Horvatić ex Kovačević 1959; Xerobromion erecti Zoller 1954. Suballiances: Centaureenion dichroanthae (Pignatti 1952) Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993 [6D]; Festucenion illyricae Horvat in Horvat et al. 1974 corr. Trinajstić 2000 [6F]; Fumano-Scabiosenion leucophyllae Redžić 1991; Hypochoeridenion maculatae Poldini & Feoli Chiapella ex Terzi 2011 [6H]; Saturejenion montanae Horvat ex Wendelberger 1965 [6M]; Scorzonerenion villosae Feoli Chiapella & Poldini 1993 [6V]. Associations: Achilleo nobilis-Dorycnietum herbacei Redžić & Lakušić in Redžić 1999; Artemisio albae-Rutetum graveolentis Redžić & Lakušić in Lakušić & Redžić 1991 [ar]; Artemisio albae-Salvietum officinalis Grebenščikov 1950 [ao]; Asphodelo microcarpi-Chrysopogonetum grylli Horvatić 1963 (cf. Bromo erecti-Chrysopogonetum grylli Horvatić 1934) [ac]; Astragalo croatici-Seslerietum robustae Trinajstić ex Terzi 2011 [as]; Avenulo praeustae-Brometum erecti Poldini & Feoli Chiapella ex Terzi 2011 [ab]; Avenulo-Brometum erecti sensu Lasen 1995 non Feoli Chiapella & Poldini 1993 (= Thlaspidi-Trifolietum pratensis Zanotto 1960 according to Pignatti & Pignatti 2014) [ts]; Bromo condensati-Stipetum eriocaulis Lasen ex Terzi 2015 [si]; Bromo erecti-Chrysopogonetum grylli Horvatić 1934 (incl. Asphodelo microcarpi-Chrysopogonetum grylli Horvatić 1963) [bc]; Bromo erecti-Festucetum lapidosae Trinajstić 1992 [bf]; Bromo erecti-Plantaginetum mediae Horvat 1949; Bromo erecti-Seslerietum interruptae Trinajstić ex Terzi 2011 [bs]; Bupleuro ranunculoidis-Brometum condensati Terzi 2015 (= Bupleuro-Brometum condensati Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993 nom. inval.) [bb]; Carici vernae-Scabiosetum leucophyllae Redžić et al. ex Terzi 2012 [cs]; Centaureo cristatae-Chrysopogonetum grylli Ferlan & Giacomini 1957 [cc]; Centaureo dichroanthae-Globularietum cordifoliae Pignatti 1952 [cg]; Centaureo rupestris-Caricetum humilis Horvat 1931 [cr]; Chamaecytiso hirsuti-Chrysopogonetum grylli Pignatti ex Feoli Chiapella & Poldini 1993 [ch]; Danthonio-Chrysopogonetum grylli Boșcaiu 1972 [zd]; Danthonio-Scorzoneretum villosae Horvat & Horvatić in Horvatić 1963 (synonym of Scorzonero villosae-Danthonietum calycinae Kovačević 1959); Dichanthio ischaemum-Cleistogenetum serotinae Horvatić ex Trinajstić in Poldini 1975 nom. mut. propos. [dc]; Euphorbio nicaeensis-Chrysopogonetum grylli Horvatić 1963 [ec]; Festucetum illyrico-valesiacae Horvat in Horvat et al. 1974 corr. Trinajstić 2000 [fi]; Festuco illyricae-Poetum bulbosae Horvat in Horvat et al. 1974 corr. Terzi 2011 [fp]; Festuco rubrae-Danthonietum calycinae Csűrös et al. 1968 [zr]; Festuco valesiacae-Danthonietum calycinae Boșcaiu 1972 [zf]; Festuco-Armerietum canescentis Trinajstić & Sugar 1972 [fa]; Festuco-Linetum flavi Ritter-Studnička 1972 [fl]; Genisto sericeae-Seslerietum kalnikensis Dakskobler & Peljhan ex Terzi 2015 [gk]; Genisto sericeae-Seslerietum tenuifoliae Poldini 1980 [gs]; Genisto-Caricetum mucronatae Horvat in Horvat et al. 1974 [gc]; Genisto-Globularietum bellidifoliae Tomić-Stanković 1970 [gg]; Gentianello pilosae-Brometum erecti Dakskobler & Završnik 2009 [gb]; Gladiolo palustris-Molinietum arundinaceae Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993 [gm]; Globulario cordifoliae-Scabiosetum leucophyllae Redžić et al. ex Terzi 2011 [gl]; Globulario elongatae-Chrysopogonetum grylli Ilijanić et al. ex Terzi 2011 [ge]; Helichryso italiciArmerietum dalmaticae Horvatić 1963 [ha]; Koelerio macranthae-Brachypodietum retusi Terzi 2015 (= Koelerio macranthae-Brachypodietum retusi Trinajstić 2005 nom. inval., Art. 10b) [kb]; Koelerio splendentis-Festucetum illyricae Horvatić 1963 corr. Trinajstić 1992 [kf]; Lactuco vimineae-Bothriochloetum ischaemum Poldini 1975 corr. Terzi 2011 [lb]; Laserpitido-Festucetum alpestris Pedrotti 1970; Leontodonto brumatii-Seslerietum calcariae Dakskobler et al. 2012 [ls]; Lino linearifolii-Gypsophiletum glomerati Tzonev 2009 nom. inval. (Art. 1); Minuartio capillaceae-Genistetum pulchellae Šegulja & Bedalov ex Terzi 2011 [mg]; Narcisso tazettae-Asphodeletum microcarpi Šegulja 1969 [na]; Onobrychido arenariae-Brometum erecti Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993 [ob]; Onobrychido-Brometum erecti T. Müller 1966; Ononido antiquorum-Brometum condensati (Horvatić 1934) Horvatić 1963 [oa]; Pediculari acaulis-Caricetum humilis Horvat in Horvat et al. 1974 [pc]; Peucedano oreoselini-Lathyretum filiformis Ritter-Studnička 1972 [pl]; Physospermo-Saturejuetum montanae Redžić & Lakušić in Lakušić & Redžić 1991; Poo bulbosae-Saturejetum subspicatae Černjavski et al. 1949 [pb]; Potentillo pilosae-Achilleetum clypeolatae Tzonev 2009 nom. inval. (Art. 1); Salvio officinalis-Euphorbietum fragiferae Lausi & Poldini 1962 [se]; Salvio officinalisSeslerietum juncifoliae Trinajstić 1977 [ss]; Saturejo montanae-Dichanthietum ischaemum Horvat in Horvat et al. 1974 corr. Terzi 2011 [sd]; Saturejo subspicatae-Caricetum humilis Trinajstić 1999 [sm]; Saturejo subspicatae-Edraianthetum tenuifolii Horvat in Horvat et al. 1974 [su]; Saturejo subspicatae-Festucetum dalmaticae Redžić & Lakušić in Lakušić & Redžić 1991 [sf]; Saturejo variegatae-Brometum condensati Poldini & Feoli Chiapella in Feoli Chiapella & Poldini 1993 [sb]; Schoeno nigricantis-Chrysopogonetum grylli Pignatti ex Feoli Chiapella & Poldini 1993 [sn]; Scorzonero villosae-Danthonietum calycinae Kovačević 1959 [ds]; Scorzonero villosae-Hypochoeridetum maculatae eschweizerbart_xxx Numerical analysis of the order Scorzoneretalia villosae 31 Horvatić 1949 nom. nud. [sh]; Seseli gouanii-Artemisietum albae Poldini 1980 [sa]; Seslerio robustae-Juniperetum sibiricae Domac 1962 [sj]; Seslerio tenuifoliae-Caricetum humilis Horvat 1930 [sc]; Stipo bromoidis-Salvietum officinalis Horvatić 1963 [so]; Stipo eriocaulis-Caricetum humilis Trinajstić ex Terzi 2011 [st]; Stipo pennatae-Genistetum dalmaticae Redžić et al. ex Terzi 2011 [sg]; Teucrio capitati-Chrysopogonetum grylli Sburlino et al. 2008 [tc]; ThlaspioTrifolietum pratensis Zanotto 1960; Thymo serpylli-Teucrietum chamaedryos Redžić & Lakušić in Redžić 1999. Appendix 2: Nomenclatural notes, including descriptions of new syntaxa and typifications. [1] The names Scorzoneretalia villosae and Scorzonero-Danthonietum calycinae were validly published for the first time by Kovačević (1959) with five relevés from Bosanski Petrovac (Bosnia). Kovačević (1959) also validated the Scorzonerion villosae (Horvatić 1949). Order and alliance, with only one subordinated syntaxon in their original diagnoses, were automatically typified. [2] The Scorzonero-Danthonietum calycinae is typified as follows: lectotypus is relevé 2 of table 7 in Kovačević (1959: 30). The Scorzonero-Danthonietum calycinae ranges from Bosnia and Herzegovina to Croatia, Slovenia and Italy. Poldini (1989) and Poldini & Kaligaric (1997) extensively dealt with this association in Italy and Slovenia and Horvatić (1963) in Croatia. However, the diagnoses given by these authors are quite different from those given for Bosnia (Kovačević 1959, Bajić 1960), lacking many important taxa, such as Ferulago campestris, Knautia illyrica, Centaurea jacea subsp. weldeniana, and Dianthus ferrugineus subsp. liburnicus, while including others with higher frequencies, such as Veronica austriaca subsp. jacquinii, Scabiosa ochroleuca, Phleum phleoides, Genista sagittalis (acidophilous), as well as Rhinanthus alectorolophus, Scorzoneroides autumnalis, Cynosurus cristatus and Lotus tenuis shared with the Molinio-Arrenatheretea. This floristic dissimilarity mirrors different ecological conditions and maybe two different associations could be differentiated. [3] The Saturejion subspicatae was validated by Tomić-Stanković (1970) with the valid publication of the GenistoGlobularietum bellidifoliae, containing Satureja subspicata (see Terzi 2011). [4] The Centaureo-Caricetum humilis (nomenclatural type of Saturejion subspicatae) was invalidly typified in Terzi (2011) due to the erroneous reference; the lectotypus of the Centaureo-Caricetum humilis is relevé A in Horvat (1931: 81). [5] The name of the Chrysopogono-Saturejion subspicatae was validated by Černjavski et al. (1949) with the valid publication of the Poo-Saturejetum subspicatae, containing Satureja subspicata (the other alliance name-giving taxon, Chrysopogon gryllus, being within the original diagnosis of Bromo-Chrysopogonetum grylli). The Chrysopogono-Saturejion subspicatae was thus validly published before the Chrysopogono-Koelerion splendentis and it can be no longer considered a superfluous name (see Terzi 2011). The Bromo-Chrysopogonetum grylli Horvatić 1934 (table 28 in Horvatić 1934) is designated as the lectotypus of the Chrysopogono-Saturejion subspicatae Horvat & Horvatić ex Černjavski et al. 1949. With this choice, I intend to mantain the distinction, largely used until now (e.g., Jovanović et al. 1986; Trinajstić 2008; Poldini 2009), between the Saturejion subspicatae and the Chrysopogono-Saturejion subspicatae (Recommendation 19A of ICPN). [6] The type-relevé of the Bromo-Chrysopogonetum grylli is very similar to the one of the Asphodelo-Chrysopogonetum grylli even though the former has a lower number of species. The two associations can be thus unified under the earliest name. [7] Following Poldini (1989), the Lactuco-Bothriochloetum ischaemum and Seseli-Artemisietum albae are reduced to the rank of subassociations of the Centaureo-Chrysopogonetum grylli (subass. sedetosum sexangulari Poldini (1975) 1989 and subass. genistetosum sericeae Poldini (1980) 1989, respectively). [8] The following associations are validated: Bromo condensati-Stipetum eriocaulis Lasen ex Terzi 2015 (invalidly described due to Art. 3b), holotypus is rel. 7, table 1, in Lasen (1995: 193); Genisto sericeae-Seslerietum kalnikensis Dakskobler & Peljhan ex Terzi 2015, holotypus is rel. 2, table 4, in Dakskobler & Peljhan (2007: 164). [9] Two other invalidly described associations (Art. 3g and 10b) can not be validated and must be renamed (Art. 6). The first is Bupleuro ranunculoidis-Brometum condensati Terzi 2015, holotypus is rel. 9 in Feoli Chiapella & Poldini (1993: 30); according to Feoli Chiapella & Poldini (1993), differential species of the association are Calamagrostis varia and Bupleurum ranunculoides (indicated as Bupleurum ranunculoides s.l. in Feoli Chiapella & Poldini [1993: 7 and 30]). The other is Koelerio macranthae-Brachypodietum retusi Terzi 2015 (holotypus is rel. 5, table 1, in Trinajstić [2005: 351]), whose differential species are those indicated by Trinajstić (2005): Koeleria macrantha and Brachypodium retusum. eschweizerbart_xxx 32 Massimo Terzi Electronic Supplements Supplementary material associated with this article is embedded in the pdf of this article. The online version of Phytocoenologia is hosted at the journal’s website www.schweizerbart.com/journals/phyto. The publisher does not bear any liability for the lack of usability or correctness of Supplementary material. Supplement S1: Relevés included in the data set. Supplement S2: Indicator species and their diagnostic role. Supplement S3: Life-form and chorological spectra. Please download the electronic supplement and rename the file extension to .zip (For security reasons Adobe does not allow to embed .exe, .zip, .rar etc. files). eschweizerbart_xxx