

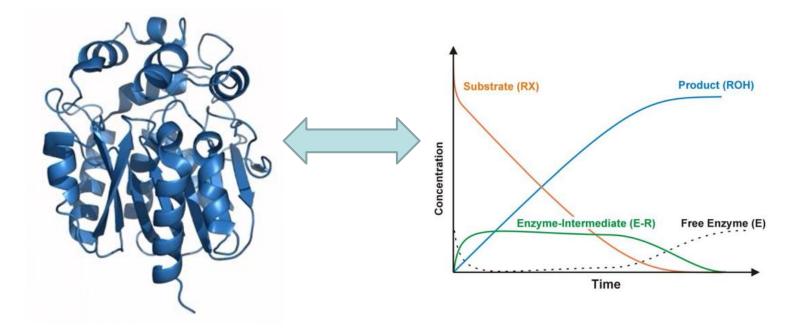
PROTEIN ENGINEERING

2. IN SILICO IDENTIFICATION OF PROTEINS

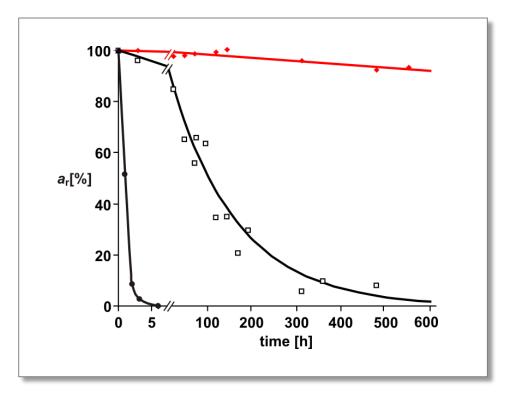
Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno

Outline

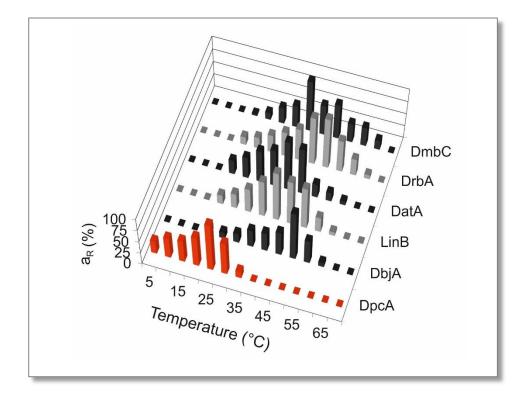
- □ Why to search for new proteins?
- □ How to acquire new proteins?
 - traditional approach
 - metagenomic approach
 - bioinformatic approach
- Bioinformatic approach
 - Where to find target sequences?
 - How to find target sequences?
 - How to recognize interesting sequences?
- □ What to keep in mind?



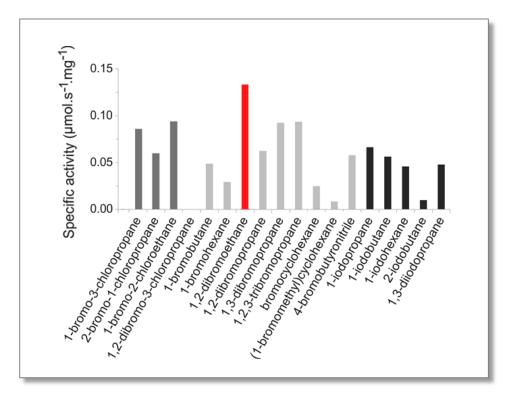
plenty of reasons


better understanding of structure-function relationships

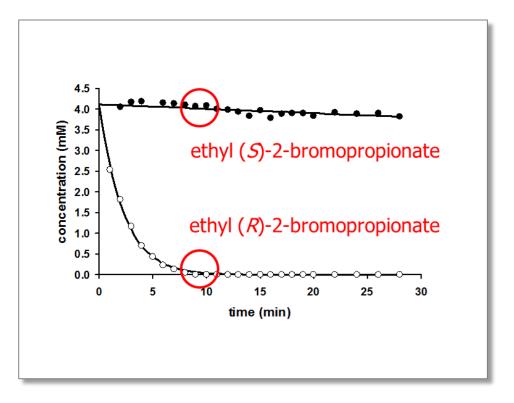
required for rational design


better understanding of structure-function relationships

- novel properties
 - stability

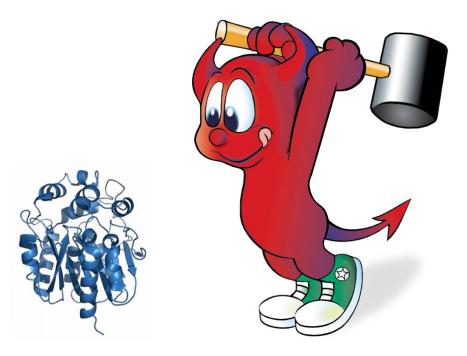

better understanding of structure-function relationships

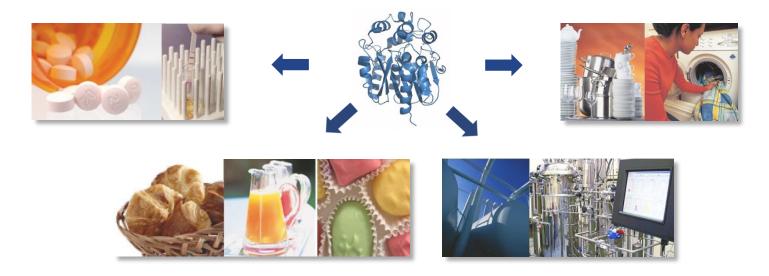
- stability
- temperature profile


better understanding of structure-function relationships

- stability
- temperature profile
- activity
- specificity

better understanding of structure-function relationships

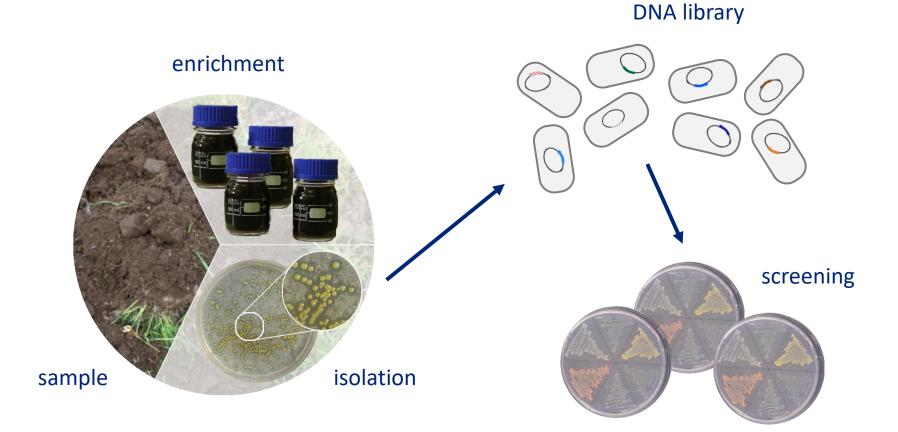

- stability
- temperature profile
- activity
- specificity
- enantioselectivity

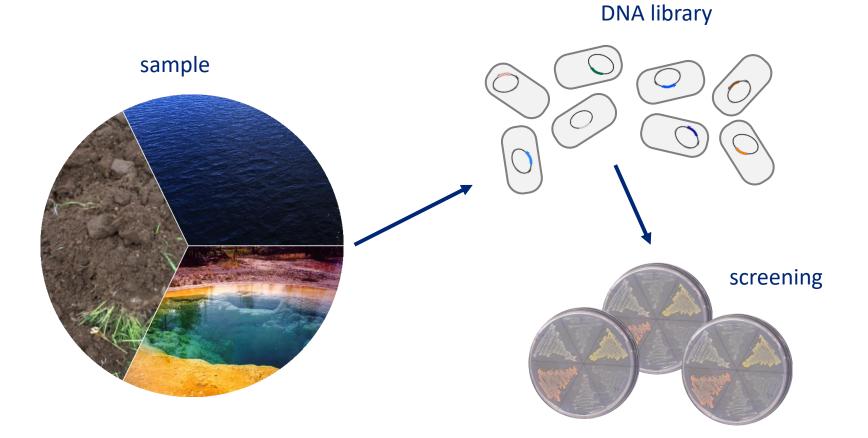

better understanding of structure-function relationships

- stability
- temperature profile
- activity
- specificity
- enantioselectivity
- • •

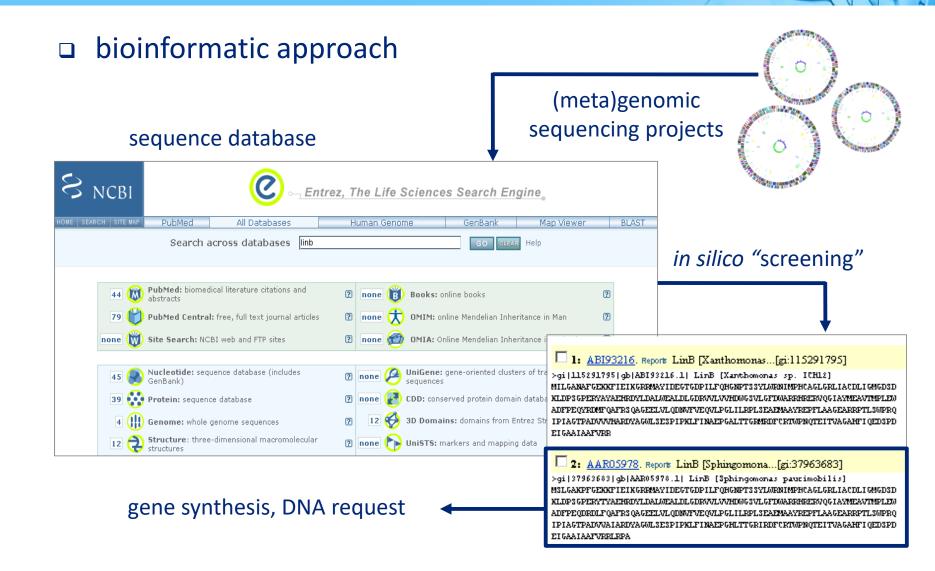
- better understanding of structure-function relationships
- novel properties
- better starting points for protein engineering

- better understanding of structure-function relationships
- novel properties
- better starting points for protein engineering
- \rightarrow proteins with desired properties \rightarrow practical applications




- traditional approach
- metagenomic approach
- bioinformatic approach

traditional approach



- □ traditional approach
 - microorganisms possessing target activity are enriched from the environment and isolated in pure culture
 - proteins or corresponding genes are recovered from organisms by protein purification, DNA library screening, PCR with specific primers,...
 - Begin an environment is lost
 Begin an environment is lost
 Begin an environment is lost

□ metagenomic approach

- □ metagenomic approach
 - isolation and cloning of DNA extracted directly from environmental sample (without culturing the present organisms)
 - genes recovered by DNA library screening or PCR with specific primers,...
 - ③ enables to explore biodiversity of uncultured microorganisms

- **bioinformatic** approach
 - sequence data from genomic and metagenomic sequencing projects are stored in sequence databases
 - *in silico* searching of sequence databases
 - \rightarrow \odot fast and cheap way to identify novel proteins
 - → ③ one cannot find what is not in the database (but there is a lot of data - more than one usually needs ③)
 - genes are recovered by gene synthesis or obtained from sequencing consortia upon request

Where to find target sequences?

Where to find target sequences?

- databases of nucleotide sequences
- databases of protein sequences

Databases of nucleotide sequences

- GenBank
 - http://www.ncbi.nlm.nih.gov/genbank/
 - provided by NCBI (National Center for Biotechnology Information)

EMBL-BANK

- http://www.ebi.ac.uk/embl/
- provided by EBI (European Bioinformatics Institute)

DDBJ

- http://www.ddbj.nig.ac.jp/
- provided by National Institute of Genetics from Japan

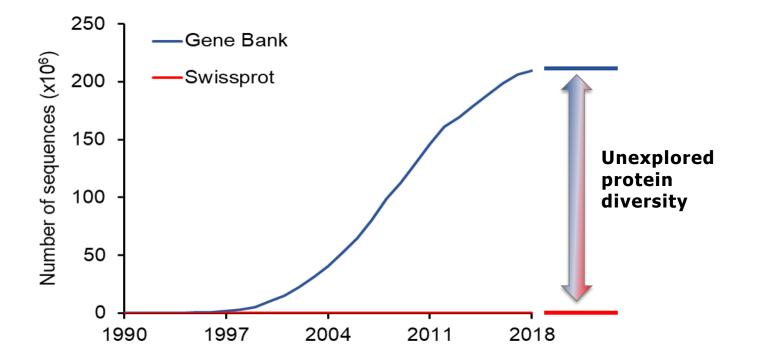
Databases of nucleotide sequences

- GenBank, EMBL-Bank, DDBJ
 - annotated collections of all publically available nucleotide sequences
 - freely available to wide community
 - contain data obtained from genomic centers or research institutions
 - everyday synchronization of new or updated data
 - Ontain about 250,000,000 sequences
 - Solution with a state of the state of the

- UniProtKB
 - http://www.uniprot.org/
 - provided by EBI, Swiss Institute of Bioinformatics and Protein Information Resource
- nr Protein database
 - http://www.ncbi.nlm.nih.gov/protein/
 - provided by NCBI

- UniProtKB, nr Protein database
 - annotated collections of publically available protein sequences
 - freely available to wide community
 - contain data obtained by conceptual translation of coding sequences from EMBL-Bank/GenBank/DDBJ or provided by research institutions
 - Ocontain more than 100,000,000 sequences
 - Solution with a state of the state of the

□ UniProtKB


- rich annotations (e.g., information about function of protein and individual amino acids, experimental data, biological ontologies, classifications, ...)
- clear indication of annotation quality (manual vs. automatic)

UniProtKB Protein knowledgebase	
UniProtKB/Swiss-Prot	
Reviewed Manual annotation	
1	
UniProtKB/TrEMBL	
Unreviewed 🗮 Automatic annotation	

- UniProtKB/Swiss-Prot
 - high quality annotations, i.e., manually annotated entries or expertreviewed automatic annotations
 - Source of reliable information
 - Scontains "only" ~ 560,000 sequences
- UniProtKB/TrEMBL
 - automatic annotations lower quality, errors
 - Contains ~ 180,000,000 sequences

Unexplored protein diversity

- Number of sequences
- Number of characterized proteins

Pitfalls of sequence databases

- □ large number of errors ⊗
 - errors in sequences (wrong base, frameshift errors)
 - wrong positions of genes

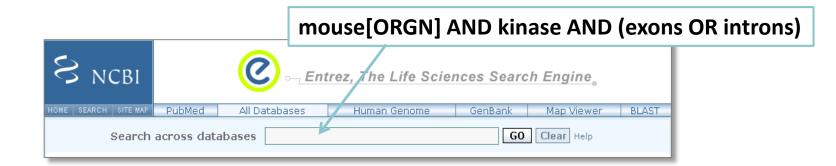
. . .

- exon-intron boundary errors
- errors and inaccuracies in annotations

How to find target sequences?

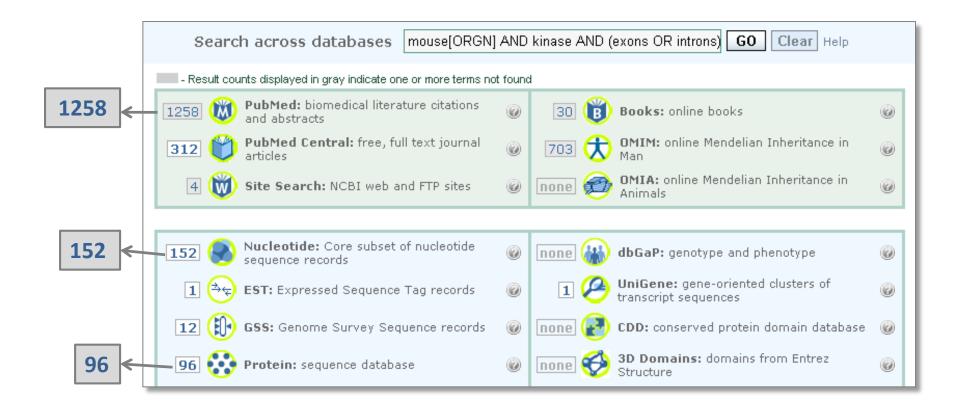
How to find target sequences?

- text-based searches
- sequence-based searches


Text-based searches

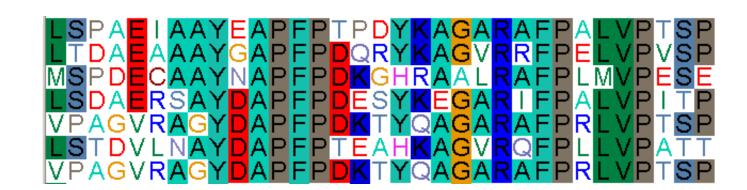
- database retrieval systems
 - enable quick and easy search of many databases at the same time
 - specification of queries using logical operators (AND, OR, NOT,...)
 - Entrez (NCBI), SRS (EBI)

- □ ⊗ results dependent on sequence annotations
 - erroneous, inaccurate or too general annotations
 - synonyms
 - misspellings
 - •


Text-based searches

database retrieval systems

Text-based searches


database retrieval systems

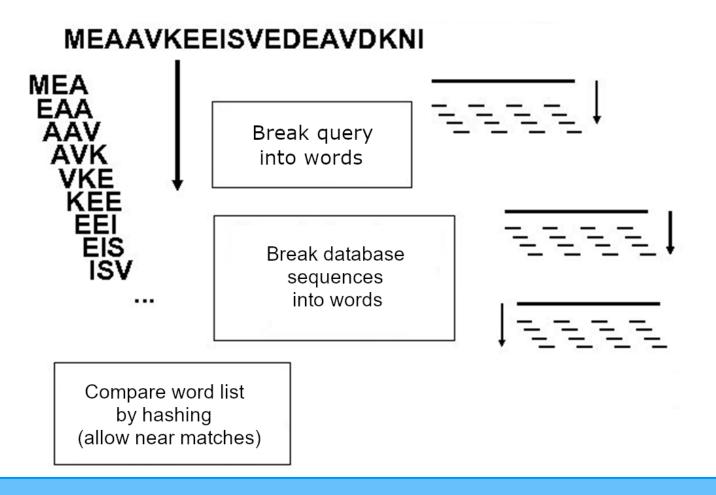
Sequence-based searches

- searches based on sequence similarity
 - Image: Image: Second Second
- rely on assumption that proteins with the same function have similar sequence
 - Inot always true close homologs vs. distant homologs vs. analogs

1234567

BLAST

based on local pairwise alignment


□ PSI-BLAST

- "iterative BLAST" making use of multiple sequence alignment
- very sensitive search strategy to detect weak but biologically significant similarities between sequences

BLAST

Basic Local Alignment Search Tool

BLAST

Basic Local Alignment Search Tool

Query sequence: R P P Q G L F

Database sequence: D P P E G V V

Exact match is scanned.

Optimal accumulated score = 7+7+2+6+1=23

BLOSUM scoring matrix

```
Ala
Arg
    ^{-1}
         5
    -2
         0
             6
Asn
    -2 -2
            1
                 6
Asp
       -3 -3 -3
     0
                     9
Cys
           0 0 -3
    -1
       1
                        5
Gln
           0 2 -4
    -1
         0
                        2
                            5
Glu
           0 -1 -3 -2 -2
     0
       -2
Gly
                                6
    -2
         0
            1
               -1 -3
                        0
                            0
                               -2
                                   8
His
           -3 -3
                   -1 -3 -3
    -1
       -3
                               -4
lle
    -1
       -2
            -3
                -4
                   -1 -2 -3 -4
                                  -3
Leu
                                           4
    -1
         2
             0
                -1 -3
                       1 1 -2 -1 -3
                                         -2
                                              5
Lys
                -3 -1
                          -2 -3
    -1
        -1
            -2
                        0
                                  -2
                                      1
                                          2 -1
                                                  5
Met
           -3 -3 -2 -3 -3 -3 -1
                                          0
                                            -3
    -2
        -3
                                     0
                                                  0
                                                      6
Phe
          -2 -1 -3 -1 -1 -2 -2 -3 -3 -1
    -1
       -2
                                                -2
                                                     -4
                                                         7
Pro
       ^{-1}
                 0
                   ^{-1}
                        0
                            0
                                0 -1 -2
                                         -2
                                              0
                                                ^{-1}
                                                     -2
                                                        ^{-1}
     1
            1
Ser
     0
             0 -1 -1 -1 -1 -2 -2 -1
                                                -1
                                                     -2
       -1
                                         -1
                                             -1
                                                        -1
                                                                 5
Thr
                                                             1
           -4 -4 -2 -2 -3 -2 -2 -3
Trp
    -3
        -3
                                         -2
                                             -3
                                                -1
                                                      1 -4
                                                            -3
                                                               -2
                                                                   11
           -2 -3 -2 -1 -2 -3 2 -1
                                        -1 -2
                                                ^{-1}
                                                      3 -3 -2 -2
    -2
       -2
                                                                    2
Tyr
                                                                       7
           -3 -3 -1 -2 -2 -3 -3 3
                                          1 -2
                                                 1 -1 -2 -2
                                                                0 -3 -1
Val
     0
        -3
    Ala Arg Asn Asp Cys Gin Glu Gly His lie Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
```

□ PSI-BLAST input

S	BLA	ST (BETA)		My NCBI Welcome akllupe. [Sign	2 Dut]
►NC	Home BI/BLAST/	Recent Results /blastp suite: BLASTI	Sav Pprog	MSLGAKPFGEKKFIEIKGRRMAYIDEGTGDPILFQHGNF	PTSSYLWRNI
	Ente		er, gi, a	COPILFQHGNPTSSYLWRNIMPHCAGLGRLIACDLIGH To Browse	
		noose Search Se	et	escriptive title for your BLAST search @	
		anism (•	Any	lundant protein sequences (nr)	

□ PSI-BLAST results

hits

Score Score Cover value Ident Image: achaete-scute homolog 2 [Homo sapiens] 373 373 100% 2e-130 100.00% NP_005161 Image: achaete-scute homolog 2 [Pongo abelii] 368 368 100% 3e-128 98.96% XP_002821 Image: achaete-scute homolog 2 [Nomascus leucogenys] 361 361 100% 2e-125 97.41% XP_003282 Image: achaete-scute homolog 2 [Macaca nemestrina] 356 356 100% 1e-123 96.37% XP_011719 Image: achaete-scute homolog 2 [Paijo colobus tephrosceles] 356 356 100% 1e-123 96.37% XP_023039 Image: achaete-scute homolog 2 [Paijo anubis] 297 297 100% 3e-100 95.85% XP_003039 Image: achaete-scute homolog 2 [Paijo anubis] 297 297 100% 3e-100 95.34% XP_008003 Image: achaete-scute homolog 2 [Chinopithecus bieti] 294 294 100% 3e-99 95.34% XP_017741 Image: achaete-scute homolog 2 [Cebus capucinus imitator] 271			Scor	re	E-v	alue			
DescriptionMax ScoreTotal ScoreOur CoverE ValuePer. IdentAccessachaete-scute homolog 2 [Homo sapiens]373373100%2e-130100.00%NP_005161achaete-scute homolog 2 [Pongo abelii]368368100%3e-12898.96%XP_002821achaete-scute homolog 2 [Nomascus leucogenys]361361100%2e-12597.41%XP_003282achaete-scute homolog 2 [Nomascus leucogenys]361361100%1e-12396.37%XP_003282achaete-scute homolog 2 [Nomascus leucogenys]366366100%1e-12396.37%XP_003282achaete-scute homolog 2 [Piliocolobus tephrosceles]366366100%1e-12396.37%XP_003039achaete-scute homolog 2 [Papio anubis]297297100%3e-10095.34%XP_003003PREDICTED: achaete-scute homolog 2 [Chlorocebus sabaeus]297297100%3e-9995.34%XP_017174PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator]27127192%4e-9096.07%XP_017363PREDICTED: achaete-scute homolog 2 [Callithrix jacchus]269269100%3e-8994.82%XP_009006achaete-scute homolog 2 [Sus scrofa]265265100%1e-87NP_001166	Seq	uences producing significant alignments	Download >	′′ Ма	nage (Colum	ns ~	Show	100 🗸
DescriptionScoreScoreScoreCovervalueIdentAccessachaete-scute homolog 2 [Homo sapiens]373373100%2e-130100.00%NP_005161achaete-scute homolog 2 [Pongo abelii]368368100%3e-12898.96%XP_002821achaete-scute homolog 2 [Nomascus leucogenys]361361100%2e-12597.41%XP_003822achaete-scute homolog 2 [Macaca nemestrina]366356100%1e-12396.37%XP_017149achaete-scute homolog 2 [Piliocolobus tephrosceles]356356100%1e-12396.37%XP_023039achaete-scute homolog 2 [Papio anubis]297297100%3e-10095.85%XP_003003PREDICTED: achaete-scute homolog 2 [Chlorocebus sabaeus]297297100%3e-9995.34%XP_017741PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator]27127192%4e-9096.07%XP_017741PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator]27127192%4e-9096.07%XP_017741PREDICTED: achaete-scute homolog 2 [Callithrix jacchus]269269100%3e-8994.82%XP_009006PREDICTED: achaete-scute homolog 2 [Callithrix jacchus]265265100%1e-8784.97%NP_00116PREDICTED: achaete-scute homolog 2 [Callithrix jacchus]265265100%1e-8784.97%NP_00116PREDICTED: achaete-scute homolog 2 [Callithrix jacchus]265265		select all 100 sequences selected	<u>GenPept</u>	Graphice	Dis	tance t	res of re	esults <u>M</u>	<u>ultiple alignm</u>
Image: sector of the sector		Description							Accession
Image: Constraint of the constraint	✓	achaete-scute homolog 2 [Homo sapiens]		373	373	100%	2e-130	100.00%	NP_005161.1
achaete-scute homolog 2 [Macaca nemestrina] 356 356 100% 1e-123 96.37% XP_011719 achaete-scute homolog 2 [Piliocolobus tephrosceles] 356 356 100% 1e-123 96.37% XP_023039 achaete-scute homolog 2 [Papio anubis] 297 297 100% 3e-100 95.85% XP_003099 PREDICTED: achaete-scute homolog 2 [Chlorocebus sabaeus] 297 297 100% 3e-100 95.34% XP_017741 PREDICTED: achaete-scute homolog 2 [Rhinopithecus bieti] 294 294 100% 3e-99 95.34% XP_017741 PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator] 271 271 92% 4e-90 96.07% XP_017763 PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator] 271 271 92% 4e-90 96.07% XP_017363 PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator] 269 269 100% 3e-89 94.82% XP_009006 achaete-scute homolog 2 [Sus scrofa] 265 265 100% 1e-87 84.97% NP_001116	<	achaete-scute homolog 2 [Pongo abelii]		368	368	100%	3e-128	98.96%	<u>XP_00282142</u>
Image: Section of the section of th	∕	achaete-scute homolog 2 [Nomascus leucogenys]		361	361	100%	2e-125	97.41%	<u>XP_00328213</u>
Image: Section of the section of th	\checkmark	achaete-scute homolog 2 [Macaca nemestrina]		356	356	100%	1e-123	96.37%	<u>XP_01171960</u>
Image: prediction of the sector of the se	\checkmark	achaete-scute homolog 2 [Piliocolobus tephrosceles]		356	356	100%	1e-123	96.37%	XP_02303927
✓ PREDICTED: achaete-scute homolog 2 [Rhinopithecus bieti] 294 294 100% 3e-99 95.34% XP_017741 ✓ PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator] 271 271 92% 4e-90 96.07% XP_017363 ✓ PREDICTED: achaete-scute homolog 2 [Callithrix jacchus] 269 269 100% 3e-89 94.82% XP_009006 ✓ achaete-scute homolog 2 [Sus scrofa] 265 265 100% 1e-87 84.97% NP_001116	<	achaete-scute homolog 2 [Papio anubis]		297	297	100%	3e-100	95.85%	<u>XP_00390943</u>
✓ PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator] 271 271 92% 4e-90 96.07% XP_017363 ✓ PREDICTED: achaete-scute homolog 2 [Callithrix jacchus] 269 269 100% 3e-89 94.82% XP_009006 ✓ achaete-scute homolog 2 [Sus scrofa] 265 265 100% 1e-87 84.97% NP_001116	\checkmark	PREDICTED: achaete-scute homolog 2 [Chlorocebus sabaeus]		297	297	100%	3e-100	95.34%	<u>XP_00800333</u>
✓ PREDICTED: achaete-scute homolog 2 [Callithrix jacchus] 269 269 100% 3e-89 94.82% XP_009006 ✓ achaete-scute homolog 2 [Sus scrofa] 265 265 100% 1e-87 84.97% NP_001116	\checkmark	PREDICTED: achaete-scute homolog 2 [Rhinopithecus bieti]		294	294	100%	3e-99	95.34%	<u>XP_01774177</u>
achaete-scute homolog 2 [Sus scrofa] 265 265 100% 1e-87 84.97% NP_001116	<	PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator]		271	271	92%	4e-90	96.07%	<u>XP_01736319</u>
	∕	PREDICTED: achaete-scute homolog 2 [Callithrix jacchus]		269	269	100%	3e-89	94.82%	<u>XP_00900695</u>
PREDICTED: achaete-scute homolog 2 [Capra hircus] 261 261 92% 5e-86 85.39% XP 017899	<	achaete-scute homolog 2 [Sus scrofa]		265	265	100%	1e-87	84.97%	NP_00111646
	✓	PREDICTED: achaete-scute homoloo 2 [Capra hircus]		261	261	92%	5e-86	85.39%	XP 01789908

□ PSI-BLAST results

Seq	uences producing significant alignments	Download	́Ма	nage (Colum	ns ~	Show	100 🗸 🔇
🗹 s	select all 100 sequences selected	<u>GenPept</u>	Graphics	<u>Dis</u>	tance t	ree of re	esults <u>M</u>	<u>ultiple alignmen</u>
	Desc	ription	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
≤	achaete-scute homolog 2 [Homo sapiens]		373	373	100%	2e-130	100.00%	<u>NP_005161.1</u>
✓	achaete-scute homolog 2 [Pongo abelii]		368	368	100%	3e-128	98.96%	<u>XP_002821424.1</u>
✓	achaete-scute homolog 2 [Nomascus leucogenys]		361	361	100%	2e-125	97.41%	<u>XP_003282133.1</u>
✓	achaete-scute homolog 2 [Macaca nemestrina]		356	356	100%	1e-123	96.37%	<u>XP_011719606.1</u>
✓	achaete-scute homolog 2 [Piliocolobus tephrosceles]		356	356	100%	1e-123	96.37%	<u>XP_023039276.1</u>
✓	achaete-scute homolog 2 [Papio anubis]		297	297	100%	3e-100	95.85%	<u>XP_003909431.1</u>
✓	PREDICTED: achaete-scute homolog 2 [Chlorocebus sabaeus]		297	297	100%	3e-100	95.34%	<u>XP_008003331.1</u>
<	PREDICTED: achaete-scute homolog 2 [Rhinopithecus bieti]		294	294	100%	3e-99	95.34%	<u>XP_017741776.1</u>
∕	PREDICTED: achaete-scute homolog 2 [Cebus capucinus imitator]		271	271	92%	4e-90	96.07%	<u>XP_017363199.1</u>
<	PREDICTED: achaete-scute homolog 2 [Callithrix jacchus]		269	269	100%	3e-89	94.82%	<u>XP_009006952.1</u>
✓	achaete-scute homolog 2 [Sus scrofa]		265	265	100%	1e-87	84.97%	<u>NP_001116463.1</u>
✓	PREDICTED: achaete-scute homolog 2 [Capra hircus]		261	261	92%	5e-86	85.39%	XP 017899088.1

□ PSI-BLAST results

alignment

> <u>gb AAT7</u> Length=34	0109.1 CurN [Lyngbya majuscula] L
	303 bits (777), Expect = 8e-81, Method: Composition-based stats. es = 148/297 (49%), Positives = 188/297 (63%), Gaps = 8/297 (2%)
Query 2	SEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYLWRNIIPHV-APSHR 60 I + FPF VEV G + YVD G G PVLFLHGNPTSSYLWRNIIP+V A +R
Sbjct 41	
Query 61	CIAPDLIGMGKSDKPDLDYFFDDHVRYLDAFIEALGLEEVVLVIHDWGSALGFHWAKRNP 120 +APDLIGMG S KPD++Y DHV Y+D FI+ALGL+++VLVIHDWGS +G A+ NP
Sbjct 99	AVAPDLIGMGDSAKPDIEYRLQDHVAYMDGFIDALGLDDMVLVIHDWGSVIGMRHARLNP 158
Query 12:	L ERVKGIACMEFIRPIPTWDEWPEFARETFQAFRTADVGRELIIDQNAFIEGVLPK- 175 +RV +A ME + P P+++ F+ RTADVG ++++D N F+E +LP+
Sbjet 159	
Query 170	5 CVVRPLTEVEMDHYREPFLKPVDREPLWRFPNEIPIAGEPANIVALVEAYMNWLHQSPVP 235 VVR L+E EM YR PF R P ++P E+PI GEPA A V WL SP+P
Sbjet 219	
Query 230	5 KLLFWGTPGVLIPPAEAARLAESLPNCKTVDIGPGLHYLQEDNPDLIGSEIARWLPG 292 KLLF PG L P L+E++PN + +G G H+LQED+P LIG IA WL
Sbjct 279	

BLAST Score

- normalized raw score
- raw score = sum of substitution scores and gap penalties
- higher is better, but does not adequately represent significance of alignment
- □ BLAST *E*-value
 - equal to the number of BLAST alignments with a given Score that are expected to be seen simply by a chance
 - indicator of alignment significance
 - results associated with the lowest *E*-values are the best
 - hits with an *E*-value score > 0.01 belong to the "grey zone" do not trust them

□ BLAST alignment

- identity and similarity level between query and aligned sequence
- alignment length and coverage of query sequence the alignment is local, therefore one should always check that the alignment covers a significant portion of the query sequence (e.g., the alignment may involve only few amino acids from the query sequence → not significant hit)

Optimal search strategy

- text-based search
 - good for finding evolutionary "unrelated" proteins with some specific function
 - a large number of false negatives (missed proteins with target function) and false positives (identified proteins with different function) results due to erroneous or inaccurate annotations

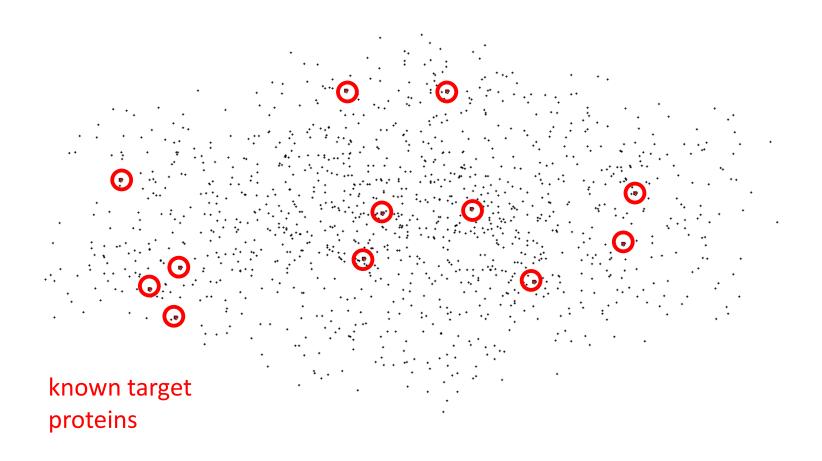
Optimal search strategy

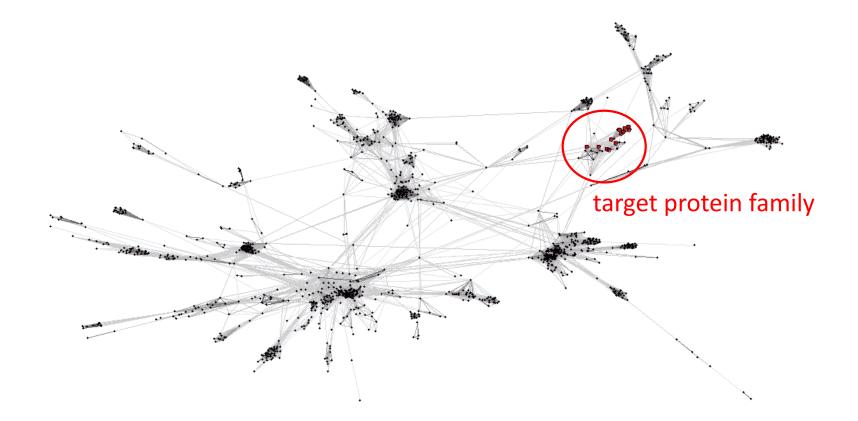
□ text-based search

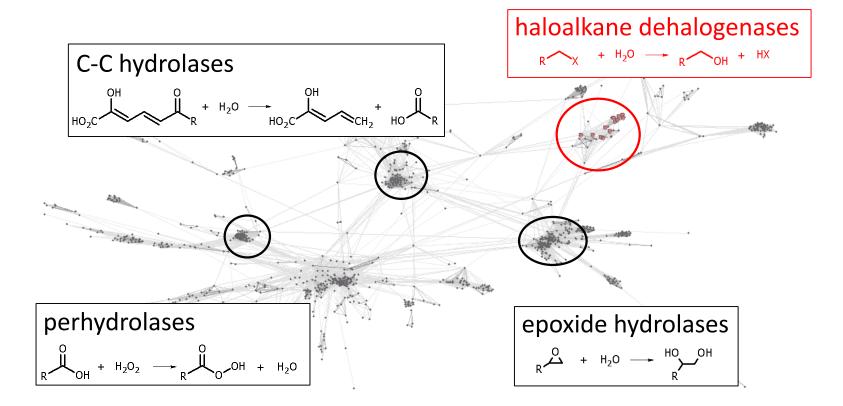
- sequence-based search
 - good for finding members of a protein family (i.e., group of evolutionary related proteins sharing some specific function) → not suitable for finding "unrelated" proteins
 - potential false positive results (i.e., proteins belonging to other evolutionary related families)
 - searches using protein sequence queries are generally more sensitive than using nucleotide sequence queries (20 different amino acids vs. 4 different nucleotides)

Optimal search strategy

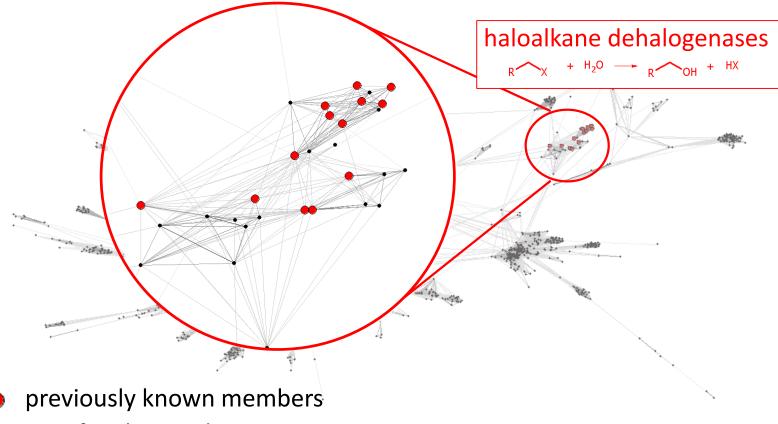
- text-based search
- □ sequence-based search
- combination of text-based and sequence-based approaches
 - 1. text-based search
 - subdivision of identified sequences into evolutionary related groups
 - 3. selection of few representatives for each group
 - 4. sequence-based searches using each representative as a query
 - potential false positive results should be filtered

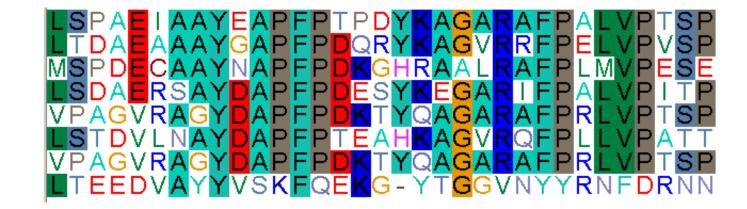

How to recognize interesting sequences?

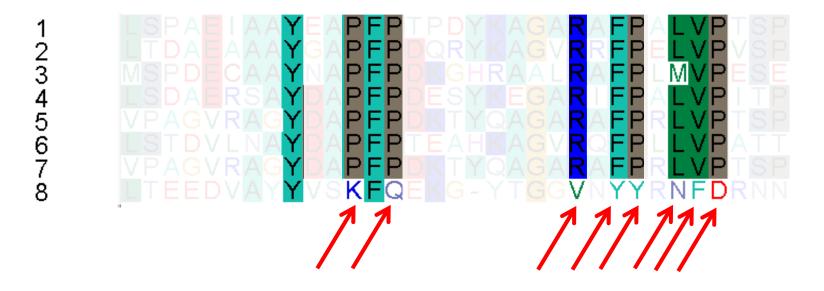

How to recognize interesting sequences?


- sequence clustering
- sequence comparison
- Information about host organisms
- automated in silico enzyme identification

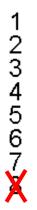
- clustering based on pairwise sequence similarities
 - can be used for a fast and rough classification of sequences in large datasets (thousands of sequences)
 - \rightarrow effective way to filter results of database searches
 - \rightarrow identification of members of individual protein families
 - CLANS visualization of pairwise sequence similarities in threedimensional space → overview of sequence space

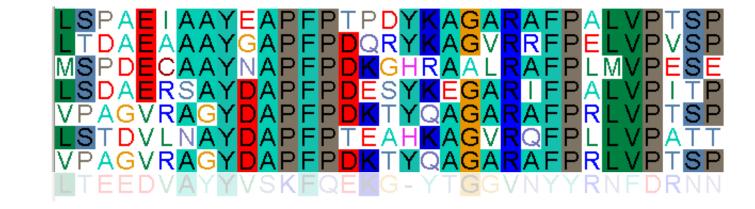



clustering based on pairwise sequence similarities


new family members

- multiple sequence alignment
 - analysis of conserved residues within protein family → identification of protein family members


12345678



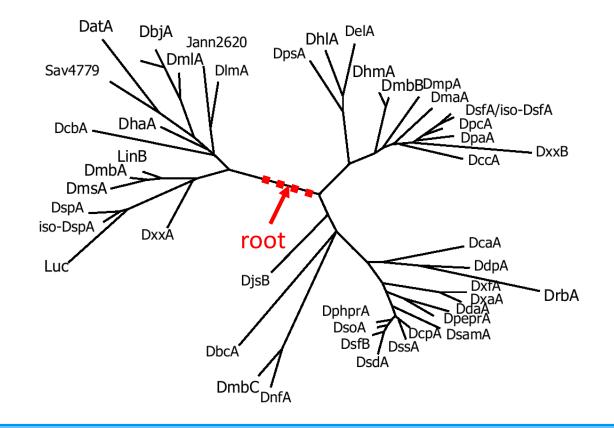
- multiple sequence alignment
 - analysis of conserved residues within protein family → identification of protein family members

- multiple sequence alignment
 - analysis of conserved residues within protein family → identification of protein family members

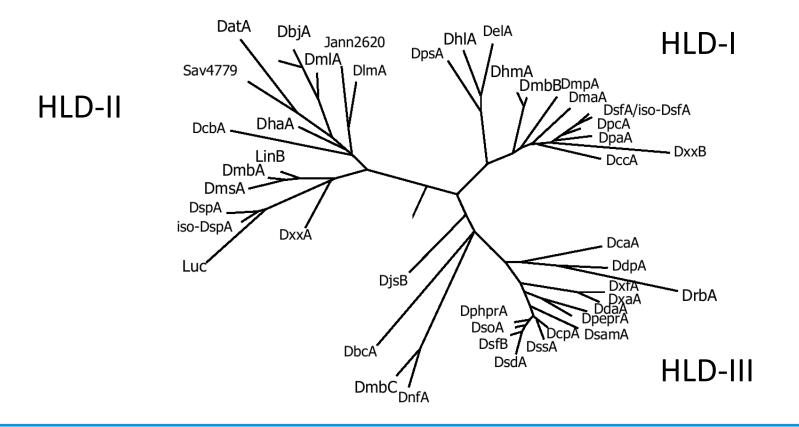
multiple sequence alignment

 identification of sequences with unique features → proteins with potentially novel characteristics

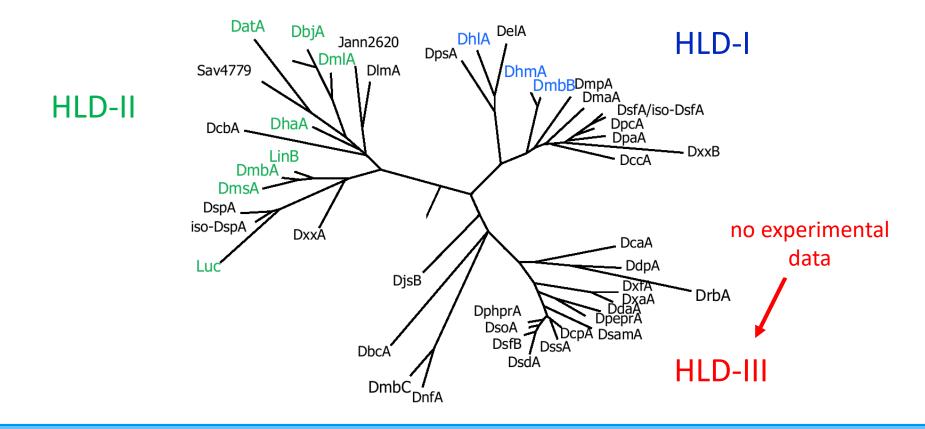
Shesp-EAKPFP	WALWIC- <mark>R</mark> NTGFNAFSSIASYV- <mark>GV</mark> KRA	- PMPKAI REAYVAI
Sheama ATKPLP	GCKRN	- PMNA <mark>E</mark> M <mark>R</mark> RAYVAI
	LALRIC- <mark>R</mark> DTGFNAFSLAASFV- <mark>G</mark> CKRN	- PLSR <mark>E</mark> L <mark>R</mark> RLYR LI
Desace PSKPLP	KALKLC- <mark>R</mark> DSGF NAF SRGAAWV- <mark>G</mark> CKIN	-PMPP <mark>A</mark> L <mark>RAAYMAI</mark>
Xanaxo AEKPMP	WQIAMG- <mark>R</mark> HWTF <mark>NAF</mark> SSGASWF- <mark>GW</mark> S R R	MPAD <mark>VR</mark> RAYVAI
Xylfas TSKKMP	GMETRWQIALG- R DWGL NAF ALGAAWL- <mark>GW</mark> ETR	LPR <mark>AVR</mark> RAYLAI
Chlaur HVP	LÂIAAG-KLPQL <mark>NAF</mark> AIAATTM-AVTRP	<mark>lpa<mark>avregy</mark>lwi</mark>
DespsyHIP	RISLC- <mark>R</mark> APGLNGEAWPASFM-A <u>NQK</u> R	LSK <mark>E</mark> VV <mark>AGY</mark> LAI
RhobalYMP	QRIAAC- <mark>R</mark> MPGLNLFARAAVTM-AMS <mark>R</mark> T	-KMKPD <mark>V</mark> A <mark>A</mark> GLL <mark>A</mark> I
Burcen NGREAP		-IIADTWIAAYGAI
Myctub ADT LAM	NFTVERLIFA-GTEHRKAFSRVMSSPPNFTVERLIFA-GTEHR	PSSAVMAHYRA
Nocfar IDALAN	NFLIDRV I LAEL R G	
		- <u>-RKG</u> PSKR <mark>AYR</mark> D]
uncbac PDVPQEVIDEI	KAFRASNKKINFFTMAKNISKMDKSKHFATKFMY <mark>W</mark> QK <mark>F</mark> SWESK <mark>N</mark> MPIGFLNSM- <u>Q</u> MEDKLAKSKVKAYVHLLFQGLGLEKL	
Erylit GESPGP		
Polsp-SDVPLS		MSPD <mark>ECAAY</mark> NAI
Mycavi AQRRTP		VSSKVRAGYDAI
Myctub AQGRTP	LPF YVWRAFARYSPV LPAGR LVNF - GTV <u>H</u> R	VPAGVRAGYDAI
Mycavi GDQBMA	<mark>-</mark> DVWWR <u>FREA</u> ITSAPQLNIGAFVQG- <mark>G</mark> CR <mark>B</mark> R	LSDA <mark>ER</mark> AGYDAI
Máraqu GDNRVP	GTERSVVFRLWKA <mark>F</mark> ASHSPWFPIGRIVQL- <mark>G</mark> TERS	LSP <mark>AE</mark> IAAYEAI
Caucre GVGKS	EGFEAWLN <mark>F</mark> SQNTPELPVGFI L ÑG- <mark>G</mark> TA <mark>R</mark> DEGFEAWLN <mark>F</mark> SQNTPELPVGFI	LSDA <mark>ER</mark> SAYDAI
	EAFMKWRAFSQEVPEFPVAGIIKG-ATVTAEAFMKWRAFSQEVPEFPVAGIIKG-ATVTA	LSTDVLNAYDAI
Psycry GDHDLG	EGFRKWQQ <mark>F</mark> SQEIPQFHVGGTIKS- <mark>G</mark> TVTKEGFRKWQQ F SQEIPQFHVGGTIKS-	
Shefri GDHPPG	EAFTKWRQESQDVAIFPTGNLINS-ACVSTEAFTKWRQESQDVAIFPTGNLINS-ACVST	LTVEIIAAYDAI
Shefri GDEETN	DAFMKWFNYSQESVDFPAGQMING-ASVSDDAFMKWFNYSQESVDFPAGQMING-ASVSD	LSDDVIAAYDAI
Xanaut DPVTOPAFSAF	VTOPAWARTHEIN VTOPA	DTEABASAYAAI


multiple sequence alignment

 identification of sequences with unique features → proteins with potentially novel characteristics


	WALMIC-RNTGFNAFSSIASYV- <mark>GVK</mark> RA	PMPKAIREAYVA
	LRLKIC-RDTGFNAFAGLASVI- <mark>G</mark> CKRN	PMNAEMRRAYVAI
Pelpro PGKPFP	LALRIC-RDTGFNAFSLAASFV-GCKRN	PLSRELRRLYRLI
	SALKLC- <mark>R</mark> DSGFNAFSRGAAWV- <mark>G</mark> CKIN	PMPPALRAAYMAI
Xanaxo AEKPMP	WQIAMG-RHWTFNAFSSGASWF- <mark>G</mark> WSRR	MPADVRRAYVAI
Xylfas TSKKMP	WQIALG- <mark>R</mark> DWGL <mark>NAE</mark> ALGAAWL- <mark>GVET</mark> R	LPRAVRRAYLAI
ChlaurHVP	LRIAAG-KLPQL <mark>NAF</mark> AIAATTM-AUTRP	<mark>LPAAVREGY</mark> LWI
DespsyHIP	LRISLC- - APGLNG F AWPASFM-AM <u>QK</u> R	LSKEVVAGYLAI
RhobalYMP	QRIAAC-PMPGLNLFARAAVTM-AMST	KMKPD <mark>VA<mark>A</mark>GLLAI</mark>
Burcen NGREAP	ENHAWFQMIM-RAAGFNILSTLKING-FENHA	IIADTWIAAYGAI
Myctub ADTLAM	NF INF INT IN THE ACCEPTION IN THE ACCEPTION IN THE ACCEPTION AND A	PSSAVMAHYRAV
Nocfar IDALAN	NF LIDRVILAE LIG	VITKAEADHYRGV
Jansp-GVDPDK	EKLPPP <u>L</u> LMM _ AKRL <u>G</u> F E ERQVMTM-ATATK	<u>-</u> R <u>K</u> GPSKR <mark>AYR</mark> D]
	5NKKINFFTMAKNISKMDKSKHFATKFMYMQK <mark>F</mark> SWESKNMPIGFLNSM-QMEDKLAKSKVK	KAYVHLLFQGLGLEKLS P F S TDLIK AY E A I
Erylit GESPGP	GFEAWKAENRSQPNMDVAGLFKR- <mark>G</mark> TPD	ITDAFAAAYGAI
Polsp-SDVPLS	PGFRAM <mark>REMCAKNPDFDVARLFAR-</mark> GNP <u>Q</u>	MSPDECAAYNAI
Mycavi AQRRTP	PAF YAWRA <mark>F</mark> ARY SPVLPAGRIVSV- <mark>G</mark> TV <mark>R</mark> R	MSPD <mark>E</mark> CAAYNA. VSSK <mark>VRA</mark> GYDA
Mycavi AQRRTP Myctub AQGRTP	PAF YAWRAF AR Y SPV LPAGR I VSV- <mark>G</mark> TV <mark>R</mark> R LPF YVWRAF AR Y SPV LPAGR LVNF- <mark>G</mark> TV <u>H</u> R	MSPD <mark>+C</mark> AAYNA VSSKVRAGYDAI <u>VPAG</u> VRAGYDAI
Mycavi AQRRT Myctub AQGRT Mycavi GDQ MA	PAFYAWRAFARYSPVLPAGRIVSV-GTVRR LPFYVWRAFARYSPVLPAGRLVNF-GTVHR DVWWRFREAITSAPOLNIGAFVOG-GCRRR	MSPD <mark>BC</mark> AAYNA VSSKVRAGYDA VPAGVRAGYDA VPAGVRAGYDA
Mycavi AQRRT Myctub AQGRT Mycavi GDQ MA Maraqu GDNRV	PAFYAWRAFARYSPVLPAGRIVSV-GTVRR SPFYVWRAFARYSPVLPAGRLVNF-GTVHR DVWWRFREAITSAPQLNIGAFVQG-GCRRR VVFRLWKAFASHSPWFPIGRIVQL-GTERS	MSPDFCAAYNA VSSKVRAGYDA VPAGVRAGYDA
Mycavi AQRRT Myctub AQGRT Mycavi GDQ MA Maraqu GDNRV Caucre GVGKS	PAFYAWRAFARYSPVLPAGRIVSV-GTVRR 	MSPDFCAAYNA VSSKVRAGYDA VPAGVRAGYDA VPAGVRAGYDA SDABRAGYDA
Mycavi AQRRT Myctub AQGRT Mycavi GDQ MA Maraqu GDNRV Caucre GVGKS Pseatl GDH PG	PAFYAWRAFARYSPVLPAGRIVSV-GTVRR 	MSPDFCAAYNA VSSKVRAGYDA VPAGVRAGYDA SAGVRAGYDA SAGVRAGYDA
Mycavi AQRRT Myctub AQGRT Mycavi GDQ MA Maraqu GDNRV Caucre GVGKS Pseatl GDH PG Psycry GDHDLG	PAFYAWRAFARYSPVLPAGRIVSV-GTVRR 	MSPDFCAAYNA VSSKVRAGYDA VPAGVRAGYDA VPAGVRAGYDA SAAGYDA
Mycavi AQRRT Myctub AQGRT Mycavi GDQ MA Maraqu GDNRV Caucre GVGKS Pseatl GDH PG Shefri GDH PG Shefri GDH PG	PAFYAWRAFARYSPVLPAGRIVSV-GTVRR 	MSPDECAAYNA
Mycavi AQRRT Myctub AQGRT Mycavi GDQ MA Maraqu GDNRV Caucre GVGKS Pseatl GDH PG Psycry GDHDLG		MSPDFCAAYNA VSKVRAGYDA VPAGVRAGYDA SPAFIAAYDA

phylogenetics


establishment of evolutionary relationships among sequences

- phylogenetics
 - classification of sequences

- phylogenetics
 - information about experimental data → selection of novel proteins

- extremophiles microorganisms living in extreme conditions
 - geochemical extremes (pH, salinity)
 - physical extremes (temperature, pressure)
- proteins from extremophiles
 - often adapted to extreme conditions → unique characteristics, useful for practical applications

- Genomes OnLine Database (GOLD)
 - http://www.genomesonline.org/
 - list of complete (>6,000), ongoing (> 27,000) and targeted genome (>1,000) projects
 - Information about individual projects and source organisms
- Entrez Genome
 - http://www.ncbi.nlm.nih.gov/sites/genome
 - provided by NCBI
 - data from more than 20,000 finished or ongoing genome projects (includes almost 10,000 organisms)
 - information about genome, source organism, genes, encoded proteins, graphical representations, ...

GOLD

Metagenomes	Isolate Genomes
器 <u>Classification</u>	Complete Projects: 4169
• <u>Studies</u> : 370	E Incomplete Projects: 17714
• Samples: 2642	Targeted Projects: 1500

Organism M	letadata	
MIGS 22 📀	OXYGEN REQUIREMENT	Aerobe
MIGS 37.1 0	CELL SHAPE	Rod-shaped
MIGS 37.2 0	MOTILITY	Nonmotile
MIGS 37.3 📀	SPORULATION	
MIGS 37.4 0	PRESSURE	
MIGS 37.12 0	TEMPERATURE RANGE	Psychrophile
	SALINITY	Halotolerant
	PH	
MIGS 37.5 0	CELL DIAMETER	
MIGS 37.6 0	CELL LENGTH	
MIGS 37.7 0	COLOR	
MIGS 37.8 0	GRAM STAINING	
<u>MIGS 15</u> 🥺	BIOTIC REALTIONSHIPS	Free living

Entrez Genome

Psychrobacter cryohalolentis

Psychrotolerant organism

Lineage: Bacteria[4049]; Proteobacteria[1682]; Gammaproteobacteria[750]; Pseudomonadales[122]; Moraxellaceae[51]; Psychrobacter[10]; Psychrobacter cryohalolentis[1]

Psychrobacter. These bacteria are commonly isolated from low temperature environments, *Psychrobacter* spp. are cold-adapted organisms that are often isolated from extreme environments such as permafrost or the Antarctic ice. **Psychrobacter cryohalolentis**. *Psychrobacter cryohalolentis*, formerly *Psychrobacter cryopegella* More...

Representative

Community selected, Calculated : Psychrobacter cryohalolentis K5

Psychrobacter cryohalolentis K5. This organism was isolated from saline liquid (12-14%) found 11-24 m below the surface within a forty thousand-year-old Siberian permafrost at the Kolyma-Indigirka lowland in Siberia. This strain will provide insight into growth at extremely low temperatures.

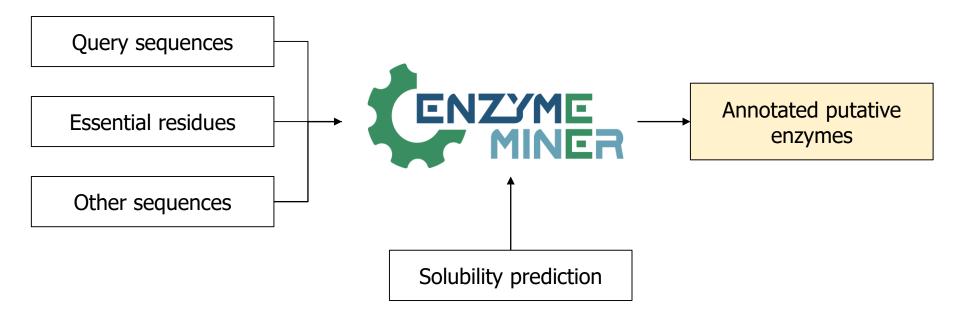
Human Pathogen: no

Туре	Name	RefSeq	INSDC	Size (Mb)	GC%	Protein	rRNA	tRNA	Other RNA	Gene	Pseudogene
Chr	-	NC_007969.1	CP000323.1	3.06	42.3	2,467	12	48	6	2,537	4
Plsm	1	NC_007968.1	CP000324.1	0.041221	38.3	44	-	-	-	44	-

biological properties

Biological Properties

Morphology


- Shape : Bacilli
- Motility : No
 Environment
 - Salinity : ModerateHalophilic
 - TemperatureRange : Psychrophilic
 - Habitat : Multiple

Genome Sequencing Projects

		-			Chromosomes [1]	Scaffolds or con	tigs [0] 🕒 SR	A or Traces [0] 🔍 No data [0]
Organism	BioProject	Assembly	Status	Chrs	Plasmids	Size (Mb)	GC%	Gene	Protein
Psychrobacter cryohalolentis K5	PRJNA58373, PRJNA13920	ASM1390v1	٠	1	1	3.1	42.2	2,581	2,511

Automated in silico enzyme identification

- **D** Enzyme Miner
 - https://loschmidt.chemi.muni.cz/enzymeminer/

Automated in silico enzyme identification

Automated mining of enzymes with diversified function.	Æ
<u>Submit new job</u> Help Example Use cases Acknowledgements	Job ID: e.g. xxxxxxx Find jol
Swiss-Prot sequences Custom sequences Custom sequences Advanced options	REFERENCES Hon, J., Borko, S., Bednar, D., Prokop, Z., Martinek, T., Damborsky, J., 2019: EnzymeMiner: Web Server for Automated Mining of Sequences Encoding Enzymes with Diversified Functions. Nucleic Acids Research (in preparation).
JOB INFORMATION Job title:	USER STATISTICS Number of visitors: - Number of jobs: 60 CONTACT
Email:	Loschmidt Laboratories • email 1 • email 2 OTHER TOOLS
Next	

NPUT							
Swiss-Prot se	equences 👩 🚺	Custom sequence	s @				
Load saved in	put 🛛						
Query sequenc	es: 🔞						
GEPTFLCVHGI LIRLVDELDLI MPVLGTPAVR(oad from file:	NPTWSFYYRRIIE KNVILIAHDWGGA GLNLFARAAVTMA	SDLFPHPSSELSIG RYGKQQRVIAVDH AIGLSAMHARRDRI MSRTKMKPDVAAG	HIGCGRSDKPS LAGIGLLNTAA	EDEFPYTMAAHRI FPPPYMPQRIAA	DN CR		
FRCVAPDYLG	FGLSERPSGFGY0 LGNTWFWPADTLA	RGRIHYVDEGTGPN DEHARVIGEFV MKAFSRVMSSPPN NPKOTLAARPLLAR	DHLGLDRYLSM /QYAILRRNFF	GQDWGGPISMAV/ VERLIPAGTEHRI	AV PS		
	Soubor nevybr	án					
ssential residu Add protein (r Accession	ow) Add residu	ue (column) acid1	acid2	base	halide1	halide2	halide3
	D	D, E	D, E	н	H, N, Q, W, Y	H, N, Q, W, Y	H, N, Q, W, Y
DrbA	139	Enter position	272	300	71	140	Enter position
DmbB	123	Enter position	250	279	Enter position	124	164
DmbC	109	Enter position	238	267	43	110	Enter position

JOB OUTPUT INFORMATION			DOWNLOAD RESULTS			
ID:	example		Result table (xlsx)			
Title:	Example		Result table (tsv)			
Time:	18 12 2019 14:04					
Status:	Done		Raw results			
Download input file Re-run job		job				

TARGET SELECTION TABLE	
Select all Undo Redo	
Solubility threshold: 2 0.00	
Primary domains: 📀	
PF00561 (Abhydrolase_1) ×	× ~

Selected Full Dataset	Extra domain Known Or	ganism Tempe	rature Salinity Biotic	Relationship	Disease Transr	nembrane With St	tructure
Accession	Annotation	Closest query	Identity closest query	Kingdom	Solubility	Sequence length	Domain
2PSD_A	Chain A, Crystal Stru	D4Z2G1	41.5	E	0.9735	318	Abł 🔨
2PSF_A	Chain A, Crystal Stru	D4Z2G1	41.5	E	0.9615	310	Abł
2PSJ_A	Chain A, Crystal Stru	D4Z2G1	41.5	E	0.9614	319	Abt
2PSH_A	Chain A, Crystal Stru	D4Z2G1	41.2	E	0.9586	319	Abh
WP_071575177.1	haloalkane dehalog	D4Z2G1	70.8	В	0.9399	270	Abh
35K0_A	Chain A, structure o	D4Z2G1	46.2	В	0.9393	311	Abł
4BRZ_A	Chain A, Haloalkane	D4Z2G1	61.7		0.9357	290	Abh

What to keep in mind?

What to keep in mind?

- sequence databases
 - nucleotide: GenBank, EMBL-BANK, DDBJ; protein: UniProtKB, nr Protein database
 - errors in sequences and annotations
- database searches
 - text-based: results influenced by sequence annotations
 - sequence-based: identification of family members BLAST, PSI-BLAST E-value
 - combination of both approaches: optimal strategy
 - false positive results: sequences should be filtered
- □ selection of proteins for experimental characterization
 - clustering: classification and filtering of hits from database searches CLANS
 - sequence comparison: classification and identification of unique sequences
 - sequences from extremophiles: potentially adapted to extreme conditions
 - **Enzyme Miner:** automated identification of interesting catalysts

What to keep in mind?

- in silico identification and analysis of sequences fast and
 - cheap way to identify new proteins

References

- □ Xiong, J. (2006). Essential Bioinformatics. Cambridge University Press, New York, p. 352.
- Claverie, J-M. and Notredame, C. (2006). Bioinformatics For Dummies (2nd ed.). Wiley Publishing, Hoboken, p. 436.
- Steele, H.L. *et al.* (2009). Advances in Recovery of Novel Biocatalysts from Metagenomes. *Journal of Molecular Microbiology and Biotechnoly* 16: 25–37.
- NCBI Resource Coordinators (2013). Database resources of the National Center for Biotechnology Information. *Nucleic Acids Research* 41: D8-D20.
- Magrane, M. and Consortium U. (2011). UniProt Knowledgebase: a hub of integrated protein data.
 Database 2011: bar009.
- Frickey, T. and Lupas, A. (2004). CLANS: a Java application for visualizing protein families based on pairwise similarity. *Bioinformatics* **20**: 3702-3704.
- Pagani, I. *et al.* (2012). The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Research* 40, D571-579.
- Van den Burg, B. (2003). Extremophiles as a source for novel enzymes. *Current Opinion in Microbiology* 6: 213-218.

PROTEIN ENGINEERING

3. PREPARATION OF RECOMBINANT PROTEINS, PROTEIN EXPRESSION AND PURIFICATION

Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno