

PROTEIN ENGINEERING

7. Rational and semi-rational design

Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno

Outline

- Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Outline

Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Protein engineering

- altering protein structure to improve its properties
- □ three main approaches
 - rational design
 - directed evolution
 - semi-rational design

Protein engineering approaches

RATIONAL DESIGN

1. Computer aided design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

DIRECTED EVOLUTION

1. not applied

Constructed mutant enzyme

	Rational design	Directed evolution	Semi-rational design
high-throughput screening/selection	not essential	essential	advantageous but not essential
structural and/or functional information	both essential	neither essential	either is sufficient
sequence space exploration	low	high, random	moderate, targeted
probability to obtain synergistic mutations	moderate	low	high

Structural information

worldwide Protein Data Bank (wwPDB)

- http://www.wwpdb.org/
- central repository of ~160,000 experimental macromolecular structures
- **RCSB PDB**
 - https://www.rcsb.org/
- D PDBe
 - https://www.ebi.ac.uk/pdbe/
- D PDBj
 - https://pdbj.org/

□ Protein engineering approaches

Semi-rational design

- identification of hot-spots
- evaluation of hot-spots
- selection of substitutions
- design of library
- mutagenesis and screening
- Rational design
 - molecular modeling

Semi-rational design

- combine advantages of rational and random approaches
- \Box selection of promising target sites (hot-spots) \rightarrow mutagenesis

→ creation of small "smart" libraries

- □ based on knowledge of protein structure and function
- □ ☺ high-throughput screening usually not needed
- ③ increased chance of obtaining variants with desired properties
- Sertain knowledge of protein structure-function
 relationships is still required, Subtraction

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Identification of hot-spots

- □ hot-spots for engineering catalytic properties
- hot-spots for engineering thermostability

Hot-spots for engineering catalytic properties

- □ residues mediating substrate binding, transition-state
 stabilization or product release → mutations can improve or
 disrupt binding, catalysis or ligand transport
 - residues involved in protein-ligand interactions
 - residues located in binding pockets
 - residues located in access tunnels

→ these residues also include catalytic or other essential residues which generally should not be mutated!

Analysis of protein-ligand interactions

- requires 3D structure of protein-ligand complex
 - experimental structure (wwPDB)
 - theoretical model (molecular docking)

Analysis of protein-ligand interactions

schematic diagrams of protein-ligand interactions

Analysis of protein-ligand interactions

□ inter-atomic contacts between protein and bound ligands

Res	sidue	Dist(Å)	Surf(Å ²)	Number of contacts
ASN	38 A	2.7	22.5	2
ASP	108 A	2.8	35.1	5
ILE	134 A	6.3	0.7	1
PHE	143 A	5.0	6.5	2
PHE	151 A	3.3	26.7	4
PHE	169 A	3.5	6.4	2
VAL	173 A	3.6	23.4	1
LEU	177 A	4.8	8.5	2
ILE	211 A	5.2	3.8	1
LEU	248 A	5.6	10.3	4
HIS	272 A	3.8	33.8	9
PHE	273 A	3.5	2.3	2
BR	901 A	3.8	30.7	2

LPC server

- binding and active sites of enzymes are often associated
 with structural pockets and cavities
 - most amino acid residues located in these pockets may come into contact with the ligands during the catalytic cycle
 - → one can accurately predict which residues may interact with the ligand even without precise knowledge of ligand orientation in the active site
- requires 3D structure of protein
- software for detection of pockets
 - CASTp, fPocket, MetaPocket, Caver Analyst...

detailed characterization of all pockets in the structure

CASTp

- buried binding or active sites are connected with bulk
 solvent by access tunnels
 - adjusted to permit transport of specific molecules
 - mutations can speed-up or hinder transport of molecules as well as allow transport of other molecules
- requires 3D structure of protein
- software for detection of tunnels
 - Caver, Mole, HOLE, PoreWalker

detailed characteristics of access tunnels

CAVER Analyst 2.0

Hot-spots for engineering thermostability

- □ highly flexible residues introduction of rigidifying mutations
- residues located in access tunnels
- residues predicted by systematic *in silico* saturation mutagenesis

 \rightarrow these residues may also include catalytic or other essential residues which generally should not be mutated!

Identification of highly flexible residues

- prediction based on crystallographic B-factors
 - reflect the degree of thermal motion, and thus the flexibility of individual residues

- □ requires 3D structure of protein
 - experimental structure determined by X-ray crystallography (wwPDB)

Identification of highly flexible residues

□ average B-factor of each residue in the target protein

Title: CRYSTAL STRUCTURE OF NIDOGEN/LAMININ COMPLEX (The highest 20 averaged B values are shown only.)						
Chain identifier of chain no. 1 : A						
Resid	ue Name	Residue seq. no.	B value	Rank		
ARG	Α	931	48.46	1		
GLU	Α	930	46.87	2		
SER	Α	151	46.50	3		
ALA	Α	149	45.90	4		
ILE	Α	150	45.69	5		
GLU	Α	981	45.63	6		
ASN	Α	932	44.67	7		
GLY	Α	979	44.39	8		
PHE	Α	89	44.32	9		
LYS	А	152	43.64	10		
GLY	A	980	43.33	11		
HIS	Α	978	42.84	12		
LEU	Α	148	42.76	13	T	
•					►	

B-FITTER

saturation mutagenesis in tunnel residues has 2× better
 chance to significantly improve stability than mutagenesis in
 other protein regions (based on computational predictions)

Detection of tunnels in proteins and analysis of ligand transport

	Tooi for the analysis o structures	of tunnels and channels in protei	'n		E.	
Submit new jot						
Submit new jot	іалуіт [4] du 10.8 16.1	Natura Evolugiput 12 0.73 12 0.60	Julti information Job Do topor The United Brochast Action Download the View Child View Child View Child View Child View Child View Child Solar Solar Solar Bath & stics Bath	MADL session uits in single zip t configuration AVER top t t tip t Line Son style Cartoon Trace Bedbone dia	JOB CONTROL Submit new job Job ID Job ID With an inter job Job ID Tunnet ID 2 1 2 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 4 5 5 5 5 5 <t< th=""><th>s ag Execution COV Execution COV</th></t<>	s ag Execution COV Execution COV
			Biner start Zoom to Clear so Bane I Read Visualization quality 1	ing point alection faction faction f f f f f f f f f f f f f f f f f f f	ratios (k) 1.5 costinutes (k) A, B, S costinutes (k) A, K, (5, 3, 2, 5, 11, 0) Bottimeek residues (14) anino addi Tro 141 A Pha 145 A Tro 148 A Tro 148 A Hide att Hide att	the the

CAVER Web

Systematic in silico saturation mutagenesis

- computational tools for the prediction of effect of amino acid substitutions on protein stability
 - each residue in the protein structure is replaced by all other
 possible amino acids and the change in folding free energy (ΔΔG)
 upon mutation is estimated
 - positions with a high proportion of stabilizing mutations and/or
 low proportion of destabilizing mutations are good candidates for
 randomization by experimental saturation mutagenesis
- usually requires 3D structure of protein
 - experimental structure (wwPDB)
 - theoretical model (homology modeling)

Systematic in silico saturation mutagenesis

- fast systematic scan of all possible single-point mutations –
 prediction of stability changes upon mutation
- sequence optimality score (the sum of all negative ΔΔGs at a given position) – indicates poorly optimized positions

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling
hot-spots identified by computational tools can be further evaluated to prevent replacing indispensable amino acid residues and to prioritize the hot-spots (i.e., order the hotspots based on their suitability for mutagenesis)

- analysis of evolutionary conservation
- prediction of effects of mutations on protein stability or function

- residues essential for maintaining structural or functional properties of a protein tend to be conserved during evolution
 - conserved residues are generally not recommended as suitable targets for mutagenesis - their replacement often leads to the loss of protein function
 - mutagenesis targeting highly mutable positions provides a significantly higher proportion of viable variants than random mutagenesis
 - targeting moderately or highly variable positions, which are expected to be tolerant to a wide range of substitutions, represents a good approach for producing efficient smart libraries (i.e., libraries with a high proportion of correctly folded and active variants)

residue conservation can be derived from a multiple
 alignment of a set of related proteins (3D structure not required)

1 ITLVVHDWGGMIGMGYAARYPERIK

residue conservation can be derived from a multiple
 alignment of a set of related proteins (3D structure not required)

- evolutionary conservation of individual positions in protein
 - mapped on protein 3D structure

ConSurf

- computational tools for the prediction of effect of amino acid substitutions on protein stability or protein function
 - *in silico* site-saturation mutagenesis of identified hot-spots check if mutations at a given site are likely to be tolerated
 - many highly destabilizing/deleterious mutations predicted for a certain position given site is not a very good target for mutagenesis

- effects on protein stability usually requires 3D structure of protein
 - experimental structure (wwPDB)
 - theoretical model (homology modeling)
- effects on protein function sequence information often sufficient

- prediction of effect of substitutions on protein stability
 - Evaluation of the change of protein free energy upon mutation
 - Evaluation of contributions of individual interactions to total energy
 - Usually requires structural information
- □ software for prediction of effect of mutation on stability
 - Rosetta, FoldX, CUPSAT, ERIS

prediction of effect of substitutions on protein stability

Amino Acid Mutations											
Amino acid	Overall Stability	Torsion	Predicted ∆∆G (kcal/mol)								
GLY	Stabilising	Unfavourable	1.48								
ALA	Destabilising	Unfavourable	-0.9								
VAL	Destabilising	Unfavourable	-2.23								
ILE	Destabilising	Unfavourable	-2.12								
MET	Stabilising	Unfavourable	1.89								
PRO	Stabilising	Unfavourable	1.55								
TRP	Stabilising	Favourable	2.73								
SER	Stabilising	Unfavourable	1.2								
THR	Destabilising	Unfavourable	-0.44								
PHE	Stabilising	Favourable	3.64								
GLN	Destabilising	Unfavourable	-0.69								
LYS	Stabilising	Unfavourable	9.91								
TYR	Stabilising	Favourable	0.96								
ASN	Stabilising	Favourable	4.14								
CYS	Destabilising	Favourable	-6.73								
GLU	Stabilising	Unfavourable	4.98								
ASP	Stabilising	Favourable	1.31								
ARG	Stabilising	Unfavourable	2.94								
HIS	Stabilising	Favourable	1.38								

CUPSAT

- prediction of effect of substitutions on protein function
 - Evaluation if a mutation would impair protein function
 - Hard to describe by physico-chemical properties > machine learning
 - Usually sequence based calculation
- □ software for prediction of effect of mutation on function
 - PredictSNP, SIFT, MAPP, PhD-SNP...

prediction of effect of substitutions on protein function

tome	Help	•												Job ID :	_	_	🔍 Fir	d
OB INFORMATIO	N																	
): o0bpgx itle: Example			Calculation Calculation	on succ	esstul, s	showing re	sults.											
ESULTS							neutral		deleteri	ous	unkno	wn	XX % ex	pected accu	гасу	0	unotation	
Mariant	Input	Desire function	DestintChiD2	C400	Predict	tion tools	European 2	-	4010	CasBaak	Change	De	dabases	HasisDag	11000	Formula	DurationChilD	
Variant	Hegion	Region function	e7.95	79.%	DANN 75.94	91.66	Funseq2	78.66	dosnip	Genbank	Canvar	OMIM	Regularie	нарюнер	OCSC	Ensembl	PredictSNP	1
613076,A-1	UTRa			13 16	/516	31.95	76 %	70 79	0		-	-	-	-	0	0		
84452863,C → T	UTR3		97 %	83 %	89 %	94 %	?	86 %	0		0	0	0	0	0	0		
5480678,G → A	exonic	synonymous	93 %	87 %	87 %	97 %	93 %	54 %	0	0	0	0	0	0	0	0		
:48575659,A→G	intronic		91 %	79 %	62 %	92 %	67 %	80 %	0		۲		0		0	۲		
:5248388,G - A	upstream		91 %	85 %	66 %	91 %	64 %	86 %	0		0		0	0	0	0		
:35532559,C→A	splicing		89.%	69 %	72 %	69 %	65 %	?							0	0		
21118528,G-C	exonic	nonsynonymous	87 %	80 %	62 %	83 %	61 %	?	0		0			0	0	0	Show	i
:31202373.C T	exonic	stopgain	57 %	53 %	54 %	69 %	65 %	68 %		0					0	0		Ì
6534707 C - T	minima		59.94	ED 14	72.04	60.56	64.94	77.66	8	~	20	m	er.					
0004707,0 - 1	specing		30.10	02 10	12.10	00 %	04 16	11.70	-	-	-	•	-		-	-		
Filter by category	All	V	Prioritize	by tool :	Predict	SNP2	- 77 m	Ge	nome ass	embly : G	RCh37/h	19	~			Send to	PredictSNP1	

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

substitutions introduced using degenerate codons

e.g., NNK (N = A/T/G/C; K = T/G)

symbol	base	symbol	base
А	adenosine	М	A C (amino)
С	cytidine	S	G C (strong)
G	guanine	W	A T (weak)
Т	thymidine	В	GTC
U	uridine	D	G A T
R	G A (purine)	Н	АСТ
Υ	T C (pyrimidine)	V	G C A
К	G T (keto)	Ν	A G C T (any)

IUPAC Nucleotide Nomenclature Table

- □ all possible substitutions NNK or NNS degenerate codons
 - Over the second s
 - Second redundancy is not completely eliminated (3× Arg, Leu, Ser, 2× Ala, Gly, Pro, Thr and Val)

- □ all possible substitutions NNK or NNS degenerate codons
- introduction of only selected substitutions using

degenerate codons encoding reduced amino acid alphabets

- Observation of the second secon
- \odot decreased library size \rightarrow improved screening efficiency
- NDT balanced set of 12 amino acids (12 codons)

□ all possible substitutions - NNK or NNS degenerate codons

introduction of only selected substitutions using

degenerate codons encoding reduced amino acid alphabets

Table 1. Oversampling necessary for 95% coverage as a function of NNK and NDT codon degeneracy.											
	I	NNK		NDT							
No. ^[a]	Codons	Transformants	Codons	Transformants							
		needed		needed							
1	32	94	12	34							
2	1 0 2 8	3 0 6 6	144	430							
3	32768	98 163	1 728	5175							
4	1048576	3 141 251	20736	62 118							
5	33 554 432	100 520 093	248 832	745 433							
6	$> 1.0 \times 10^{9}$	$> 3.2 \times 10^{9}$	> 2.9 × 10 ⁶	$> 8.9 \times 10^{6}$							
7	$>$ 3.4 \times 10 ¹⁰	$>$ 1.0 \times 10 ¹¹	$> 3.5 \times 10^{7}$	$> 1.1 \times 10^{8}$							
8	$> 1.0 \times 10^{12}$	$>$ 3.3 \times 10 ¹²	$> 4.2 \times 10^{8}$	$> 1.3 \times 10^{9}$							
9	$>$ 3.5 \times 10 ¹³	$> 1.0 \times 10^{14}$	$> 5.1 \times 10^{\circ}$	$> 1.5 \times 10^{10}$							
10	$> 1.1 \times 10^{15}$	$>$ 3.4 \times 10 ¹⁵	$> 6.1 \times 10^{10}$	$> 1.9 \times 10^{11}$							
[a] Num	[a] Number of aa positions at one site.										

- □ introduction of amino acids exhibiting certain properties
 - VRK 8 hydrophilic amino acids (12 codons)
 - NYC 8 hydrophobic amino acids (8 codons)
 - KST 4 small amino acids (4 codons)
 - ...

- □ introduction of amino acids exhibiting certain properties
- □ introduction of a balanced set of amino acids
 - NDT balanced set of 12 amino acids (12 codons)

- introduction of amino acids exhibiting certain properties
- introduction of a balanced set of amino acids
- introduction of substitutions existing (at a given site) in known natural proteins
 - likely increasing the proportion of viable variants in the resulting library
 - can be obtained by analysis of multiple sequence alignment

- □ introduction of amino acids exhibiting certain properties
- introduction of a balanced set of amino acids
- introduction of substitutions existing (at a given site) in known natural proteins
- discarding amino acids with potentially destabilizing/ deleterious effects
 - can be obtained by prediction of effects of mutations on protein stability or function

- meta-server combining several tools
 - automatic identification of hot-spots for engineering of enzyme catalytic properties
 - prioritization of hot-spots by their mutability
 - distribution of amino acids at individual positions

Functional hot spots of 1CV2

А

253

Met

1

✓

Return to Results browser

Viewer										Visualiz	ation settin	gs			6
			0	A						Tunnels	id len	gth (Å)	bottleneck ra	adius (Å)	
			T		Ê	22	3				1	7.7	1.5	;	
				16			5			Pockets	id chain(s) relevance	: (%) volun	ne (Å ³)	
					1.					۲	1 A	100	5	76	
				X-OC			7				2 A	82	8	83	
							/				3 A	62	2	275	•
											4 A	28	7	53	
									10 mail		5 A	25	1	83	
									JSmoi		6 A	19	1	119	p
Residue fea	atures								_		/ A	19	6	32	
Exclud	de correlated p	ositions 📄 Exclud	le catalytic pockets	Exclude tunnels	Exc	lude α-helices an	id β-sheets	Show all resi	idues	Residue	s selected	for mutage	nesis		
Exclud	de buried resid	ues 📃 Include	e residues with mode	erate mutability							Zoom residue	es	Desig	ın library	
	chain	position	residue	mutable *	non-essential	in tunnel	in catalytic pocket	HotSpot	-		chain	position	residue	HotSpot	
🖃 Chain A	A CONTRACTOR OF A CONTRACTOR A C									0	А	146	Gln	~	<u> </u>
۲	А	146	Gln	1	✓	1	1	✓	<u> </u>	0	A	136	Met	1	
۲	А	136	Met	1	✓	x	1	✓			A	147	Asp	~	
۲	А	147	Asp	✓	✓	1	1	✓							
	А	271	Ala	✓	✓	1	1	✓							
	А	138	lle	1	1	×	✓	✓	<u> </u>						
	А	247	Ala	1	✓	1	1	✓	<u> iii</u>						
	А	248	Leu	✓	✓	1	1	✓							
	А	249	Thr	1	✓	1	×	✓							
	Δ	253	Met	.1	1	×	1	1	m						

х

✓

<u> </u>

1

1. protein structure

 residues indispensable for protein function: catalytic and binding residues

3. functional residues: active site pocket and tunnels

4. mutability of individual positions of protein

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Design of library

- decisions to be made after evaluation and prioritization of hot-spots:
 - how many and which positions to target?
 - should the positions be randomized simultaneously or separately?
 - should all or only a reduced set of amino acids be introduced at individual positions?
- \rightarrow dramatic effect on the size of the resulting library

Design of library – HotSpot Wizard

Functional hot spots of 1CV2

Return to Results browser

ũ

-

n N

Ш.

Ш.

🛄 🖃

Viewer	Visua	lizatio	on setting	S	
	Tunne	els			
		id	lengt	th (Å) bottl	eneck radius (Å)
	🖃 S1	tartin	g from po	cket: 1	
	٢	1	7	.7	1.5
	Pocke	ets			
		id	chain(s)	relevance (%)	volume (Å ³)
	۲	1	A	100	576
		2	Α	82	883
		3	Α	62	275
		4	Α	28	753
		5	А	25	183
JSmol		6	А	19	119
Desidue features		7	А	19	632

Exclu	de correlated p de buried resid	oositions 📄 Exclud	le catalytic pockets e residues with mode	Exclude tunnels	Show all resi	dues			
	chain	position	residue	mutable 👻	non-essential	in tunnel	in catalytic pocket	HotSpot	-
🖃 Chain A	A								
\odot	А	146	Gln	1	✓	1	✓	√	
۲	А	136	Met	1	✓	x	✓	1	
۲	А	147	Asp	1	1	1	1	1	
	А	271	Ala	~	1	1	1	1	
	А	138	lle	~	✓	×	~	1	
	А	247	Ala	~	✓	~	<i>√</i>	~	
	А	248	Leu	1	✓	1	1	1	<u> </u>
	А	249	Thr	~	1	1	×	1	<u> </u>
	А	253	Met	1	1	×	✓	1	

Residues selected for mutagenesis												
Z	oom residi	Jes	Desi									
	chain	position	residue	HotSpot								
•	А	146	GIn	✓								
•	А	136	Met	✓								
•	А	147	Asp	✓								

Design of library – HotSpot Wizard

L	brary	design								-00
ſ	Sta	andard	SwiftLib							
	AAs	selection	mode : Am	nino acid fred	ency V Minimal frequency (%) : 5 Include wild-type			Exclude wild-	type	
	V	chain	position	residue	desired amino acids			codon	desired ratio (%)	stop ratio (%)
l	v	А	136	Met	Ala, Lys, Pro, Gln, Arg, Thr	~	VVR	× 🖉	77.8	0.0
l	v	А	146	Gln	Ala, Asp, Glu, Gly, Pro, Gln, Ser	~	BVV	× 🦉	63.0	11.1
l	1	А	147	Asp	Ala, Phe, Gly, Leu, Met, Thr, Val	~	DBS	× 🖉	61.1	0.0
l										
L										
l										
l										
L										
L										
L										
l										
ľ			Library a	7245				Coden	eana - Fecharishis	a coli K12
		5.	Library s	0.05				Couoli u	Can	erate report
		Expe	cted covera	ige : 0.95					Gen	
	Pro	bability o	f full covera	ige: O						
L										

Design of library – HotSpot Wizard

Libra	ry desig	n										-		
:	Standard	SwiftLi	b											
AA	\s selecti	ion mode : A	mino acid fre	quency	♥ Minimal fr	requency (%) :	5 Include w	ild-t	/pe Exclue	le wild-ty	rpe			
V	chain	position	residue			desired amind	o acids		codon		desired ratio (%)	stop ratio (%)		
	Α [136	Met	Ala, Lys,	Pro, Gln, Arg, Thr	r		~	VVR		77.8	0.0		
	A	146	Gln	Ala, Asp,	, Glu, Gly, Pro, Glr	n, Ser		~	BVV	0	63.0	11.1		
	Α [147	Asp	Ala, Phe,	, Gly, Leu, Met, Th	ır, Val		~	DBS		61.1	0.0		
				codon	desired ratio (%)	stop ratio (%)	desired amino acids			encode	d amino acids			
				DBS	100.0	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu:1 Thr:2 Val:2 Trp:1	1 Me	t:1 Arg:1 Ser:3	Ala:2 C Thr:2 V	ys:1 Phe:1 Gly:2 lle al:2 Trp:1	:1 Leu:1 Met:1 Arg	:1 Ser:3	*
				DBK	100.0	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu:1 Thr:2 Val:2 Trp:1	1 Me	t:1 Arg:1 Ser:3	Ala:2 C Thr:2 Va	ys:1 Phe:1 Gly:2 lle al:2 Trp:1	:1 Leu:1 Met:1 Arg	:1 Ser:3	
				DBB	100.0	0.0	Ala:3 Cys:2 Phe:2 Gly:3 lle:2 Leu:1 Thr:3 Val:3 Trp:1	1 Me	t:1 Arg:1 Ser:5	Ala:3 C Thr:3 Va	ys:2 Phe:2 Gly:3 lle al:3 Trp:1	:2 Leu:1 Met:1 Arg	:1 Ser:5	1
				DBN	97.2	2.8	Ala:4 Cys:2 Phe:2 Gly:4 lle:3 Leu:2 Thr:4 Val:4 Trp:1	2 Me	t:1 Arg:2 Ser:6	Ala:4 C <u>y</u> Thr:4 Va	ys:2 Phe:2 Gly:4 lle al:4 Trp:1	:3 Leu:2 Met:1 Arg	:2 Ser:6	
				DBV	96.3	3.7	Ala:3 Cys:1 Phe:1 Gly:3 lle:2 Leu:2 Thr:3 Val:3 Trp:1	2 Me	t:1 Arg:2 Ser:4	Ala:3 C Thr:3 Va	ys:1 Phe:1 Gly:3 lle al:3 Trp:1	:2 Leu:2 Met:1 Arg	:2 Ser:4	
				DBD	96.3	3.7	Ala:3 Cys:1 Phe:1 Gly:3 lle:2 Leu:2 Thr:3 Val:3 Trp:1	2 Me	t:1 Arg:2 Ser:4	Ala:3 C Thr:3 V	ys:1 Phe:1 Gly:3 lle al:3 Trp:1	:2 Leu:2 Met:1 Arg	:2 Ser:4	
				NBS	91.7	0.0	Ala:2 Cys:1 Phe:1 Gly:2 Ile:1 Leu:3 Thr:2 Val:2 Trp:1	3 Me	t:1 Arg:3 Ser:3	Ala:2 C Ser:3 Ti	ys:1 Phe:1 Gly:2 lle hr:2 Val:2 Trp:1	:1 Leu:3 Met:1 Pro	:2 Arg:3	
				NBK	91.7	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu:3 Thr:2 Val:2 Trp:1	3 Me	t:1 Arg:3 Ser:3	Ala:2 C Ser:3 Ti	ys:1 Phe:1 Gly:2 lle hr:2 Val:2 Trp:1	:1 Leu:3 Met:1 Pro	:2 Arg:3	
				NBB	91.7	0.0	Ala:3 Cys:2 Phe:2 Gly:3 lle:2 Leu:4 Thr:3 Val:3 Trp:1	4 Me	t:1 Arg:4 Ser:5	Ala:3 C Ser:5 Ti	ys:2 Phe:2 Gly:3 lle hr:3 Val:3 Trp:1	:2 Leu:4 Met:1 Pro	:3 Arg:4	
				NBN	89.6	2.1	Ala:4 Cys:2 Phe:2 Gly:4 Ile:3 Leu:6 The:4 Vol:4 Tex:4	6 Me	t:1 Arg:6 Ser:6	Ala:4 C	ys:2 Phe:2 Gly:4 lle	:3 Leu:6 Met:1 Pro	:4 Arg:6	+
		Library	size : 7315						с	odon us	age : Escherichi	ia coli K12	~	
	Ex	pected cover	rage: 0.95								Ger	erate report		
P	robabilit	y of full cover	rage: O											

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Mutagenesis and screening

□ saturation mutagenesis - next lecture ☺

- □ Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening

Rational design

■ molecular modeling → design of mutations

Rational design

- □ site-specific changes on the target enzyme
- few amino-acid substitutions that are predicted to elicit
 desired improvements of enzyme function
- based on detailed knowledge of protein structure, function and catalytic mechanism
- □ ☺ relatively simple characterization of constructed variants
- Or Second Secon
- □ ⁽³⁾ molecular modeling expertise usually required

- □ Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling → design of mutations

Molecular modeling

 "Theoretical or computational technique that provides insight into the behavior of molecular system."

A. R. Leach

Applications

- Protein stabilization
- prediction of protein dynamics
- prediction of protein-ligand interactions
- prediction of reaction barriers and reaction mechanisms

Molecular modeling

- □ relationship between energy and 3D-structure
 - potential energy surface
- basic methods
 - molecular mechanics
 - molecular dynamics
 - quantum chemistry
 - molecular docking

Design of stability

- Enzymes as biocatalysts
 - good activity and selectivity in water solution and standard temperature
 - for many biotechnological applications, high temperature or addition of organic solvents are necessary
 - this conditions can lead to denaturation > importance of stable proteins

Design of stability

Computational method FireProt https://loschmidt.chemi.muni.cz/fireprot/

- prediction of all single-point mutants
 by FoldX, Rosetta, and back-to-consens
- smart filtering based on conservation, correlation, electrostatic interactions, and antagonistic effect
- final prediction of multiple-point mutants for gene synthesis

Design of stability

Viewer	Visualization settings	E
202	Structure visualization style:	
	Wreframe Cartoon	
	Sticks Trace	
	Balls & sticks Backbone	
	Balls	
	Hide all visualized residues	
	Save image	
	Reset view	
	Visualization quality:	
	3	8
	FireProt protocol design	
	PDB ID: 4e46	1
YUN	Length: 292	
	Evolution mutant: -3.7 kcal/mol (6 mutation	ns)

Mutations

Combined m	ombined mutant Energy mutant		Evolution mutant		Wild-type					
Mutation info					Energy information			Evolution information		
visualize	chain	position	ref	alt	not conserved	not correlated	rosetta	mutable by majority	mutable by ratio	foldx
A E										
۲	A	11	D	Ρ	~	1	-1.89	×	×	-1.39
۲	A	20	E	S	~	1		~	~	0.08
۲	A	33	т	1	~	1	-1.94	×	×	-1.31

Racionální design stabilnějších enzymů

- Stabilization of haloalkane dehalogenase DhaA
 - In silico prediction of 5,500 mutants
 - Experimental testing of 5 mutants
- Output
 - 3 more stable mutants
 - Combined mutant $\Delta T_{\rm m} = 24^{\circ} {\rm C}$

Molecular dynamics

- □ successive configurations of system in time
- provides information on energetics, amplitudes and time

scales of local motions on atomic level

Molecular dynamics

- **u** generates ensemble of structures
 - more precise calculations of free energies

Molecular docking

□ predicts structure of receptor (protein) – ligand complex

Molecular docking

Two components procedure

- searching finding the
 conformation of ligand in the
 active site of the enzyme
- scoring evaluation of the binding free energy
- Docking software
 - Autodock, Vina, Gold,
 Medusa, Rosetta Dock...

Molecular docking

Virtual screening

- many compounds against one enzyme
- one compound against many enzymes

Quantum chemistry

- modeling of reaction
 - reaction barrier

Quantum chemistry

modeling of reaction

TRITON

- identification of functionally important residues
 - decomposition of energies to individual contribution
 - flexible residues functionally important dynamics
 - residues in contact with ligand
- \rightarrow further molecular modeling
- \rightarrow semi-rational design

- design of modified enzymes by in silico screening
 - study of effects of all relevant mutations
 - selection and combination of the best mutations

- effect of mutations at molecular level
 - example: improved activity of tunnel mutant

PROTEIN ENGINEERING

8. Directed evolution

Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno