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S1ALISHCAlANAIVSIS

o very fast due to use of computers
 chose statistical models that approach data cteasa

This course
 focuses on regression models in a broad sense
 only on linear models

« with only one response variablenjvariate methods)
 with independent observations




Uananies

Response variable

 (dependent) is the variable whose variation we tal understand,
the variable that we measure, it goes on ordinate

- continuous measurement, count, proportin (

Explanatory variable

* (independent) is the variable that we manipulsgédect levels),
Interested to what extent is variation in respassociated with
variation in explanatory variables, displayed oscadsa

- numeric: continuous or discrete measuremeqts €ovariate

- categorical .. a factoA( B) with two or more levelsA,, A,, .. B,,

B,, ..)
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Wiatishe

« environment for the manipulation of objects
- data manipulation, calculation and graphical kagp
- a high-level programming language

e combination of S (developed at AT&T Bell Labona¢s and
forms the basis of the S-PLUS systems) and Schangeidges

o initially written by Gentleman & Ihaka (1996), wadays with
many contributors (R Development Core Team)

- Includes about 30 standard packages

- available 2000 additional packages

o user-unfriendly (limited pull-down menus)
- based on commands
- pull-down menus only for basic commands




Wiy e

Pros

 freeware

» one of the largest statistical systems

e open environment with more dynamic developmeai thther
systems

» whereas Statistica or SAS will give copious oitfR will
provide minimal output

e makes you think about the analysis

Cons
* N0 warranty
e user-unfriendly




instalation

e available fromvww.r-project.com

e copy data to C:\Program Files\R\R-2.9.0\MABD

« install sciplotpackage




BasiGINErations

l = not equal
<= less than or equal
N power

* logical valuesl .. TRUE,F .. FALSE

Functions

e trigonometric

sin, cos, tan, asin, acos, atan

e logarithmic:l og, | 0og2,1 0gl10

esqrt, exp, abs, sum prod

eseq, ¢, which, length, cbind, xbind, natrix




e names are case sensitive

* “ "is not allowed to use

« avoid using namesireak, c, C, D, diff, else, F, FAL SE, for,
function, I, if, in Inf, mean, NA, NaN, next, NULL, pi, g, range,
rank, repeat, s, sd, t, T, tree, TRUE, var, while

e vectors: numeric, character, logical

e arguments (in parentheses): use their namestbouwtiat
specified order

e centring: to subtract mean
e scaling: to divide by SD




Jalalrames

Created In R:
e usedat a. frane,rep, factor,l evel s, rel evel

e exporttwite.tabl e

Imported:

- from Excel via clipboard
dat <- read.delinm"clipboard")

or via TXT file
dat <- read.delim"c:\\MABD\\netal .txt")

« data matrix:

- number of columns = number of variables

- first row contains names of variables (namesautiblank
spaces)




e each row corresponds to an observation (trial) et
 factors levels can be names or coded as numbers
e all columns must have the same number of rows

e missing data are assigned\is
-1S. na
-3

attach(dat)

nanes( dat)

field

distance

amount

pasture

pasture
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pasture
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5 1A

 a visual (tabular or graphical) analysis of tlatad

Important to

- check errors

- get an idea of the result

- suggest a model

- check assumptions for use of desired methods
- set hypotheses

- look for unexpected trends

e Use expected values and variation




Expected value

* E(y), u: theoretical long-term average of a variable

- one of a few characteristics of a distribution

- for discrete distributions K might not be a possible value
- estimate of B() ismean ... nean

- a robust estimate for asymmetric distributionseslian: ...
medi an

- another robust estimatetsmmed mean: mean where*n

observations are removed from each tarrean(y, tri n¥)

Example

Find mean, median, and mean trimmed by 10% oénhm®int
variable.

DEIL:E
nmet al . t xt




Variance

 Var(y), 0% a theoretical measure of the variability in a

variable
e minimum and maximum ..t ange, m n, nmax

« quantiles (0, 25, 50, 75, 100%)guant i | e
 estimate of Vagf) is &...var
 standard deviation (s) sd

e standard error of the mean ..
n

Example

Find variance, standard deviation, range and stdretaor of
the mean foamount.




Confidence Intervals

» of a parameter (mean): if large number of samigl¢zgken froma
population ther% of intervals will contain mean
» based on guantiles of the t distributmin

- lower Cly Y 1975, X SEM

V=n-1

- upper Cés Y * 15975, X SEM

« for asymmetric distributions g.lis estimated on transformed

values— asymmetric intervals
« from model objects use functi@onf | nt

Example
Find 95% confidence Intervals of mean &onount.




Tannaranalss

e basic summaries (min, max,LQ,s, median, mean) for all
variables.sunmar y

e summary table for data with explanatory variable(t appl y

* to count frequenciest.abl e

Example

Make a summary table, table of replicationsFteLD, table of
means foiIOIL andFIELD, and table of SEM fdfIELD.




GIANINES

e seedeno( gr aphi cs) ordeno(i nage)
e graphs

- basic:pl ot

- advancedxypl ot (library lattice)

* to get all graphic parameteffpar

* to split window to subplotgar ( nf r ow)
 t0 add legend l.egend
e graph window sizex11




pl ot

Argument

Values

t ype=
| as=

x| ab, yl ab=
cex. | ab=

xlitmylime
cex. axl s=
| og=

mal n=
mal N. cex=

Style:" n" (empty)," p" (scatter),'l " (lines),
"b" (both)," h" (vertical)

Style of axes value$: (parallel),1 (horizontal)
2 (perpendicular)3 (vertical)

Text of axes labels:..."

Size of axes labelq;, . .

Range of axesc( m n,

Size of axes valueg, .

Logarithmic scale ofXx,

Text of title:" ..."

Size of title: 1, . .




poi nt s

Argument

Values

pch=
cex=
col =
font =

Type of symbolsO, . ., 18, "letters
Size of symbolsi,
Colour: ,

) ] ] 7!
Font typel, 2, 3, 4

3

L]
O
A
+
X
&
V




Distribution plots

e to study distribution of a numeric (response)afale
e histogram .hi st

» stem-and-leaf plot st em

* g-g plots to compare distribution of two variable
- compare a single variable with normagdjnor m

- compare distributions of two variablegpl ot

- to add diagonal linegql | ne

Example

Make histogram and g-q plot dfstance.




Deviations from normal distribution

Asymmetric, right-skewed Symmetric with extendatkta Symmetric with heavy tails

Empiric quantiles
Empiric quantiles
Empiric quantiles

Eisiels n0O 000

Theoretical quantiles Theoretical quantiles Theoretical quantiles




Scatter plots

o for data with continuous explanatory variables
* to produce plots with pointpl ot

Example

Make scatterplot aflistance onamount without and with
different points for two levels &OIL.




Box plots

» when there are categorical explanatory variables

e function ..pl ot

- central line represents median

- bo>_< IS Qs and Q. _ | |

- whiskers are 1.5 times intergquartile range
- circles are outliers

e argumennot ch for boxes with Csfor median

- If median of one level falls outside notches imbther level, there
IS likely significant difference

Example

Make boxplot ofamount for SOIL without and with notches.




Panel plots

o for data with both categorical and continuousl@axatory
variables

e Xypl ot from librarylattice

- separate plots for each level of a factor: yA- x|
- several typed:ype="r" .. regression plot

Example

Make panel scatterplot regression plotisfance againsiamount
for SOIL.




Interaction plot

» for data with two categorical explanatory varesbl

* to plot means of two factord(B) connected by lines
..Interaction. pl ot

- Alis plotted on axis X

- Bis in the legend

e visual assessment of interaction between fa&dBsor A:B
- two factors can affect response additively ortmlicatively
- additive effect: parallel lines

- multiplicative effect: crossed lines

Example

Make interaction plot oBOIL andFIELD for amount.




Bar plot

« when data are counts or proportions

- data are arranged in a matrix or table
e pbarpl ot: beside, |egend

Example

Make barplot ofSOIL andFIELD for amount.




Paired plots

* when data include several continuous explanataryables
e pai r s produces matrix of all possible plots

3-dimensional plots

 when data include 2 continuous explanatory véegmb
W r ef rane (lattice) produces 3-dimensional plot




Graphs with error hars

o to display error bars use vertical linessaplot package

* plot empirical means and errors
- bar gr aph. Cl

-1 1 nepl ot. Cl

Example

Make barplot ofSOIL andamount and line plot ofSOIL and
FIELD andamount .




Graphs with functions

e final plot of estimated models

| I nes connects points specified by coordinates
« abl I ne produces line specified by intercept and slope

| 1| nes

Argument  Values
Coordinatesc(

Line type:1, ..., 6
Colour: , ~, 3,
Width: 1,




Example

Make lineplots for the following models:

: 1
inverse y==
X

exponential [ole =l aln[eM v = log(X)

—_ U3 i 1
power - = X logistic - =
squareroot U

quadratic y = 0.6— 0.1x + 0.006x?

: 1
Inverse squareroo
X
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hETESSIDNIMDIE]

* includes systematic and stochastic components

Deterministic model Satistical model

y = a+bx y=atbx +¢




e assumptions of the stochastic component:

g ~N(O,c*)Mcor(g &) =0,i #i'

= variance Is equal komoscedastic model

To find real model we need to estimate its pararasdep, o

asa, b, & so that we get REHEEESV®




Generailineaniionel

« extension of the systematic component

Simple regression 1-way ANOVA




Linear model (LM) has a general form

y=a+ X +6Xt. .+ [X +E
\ . v .
linear predictor

x can includeu?, ul? log(u), exp(), sinu), factors

= model is linear in parameters when it includely dnear
combinations of parameters

Some nonlinear relationships can be linearised
* log-transformation of both sides:

y=e*™ +e° _ log(y)=a+bx+e

z=log(y) - z=a+bx+¢




» & has lognormal distribution whikehas normal distribution
 y has heterogenous variarclkas homogenous variance

e & |s multiplicative whileg is additive

e curved relationship becomes linear

Other nonlinear relationships can not be linearised

useNonlinear regression




GENEraliseiineanhioel

 extension of the stochastic component
- we model transformed expected valug of

f(u) =a+ X+ 6% +..+ BX

f(u) .. link function

For example, —
SN [/ = 0 + B+ BoXy +.F BX,

y ~N(u,0?)

£=y-pu~N(@00°)




GLM has 3 components:

e link function

e linear predictor

e distribution family

- Gaussian (normal), Gamma, Inverse Gaussian, ®Diss
Quasipoisson, Binomial, Quasibinomial, Quasi

e measure of fit is deviance not sum of squares
- null deviance = SST

- residual deviance = SSE

- ANODEYV table = ANOVA table




LooUIMouEl

 a useful simplification of the reality

- should include important aspects for which ibésng made and
Ignore aspects that we are not interested In

- like a good map

* Principle of parsimony: Simpler model is better if it explains
study phenomenon as good as complicated model.

G. E. P. Box: ,All models are wrong. But some cdéithare
useful.”




MoUeNnNymrocetire

Bottom -up or forward selection
* building up a model by adding available variables

Top-down or backward selection
 reducing maximal (saturated) model

1. Fit maximal model- all main effects and interaics

2. Remove insignificant interactions and main dffec

3. Group together similar factor levels

4. Check diagnostic plots

5. Alter model If necessary

6. Achieve minimal adequate model

- contains only terms in which all parameters agaiicantly
different




NMONBIGHLGISIN

 to assess model quality and assumptions
- study of both systematic and stochastic compa@nent
- we can never prove that model is adequate

Residuals PRSINIWYE] Gl

should not

 make trends when plotted against explanatorggpanse variables
* be heteroscdeastic

e have unusual distribution

* be interdependent

Checking assumptions
 informal using plots pl ot produces 6 plots

« formal using tests




Predictot's adequacy

e raw (LM) or deviance (GLM) residuals againstddtvalues
e curved pattern suggests lack of polynomial term
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Residuals

Fitted values Fitted values




Normality

* 0-q plot of standardised (LM) standardised desgafGLM)

residuals
e data from other than normal distribution can im@te normally

distributed residuals
* when the pattern is “J” or “S” shaped change fumkction or

transform the variable

»

A

Standardised residuals

n
@©
>
©
0
(0]
S
©
(0]
n
©
| -
©
©
c
©
e
0p)

Theoretical quantiles Theoretical quantiles ]




Variance homogeneity

e plot of standardised (LM) standardised deviarigieM)
residuals against fitted/predicted values

e when variance increases with the mean use Po@sgamma
distribution or log transformation

Standardised residuals
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Influence

* plot of Cook’s distance for each observation shdve influence

of individual observations on the model fit
e values of influential observations are close smil higher

 check for errors in the data
« omit influential observations or transform theknatory

variables (using log, power, reciprocal)

1

)
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C
©
—
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©
2
X
o
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Observation




Residuals

Independence

» dependence on continual explanatory variable
- using standardised (LM) or Pearson residues (GLM)
« serial dependence If explanatory variable is tonspace

Independence on x Serial independence Serial depeaden

Residuals at t-1
Residuals at t-1

Residuals at t Residuals at t
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2-way ANCOVA

Background

Nutritional quality of the diet affects growth afganisms in
various ways. To find optimal diet for cockroaclies following
experiments was performed.

Design
Effect of five diet types (control, lipid1, lipidpyroteinl,

protein2) was tested on body weight [g] of male Bardale
cockroaches. For each diet 10 females and 7 males wged.
Their body weight [g] was recorded before and dfier
experiment.




Hypotheses

Is weight influenced by the diet type?

If so which diet resulted in largest weight?

Is weight on diets similar for males and females?

Variables

DIET: control, lipid1, lipid2, proteinl, protein2
SEX: male, female

start

weight

Data
cockr oach. t xt




ANOVA Tabhle

e anova uses Type | Sum of Squares

- sequential assessment of effects according tgitle: order

- at first main effects are assessed then intenasti

- In orthogonal the order Is not important

- If data are unortogonal it is more appropriatege Type Il SS

Ortogonality

 iIndependent variables are orthogonal - effedstaaightforward
e correlated variables are unorthogonal - effetscamplicated

- when there are missing values or unequal numbaoservations
per treatment




guanralicienm

 check for curvature by fitting a separate quadtatrm for
continuous explanatory variables

e quadratic model - a simple description of nonnonous trend

 use eithepol y(x, 2) or x + | (x"2)




hEMDVINGREHNS

e remove Insignificant interactions

- begin with the higher order terms because mdetef are marginal
to interactions

- Intercept is marginal to slope and both are nmaigo the quadratic
term

e remove insignificant main effects

Criteria
o test (F or?) and a given p-valueafiova)
« Akaike Information Criterion (AlIC):

AIC =-2LogLik +2p

- the more there are parameters in the model ttherldg but worse
explanatory power of the model
- the lower AIC the better model




GOMNAnSons

o compare individual differences between factoelsv
e comparisons are valid only if a factor is sigraint

Options.
- Apriori contrasts (before analysis)
- Posteriori simplification (after analysis)

- Multiple comparisons (after analysis)

- apriori contrasts are preferred to avoid excess of s@amfiresults




Contrasts

For a model

a contrast will be

whereA‘- .. mean value of a Ievee/lgj .. contrast coefficient

Creating contrasts
- levels lumped together get the same sign
- levels contrasted get opposite sign
- levels excluded get O
J

.. S0 that sum of each contrast ZW,- =0
j=1




Contrasts are arranged in a matrix

e only k-1 (k .. number of levels) contrasts are orthogonal giagh
level (combination) is compared only once

... products of any two contrasts = 0

» specified by functiomont r ast s prior to analysis

Pre-specified contrasts:

» Treatment (default in R) - compare specific level with the
reference level

« Helmert - compare specific level with the average of prasio
levels

e Sum - compare specific level with the grand mean

* Textbook - compare each level with O




Simplification

* levels of a factor are compared using Wald stesisrom ouput

 similar factor levels are the grouped together

e test each grouping @nova

o compare the final model with the first one




Diagnosis

We should check as many aspects as possible
 use diagnostic plots

 use formal tests:

- Bartlett test to compare variances

- Shapiro-Wilk test of normality




WSS

dat<-read.delim("cockroach.txt"); attach(dat); name
plot(diet,weight)
interaction.plot(diet,sex,weight)
library(lattice)
xyplot(weight~start|diet,groups=sex,pch=1:2)
ml<-Im(weight~diet*sex*start)
anova(ml)
m2<-Im(weight~diet*sex*poly(start,2))
anova(ml,m2)
m3<-update(ml,~.-diet:sex:start)
anova(ml,m3)

anova(m3)
m4<-update(m3,~.-diet:start)
anova(m4)
m5<-update(m4,~.-sex:start)
anova(mb)
m6<-update(m5,~.-diet:sex)
anova(mo6)

m7<-update(m6,~.-start)

anova(m?7)

m8<-update(m7,~.-sex)

anova(m8)




summary(m8)

levels(diet)
contrasts(diet)<-cbind(c(1,-1/4,-1/4,-1/4,-1/4),c(0
c(0,0,0,1/2,-1/2),c(0,-1/2,1/2,0,0))
contrasts(diet)
summary(Im(weight~diet))
contrasts(diet)<-'contr.helmert’
summary(Im(weight~diet))
contrasts(diet)<-'contr.sum'
summary(Im(weight~diet))
dietl<-diet

levels(dietl)
levels(dietl)[4:5]<-"prot"
levels(dietl)
contrasts(dietl)<-'contr.treatment’
m9<-Im(weight~dietl)
anova(m8,m9)

diet2<-dietl
levels(diet2)[2:3]<-"lipid"
m10<-Im(weight~diet2)
anova(m9,m10)

summary(m10)

diet3<-diet2
levels(diet3)[2:3]<-"other"
m1ll<-Im(weight~diet3)

-1/2,-1/2,1/2,1/2),




anova(ml10,m11)

anova(ml10,m1)

plot(m10,which=1:4)

shapiro.test(resid(m10))

library(sciplot)
lineplot.Cl(diet2,weight,ylab="Weight",xlab="Diet")
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AT LCAEOS

» the same explanatory variable can be taken oficerdinuous
other time as categorical: e.g. two levels of cotregion
 continuous variable allows interpolation and agtration

Key to methods:

Explanatory variable(s) M ethod
Continuous Regression
Categorical ANOVA
Continuous and categorical ANCOVA




Linear predictor can include various terms:

- Intercept .o estimated aa

- linear term .x with b as coefficient of linear trend

- quadratic term yx?with c as coefficient of quadratic trend
- cubic term .zx3 with t as coefficient of cubic trend

- main effect .A

- Interaction between factorsA:B

- Interaction between continuous variabgs,

- linear interaction A:x

- quadratic interaction A:x?




Regression

e simpleregression ... 1 explanatory variable
e multipleregression .. 2 and more explanatory variabels

General linear predictor of multiple regression

a .. Intercept
By -- linear coefficients af,
X .. may represent polynomic functionS)( interactionsx;.x,)

- rule of thumb: less tham'3 parameters in model at any time
- number of combinations of explanatory variablés aften
exceed the number of data so we can not includeratis




Simplification
e linear predictor with 2 explanatory variableg &,) should include
all main effects, all interactions, and quadragicrts

a+LiX + L% + X + )% + 06X,

with estimates, b,, b,, c;,c,, d

Nested models are:
e 5 parametersa( b,, b,, c;, ¢,),

at leastc, andc, are significantly
different

a+b x + E}Jx3+c]x]3 +L‘3x;1




» 4 parametersa( b,, b,, c,), at least, is significantly different
« 3 parametersa( b,, b,), at leasb, andb, are significantly
different

a+bx +bx +cx a+bx+bx,




If one explanatory variabled) turns out to be insignificant:

« 3 parametersa( b, c), at least is significantly different
» 2 parametersa( b), at leasb is significantly different
» 1 parameterd) that is significantly different

a+bx +cx,




ANOVA

e 1-way ANOVA .. 1 factor
« 2-way ANOVA .. 2 factors
» k-way ANOVA .. k factors

« k-way ANOVA might be with our without interactien

Given 2 categorical variablésandB each with 2 levelsAy, A,,
and B;, B,) model with treatment contrasts is

a+A+B +A:B

o .. mean oAAB;, A andB; .. main effectsi:B; .. interaction




4 parametersq(B,, A,B,—-A,B;, A,.B,—A,B, aA,B,—A,B,): interaction
IS significant

3 parametersi(B,, A,B,—A,B;, B,—B;): only A andB are significant
2 parameterd3;, B,—B,): only B is significant

» 1 parameter (grand mean): null model




ANCOVA

e combination of regression and ANOVA
e continuous variable = covariate

Given 1 factor &) and 1 covariatexj linear predictor is:

o .. InterceptA .. effect of factorf .. slopeg .. effect of interaction

Given 1 categorical variabkwith 2 levels A,, A,) and 1 continual
X, the linear predictor will be

2 2
a+ A+ X+ 0, X+ K + W X




e 6 parameters - 2 intercepts,(a,—a,), 2 slopesly,, b,—h,), 3
quadratic ¢,, c,—C,) - interactionA:x? is significant

4 parameters - 2 intercepts,(a,—a,), 2 slopesly,, b,—,) -
InteractionA:x Is significant, but quadratic terms are not sigarht

# ﬂ:‘i‘ bz.’f

5 ’
a+bxicx Yy a+bx

a+bxtc,x




» 4 parameters - 2 intercepts,(a,—a,), 1 slopelf), 1 quadratic
(€) - interactiondA:x? andA:x are not significant, buk and
guadratic terms are significant

« 3 parameters - 2 intercepts,(a,—a,), 1 slope f) - only main
effects A andx) are significant

o Further simplification-» 1-way ANOVA or simple regression

a,+bx+ex

T :I:-i-bx +L‘xE




NMOUENDHMIIAE

response variable ~ explanatory variable(s)

e Operators:

- on left side any mathematical operator can bd use

- on the right side only few:
+ .. add

- .. delete

. .. Interaction
* .. all terms

1 .. intercept

| .. Interpreter that translates operators into srattical meaning
/ .. nested

| .. conditioned




Model formula Description

Null model f(u)=a
Linear model With f(u)=a+ B
1 explanatory variable

|l og(y) ~ X -1 Linear model with

1 explanatory variable, without interce p{sJs[(TR Nz

and with log-transformed response
y ~ X + | (x*2) Quadratic model with
y ~ poly(x,2) explanatory variable T(4)=0a+[%+ )X

y ~ x1 + x2 Linear model with f -~
2 explanatory variables () = a + Bix, + X




Model formula Description :
y ~ A*B*C 3-way AN.OVA with [ (U )=a+A +B, +C,
y ~ A +B+C+A: B three main effects, FAB +AC +B:C
+ A: C+B: C+A: B: C two 2-way interactio o Pk T Tk
and one 3-way interaction

+A:B:C,

y ~ (AtB+Q) "2 3-way ANOVA with RR(7SESE V.l = o)

only three 2-way interaction iy -Jmyy C,+B:C,
. B, .C .C,

1-way ANCOVA  MRANSCARS I AL
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y, =a+bx +¢&

 choose distribution if using GLM

 there are many distributions but only some agelable for GLM
 decision should be based upon theoretical magisevious
experience

Response variable can be

e cONtinuous measuremer
e counts
e proportions




GONUNNDNSIMESIEMENIS

 measurements that can be made with infinite pi@ti

Gauss (normal) distribution

* bell-shaped, symmetric around mean
« mean = median = modus
e parametersi, 62

- & is independent of mean




Lognormal distribution

o discrete values, made of integers

e asymmetric, skewed to the right

e variance increases with mean at quadratic trend
o after logarithmic transformation variances amikir




Gamma distribution

* positive real values
e asymmetric, skewed to the right
e variance increases with mean at a quadratic trend




Other distributions

 Inverse Gaussian distribution
- used to model diffusion processes
- variance increases steeply with mean




Colnts Poisson distribution

o discrete values, made of integers

e asymmetric, skewed to the right

e variance Is equal to expected value
- variance increases with mean




Negative-hinomial distribution

o discrete values, made of integers

e asymmetric, strongly skewed to the right

e variance is larger than expected value

- variance increases with mean at a parabolic trend

>
Q
c
Q
>
o
(O]
S
LL




LIOPOKIDNS

e arise when we counts evernys from a whole populatiomj
 p .. relative frequency yn

« we study only qualitative character of an eventitsot
guantitative aspect

 pis an estimate of a theoretical valtie

» based on logit transformation

{5,




Binomial & Binary distributions

 measurementy) are integers af independent trials

e 7 .. a Single parameter showing probability of eventuo@nce
e0<z<1

e variance ofr is maximal at 0.5

Variance




y, na’yses ot

continuous \




s oA s o

B response variable is continuous

 measurements of length, width, distance, conatair, pH, etc.
 data are real numbers

e distribution is symmetric ¢e, +o0)

e parametersz, o2 independent of each other




Analytical methods

o t-test (t . t est ) to compare one or two means

 Linear model (I m to study effect of categorical and
continuous variables

- Inference Is exact, reliable for eath

« GLM (gl m to study effect of categorical and continuous
variables

- Gaussian family (default)

- link: identity

- Inference Is asymptotic, valid only for large

glm(formul a, fam | y=Gaussi an)




dimple Regression

Background
The number of grains in ears affects the yieldev€als.

Design
On 20 plots mean number of seeds per oat ear stiasaged.

Then at harvest the yield [t/ha] for each plot wasmated.




Hypotheses
Is number of seeds related to the yield?
What is the predictive model of this relationship?

Variables
grain
yield

DEIE]
oat . t xt




A EWAIS

dat<-read.delim("oat.txt"); attach(dat); names(dat)
plot(grain,yield)
ml<-Im(yield~poly(grain,2))
summary(ml)

m2<-Im(yield~grain)

summary(mz2)

m3<-update(m2,~.-1)

summary(ma3)

AIC(m2,m3)
plot(grain,yield,xlim=c(0,30),ylim=c(0,6))
abline(m2)

abline(m3,lty=2)
legend(18,3,c("m2","m3"),lty=1:2)
plot(m2,which=1)

sr<-rstandard(mz2); plot(grain,sr)
0.07617+c(-0.0111,0.0111)*gt(0.975,19)
2*(1-pt((0.1-0.07617)/0.0111,18))




Weighted Regression

Weighting

e to Increase/decrease effect of some measurements
e only positive values are allowed

* instead of least squares weighted least squagassad

0.2

n

Background

Sexual size dimorphism may increases with ambemperature in
spiders.




Design
Males and females @odarion spiders were sampled on 13 sites

with a different temperature [°C]. Of the average ®f males and
females a size ratio was calculated for each Bite.number of
Individuals varied between sites (2 to 62 specimens

Hypotheses
Is there relationship between the ratio and theerature?
What is the model?

Variables
temp
number
ratio

DEIE]
zodari on. t xt




A EWAIS

dat<-read.delim("zodarion.txt"); attach(dat); names
plot(temp,ratio)

ml<-Im(ratio~poly(temp,2))

summary(ml)

m2<-Im(ratio~temp)

summary(mz2)

m3<-update(m2,weights=number)

summary(ma3)
plot(temp,ratio,xlab="Temperature",ylab="Size ratio
abline(m?2)

abline(m3,lty=2)
legend(6,1.15,c("m2","m3"),lty=1:2)




Multiple Regression

Background
Yield of cereals is determined by a number of Jdes. To predict
yield with high accuracy, various effects have ¢oshudied.

Design
On 100 plots, the yield of wheat [t/ha] was estedabgether with

Six other variables: 1. number of overwinteringnida 2. number of
ears/m, 3. pH of sail, 4. content of phosphorus [mg/Kg]content
of potassium [mg/kg], 6. content of magnesium [a@/k




Hypotheses

Did any of six variables affect the yield?
If so which ones?

What is the model for prediction of yield?

Variables
winter




A EWAIS

dat<-read.delim("wheat.txt"); attach(dat); names(da
pairs(yield~winter+ears+pH+P+K+Mg,panel=panel.smoot
ml<-Im(yield~(winter+ears+pH+P+K+Mg)"2+I(winter*2)+
[(P2)+1(K"2)+1(Mg”2))

anova(ml)

m2<-step(m1)

anova(mz2)

summary(mz2,corr=T)

wl<-scale(winter); el<-scale(ears); pH1<-scale(pH)
Pl<-scale(P); K1<-scale(K); Mgl<-scale(Mg)
m3<-Im(yield~(wl+el+pH1+P1+K1+Mg1l)"2+I(w1"2)+I(e1"2
[(P172)+1(K172)+I(Mg172))

anova(m3)

m4<-update(m3,~.-wl:pH1); anova(m4)
mb5<-update(m4,~.-e1:K1); anova(m5)
m26<-Im(yield~wl+pH1+K1+I(pH1"2))

anova(mz26)

mean(winter);sd(winter)

mean(pH);sd(pH)

mean(K);sd(K)

summary(mz26,corr=T)

t)
1)
|(ears"2)+I(pH"2)+

)+I(pH1"2)+




plot(m26,which=1)

plot(m26,which=2)

plot(m26,which=3)

sr<-rstandard(m26)

plot(wl,sr)

plot(pH1,sr)

plot(K1,sr)

range(winter)

range(K)

plot(pH,yield,type="n")

phh<-seq(4,8,0.2)
y1<-8.71416+0.28494*(162-275.6)/50.94-0.01134*(phh-
0.1888*((phh-5.852)/0.381)"2-0.09666*(60-106.7)/40.
lines(phh,y1)
y2<-8.71416+0.28494*(162-275.6)/50.94-0.01134*(phh-
0.1888*((phh-5.852)/0.381)"2-0.09666*(320-106.7)/40
lines(phh,y2,lty=2)
y3<-8.71416+0.28494*(400-275.6)/50.94-0.01134*(phh-
0.1888*((phh-5.852)/0.381)"2-0.09666*(320-106.7)/40
lines(phh,y3,lty=3)
legend(6,9.5,c("w=162,K=60","w=162,K=320","w=400,K=

5.852)/0.381-
39

SREYAVORCISHE
.39

5.852)/0.381-
39

320"),lty=1:3)




2-way ANOVA

Backqground

The carcinogenic disease is related to the prooluct toxins by
certain bacteria in the body of patients. Preseht¢exins can be
used as an indicator of certain carcinogenic deseas

Design
In a clinical study, the amount of a toxin [unii$foroduced by four

bacteria species was measured Iin patients witltan@mnogenic and
two non-carcinogenic diseases. For each disease\Wesze 20
patients. In each patient only a single bacteohtwas measured
so there were 5 replications per bacteria species.




Hypotheses

Is the amount of toxin similar for four bacteriaespes and four
diseases?

If not what is the difference?

Which species can be used as an indicator?

Variables

SPECIES bacterA, bacterB, bacterC, bacterD

DIAGNOS S.carc.rectum, carc.intestine, apendicitis, skin.absc
toxin

Data
bacteri a. t xt




A EWAIS

dat<-read.delim("bacteria.txt"); attach(dat); names
interaction.plot(species,diagnosis,toxin)
ml<-Im(toxin~species*diagnosis)
anova(ml)

summary(ml)
tapply(predict(m1l),list(species,diagnosis),mean)
diagnosisl<-c(rep("carc",40),rep("non",40))
diagnosisl<-factor(diagnosisl)
m2<-Im(toxin~species*diagnosisl)
anova(ml,m2)
interaction.plot(species,diagnosisl,toxin)
speciesl<-species

levels(speciesl)
levels(speciesl)[2:3]<-"bacterBC"
m3<-Im(toxin~speciesl*diagnosisl)
anova(m2,m3)

levels(speciesl)
levels(speciesl)[c(1,3)]<-"bacterAD"
m4<-Im(toxin~speciesl*diagnosisl)
anova(m3,m4)

anova(m4)

summary(m4)

anova(m4,ml)




plot(m4,which=1)

plot(m4,which=2)

both<-paste(speciesl,diagnosisl)

both<-factor(both)

m5<-Im(toxin~both-1)

summary(mb5)

confint(m5)

interaction.plot(speciesl,diagnosisl,toxin,type= :
pch=1:2,ylim=c(1,2),ylab="Toxin amount",xlab="Speci es",legend=F)
legend(1.5,1.9,c("Carc","Non"),pch=1:2)

lines(c(1,1),c(1.85,1.96))

lines(c(1,1),c(1.09,1.2))

lines(c(2,2),c(1.35,1.46))

lines(c(2,2),c(1.07,1.18))




{-way ANCOVA
Background

Rate of population increase is a function of terapee In
ectotherms, such as mites. A model of the relalipnis essential
for the control of mite pests.

Design
In the lab, population increase of two pest mitecsps was studied

at 11 temperatures between 10 and 35 °C. The raterease was
estimated using formula for exponential populagioowth. For
each temperature a single measurement for eaclespyeas
available.




Hypotheses

Did temperature affect the rate of increase?
Was the rate similar for both species?
What is the model of the relationship?

Variables

GENUS genA, genB
temp

rate

DEIE]
mte.txt




A EWAIS

dat<-read.delim("mite.txt"); attach(dat); names(dat
plot(temp,rate,type="n")
points(temp[genus=="genA"],rate[genus=="genA"])
points(temp[genus=="genB"],rate[genus=="genB"],pch=
ml<-Im(rate~poly(temp,3)*genus)

anova(ml)

m2<-Im(rate~poly(temp,3)+genus)

anova(m2)
m3<-Im(rate~temp+I(temp”2)+I(temp”3))
summary(m3)

m4<-Im(rate~temp+I(temp”2))

summary(m4)
plot(temp,rate,xlab="Temperature",ylab="Rate")
x<-seq(from=0,to=40,by=0.1)
lines(x,predict(m4,list(temp=x)))

ci<-predict(m4 list(temp=x),se.fit=T)

names(ci)

ciU<-ci$fit+qt(.975,19)*ci$se.fit
ciL<-ci$fit+qt(.025,19)*ci$se.fit

lines(x,ciL,lty=3)

lines(x,ciU,lty=3)




continuous \




GammaRyognormaldistrnntions

B Gamma and lognormal data arise:
* precise measurements of small quantities (coneksm),

weight, time, etc.

e measurements are continuous
- non-negative values and zeros are not allowed

- distribution is skewed to the right




Lognormal model

* logarithmic transformation of measurements wairogenise
variance and adjust asymmetry of distribution

e moments - 2 parameteys, (o)
- while on log scale variance is independent ofrmea original
scale variance is a function of expected mean

2

E(y) = exr{ﬂtr + 02‘ j Var (y) = exp

» predicted values:




Gamma model

 used to model inverse polynomials
moments - 2 parametels {)

o dispersion parametep)X= Var(y) /u?




Analytical methods

 Welch test (t . t est ) to compare two means with
heterogenous variances

eglm(formula, Gamma(link= ...))

e links: ;
- Inver se (default)

- logarithmic (log )

-identity (identity )

* Im(log(y)~..)




dimple Regression

Background
In euryphagous predators the size of prey is patytirelated to
their body size. There is an upper limit due to engrphological
constraints.

Design
In the laboratory, acceptance of food was studegbi species of

granivorous beetles. Each carabid beetle was offezeds of
various sizes [g]. Preferred seed size was recofamdeach beetle
body size [mm] was recorded too.




Hypotheses
Is size of seeds related to the carabid body size?
What is the shape of the relationship?

Variables
body
seed

Data
gr ani vore. t xt




A EWAIS

dat<-read.delim("granivore.txt"); attach(dat); name
plot(body,seed)
ml<-glm(seed~I(1/body),family=Gamma)
anova(ml,test="F")
m2<-glm(seed~I(1/body)+I(1/body”2),Gamma)
anova(ml,m2,test="F")

plot(m1,which=1)

pr<-resid(ml,type="pearson"); plot(body,pr)
summary(ml)
plot(body,seed,type="n",xlab="Body size",ylab="Seed
x<-seq(from=0,t0=40,by=1)
lines(x,predict(m1,list(body=x),type="response"))
ci<-predict(ml,list(body=x),type="link",se.fit=T)
names(ci)

ciU<-ci$fit-qt(0.975,34)*ci$se.fit
ciL<-ci$fit+qt(0.975,34)*ci$se.fit
lines(x,1/ciL,lty=3)

lines(x,1/ciU,lty=3)

m3<-Im(seed~poly(body,?2))

summary(m3)

plot(body,seed)

lines(x,predict(m3,list(body=x)))
plot(m3,which=1)




2.way ANOVA

In the gift-giving spider a male brings a prey tiemale in order to
avoid being cannibalised. Several variables caarnatly
Influence how quickly female will accept the gift.

J—DeSI N I III_"I|'|I
In the laboratory, effect of two variables was stddsatiation of

female (satiated, starved) and their mating expeeémated,
virgin). Time [s] of the gift presentation was reded. Experiment
was fully factorial, for each combination 10 madesl females
were used.




Hypotheses
Is presentation time affected by any of the twoaldes?
If it is what is the difference between factor Iz

Variables

MATING: mated, virgin
FEED: satiated, starved
time

Data
pl saur a. t xt




WSS

dat<-read.delim("pisaura.txt"); attach(dat); names(
interaction.plot(mating,feed,time)
hist(time)
ml<-Im(time~mating*feed)
anova(ml)
m2<-update(ml,~.-mating:feed)
anova(ml,m2)
m3<-update(m2,~.-mating)
anova(m2,m3)

anova(m3)

plot(m3,which=1)
m4<-glm(time~mating*feed,Gamma(link=log))
anova(m4,test="F")
mb5<-update(m4,~.-mating:feed)
anova(mb,test="F")
m6<-update(m5,~.-mating)
anova(mo6,test="F")
plot(m6,which=1)

summary(me)

exp(6.8222)

exp(6.8222-1.6982)




tapply(time,feed,mean)
m7<-Im(log(time)~mating*feed)
anova(m7)

m8<-Im(log(time)~feed)

summary(m8)
tapply(log(time),feed,mean)
m7<-update(m6,~.-1)

exp(confint(m7))
boxplot(918,168,names=c("Satiated","Starved"),
ylab="Presentation time",ylim=c(0,1600))
lines(c(1,1),c(581.03,1574.9))
lines(c(2,2),c(106.3,288.23))




2-way ANCOVA

Background

The nutritional quality of the diet affects growdhorganisms in
a various ways. To find optimal diet for cockroasliee
following experiments was performed.

Design
Effect of five diet types (control, lipid1, lipidpyroteinl,

protein2) was tested on body weight [g] of male Bardale
cockroaches. For each diet 10 females and 7 males wged.
Their body weight [g] was recorded before and dfier
experiment.




Hypotheses

Is weight influenced by the diet type?

If so which diet resulted in largest weight?

Is weight on diets similar for males and females?

Variables

DIET: control, lipid1, lipid2, proteinl, protein2
SEX: male, female

start

weight

Data
cockr oach. t xt




A EWAIS

dat<-read.delim("cockroach.txt"); attach(dat); name
m1<-Im(log(weight)~diet*sex*start)
anova(ml)

m7<-Im(log(weight)~diet)

anova(m?7)

summary(m7)

diet2<-diet

levels(diet2)[4:5]<-"prot"
levels(diet2)[2:3]<-"lipid"
m9<-Im(log(weight)~diet2)
summary(m9)

plot(m9,which=1)

plot(m9,which=2)
m10<-Im(log(weight)~diet2-1)
exp(coef(m10))

exp(confint(m10))
boxplot(0.948,1.622,2.999,names=c("Control","Lipid" ,"Protein"),
ylim=c(0,3.2),ylab="Weight",xlab="Diet")
lines(c(1,1),c(0.877,1.026))
lines(c(2,2),c(1.535,1.714))
lines(c(3,3),c(2.837,3.17))
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KOISSONMISTHUNIDN

B Poisson data arise when data are:

- counts/frequencies of individuals, species, cells
- events of behaviour, etc.

- always positive integers

- counts are often low (including 0)

e we count how many times an event occurred buloveot know
how often it did not occur (we do not knay

Fulelnlcliinm E(y) = 4 =Var(y)




Analytical methods

» y°test (chi sqg. t est) to analyse 2-dimension tables

* Fisher exact test (f 1 sher. t est) to analyse 2x2 tables
 Mantel-Haenszel test (mant el haen. t est ) to analyse 3-
dimension tables for independence

e Log-linear analysis (I ogl | n) to study complex frequency tables
e Contingency tables (xt abs) to study effect of factors

« Standard regression (I m can be used after transformation

- squareroot transformation

- can predict values out of bounds (negative)

e Poisson GLM (gl m to study effect of both factorial and
continuous predictors




Poisson model

eglnm(..., famly = poisson(link=...))

link functions

- logarithmic (og )
- squarerootggrt )
- identity (dentity )

e estimated parameters are on logaritmic scalg+)

e iInverse function to log is exp E




Background 1 "W ay A N OVA

Diversity of organisms changes with the age ofithlkitat.
According to the intermediate disturbance hypow)dbe diversity
Increases and then decreases with age, thus hegimgshat
medium age.

Design
In 15 apple orchards diversity of arachnids wadistlion trees.

The orchards were of variable age, classified &ttasses: 0-9,
10-19 and 20-30 years old. Each class was repezbbgtS
orchards.




Hypotheses
Is diversity related to the age of orchards?
What is the trend of change?

Variables
ORCHARD: young, older, oldest
divers

Data

9, 6, 8, 13, 10,
21,14, 26, 17, 29,
15,17, 12, 10, 11




WSS

divers<-c(9,6,8,13,10,21,14,26,17,29,15,17,12,10,11
orchard<-factor(c(rep("young",5),rep("older",5),rep
orchard<-relevel(orchard,ref="young")
plot(orchard,divers)
m1<-gim(divers~orchard,family=poisson)
anova(ml,test="Chi")

summary(ml)

contrasts(orchard)<-"contr.helmert"
m2<-glm(divers~orchard,family=poisson)
summary(m2)

m3<-glm(divers~orchard-1,poisson)

summary(ma3)

exp(confint(m3))
barplot(tapply(predict(m1,type="response"),orchard,
ylab="Diversity",ylim=c(0,25))
lines(c(0.7,0.7),c(6.79,12.12))
lines(c(1.9,1.9),c(17.6,25.7))
lines(c(3.1,3.1),c(10.1,16.4))

)
("oldest",5)))




QUERVAINNEEHISIEISION
e arises when dispersion parameier

l.e. the residual deviance is not similar to thedeal degrees of

E(y) =Var(y) = u

freedom

- overdispersion: variance is largerg > 1
- underdispersion: variance is smallerp < 1

e causes:

- If the distribution Is aggregated
- If counts are not independent

- lack of important variables, etc.
- suspicious data




e solution: useuasi poi sson family

e this will influence SE of parameter estimates
- If ¢ > 1 then SE will be larger
- If ¢ <1 then SE will be smaller

 without correction for overdispersion there wob&ltoo many
false positive results (in favour of,H

e when usingjuasi poi sson X?- and z- tests have to change to
F- and t- tests




Multiple Regression

Background

Abundance of carabid beetles in cereals depend$&iotic and
biotic factors. If we understand how abiotic fastorfluence
abundance of carabids then we can adapt certaiagearent
practices to increase the abundance when needed.

Design
In the field, on 21 wheat plots the abundance odlmd beetles

was studied by means of pitfall traps. At everg average day
temperature [°C] and average sun activity [\A/was recorded.




Hypotheses
Was abundance of beetles affected by any of thesawiables?
If so what is the model of the relationship?

Variables
temp

sun

abun

DEIE]
car abi d. t xt




A EWAIS

dat<-read.delim("carabid.txt"); attach(dat); names(
pairs(abun~temp+sun,panel=panel.smooth)
ml<-glm(abun~temp*sun,family=poisson)
summary(ml)
m2<-update(ml,family=quasipoisson)
anova(m2,test="F")

plot(m2,which=1)

plot(m2,which=4)

pr<-resid(m2,type="pearson")

plot(sun,pr)

plot(temp,pr)

abun[21]
m3<-glm(abun~temp*sun,poisson,subset=-21)
anova(ma3,test="Chi")
m4<-update(m3,~.-temp:sun)
anova(m4,test="Chi")

summary(m4)

(75.292-22.836)/75.292

range(sun)

range(temp)
xyz<-expand.grid(sun=seq(900,3500,50),temp=seq(9,30
xyz$density<-as.vector(predict(m4,xyz,type="respons
library(lattice)

wireframe(density~sun+temp,xyz)




J-way ANOVA

Backqground

Some predators use conditional strategies to gah The use of
strategy often depends on the characteristicseyf. pr

slow fast
small large small large
stratA 19 10 21 12
stratB 4 10 0 8
stratC 0 1 1 2

Design

In the field, it was observed which of three stgate spiders used to
capture prey. For each trial, size (two size clglsard movement
(slow or fast) of prey was recorded. Altogethelti®ds were
observed.




Hypotheses
Is use of strategy influenced by prey size anchiisement?
If so which prey is captured by strategy A, B arid C

Variables

PREY: fast, slow

SZE: large, small

STRATEGY: stratA, stratB, stratC

freg

Data
predat or. t xt




WSS

dat<-read.delim("predator.txt"); attach(dat); names
interaction.plot(strategy,prey,freq)
interaction.plot(strategy,size,freq)
m1<-glm(freg~strategy*size*prey,family=poisson)
summary(ml)

anova(ml,test="Chi")
m2<-update(ml,~.-strategy:size:prey)
anova(m2,test="Chi")
m3<-update(m2,~.-strategy:prey)
anova(ma3,test="Chi")

summary(m3)
attacks<-tapply(predict(m3,type="response"),list(si
attacks

both<-paste(strategy,size)
m4<-gim(freq~factor(both)-1,poisson)
summary(m4)

exp(confint(m4))

ze,strategy),mean)




barplot(attacks,beside=T,ylab="No. of attacks", xla
legend.text=c("large","small"),ylim=c(0,25))
lines(c(1.5,1.5),c(7,16.3))
lines(c(2.5,2.5),c(14.4,26.9))
lines(c(4.5,4.5),c(5.5,13.8))
lines(c(5.5,5.5),c(0.6,4.6))
lines(c(7.5,7.5),c(0.4,3.9))
lines(c(8.5,8.5),c(0.03,2.2))

b="Strategy",
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NEGAUUEEINDIAIISTDULon

B NB is a parametric alternative to Poisson modéh wi

overdispersion
o distribution ofy is strongly asymmetric with many zeros

 NB has two parameteng.andd

* moments: ,
E(y) = u Var (y) = ,u+%

- 0 Is aggregation parameter«),
-if 8 =21 .. random distributiorf) < 1 .. aggregated distribution

- 0§ can be estimated from




NB model

gl m nb(formul a) fromMASS library

e links:

| og (default)
sqrt

| dentity

* begin with Poisson model, if overdispersion rgéswitch to
gl m nb




1-way ANOVA

Background

Grain beetles are serious pests in grain storesy 1ifay occur not
only in the grain but also in crevices of corriddtss essential to
know where they occur before control methods apieqgh

Design
Density of grain beetles was surveyed in a graresty means of

sticky traps. Traps were installed in two placéstraps in the
corridors and 25 traps in the grain. After few daymber of
beetles was recorded.




Hypotheses
Is density of beetles similar on both places?
If not how different it is?

Variables
PLACE: floor, grain
density

Data
beet| e. t xt




WSS

dat<-read.delim("beetle.txt"); attach(dat); names(d
plot(place,density)

table(density)

tapply(density,place,mean)
m1<-gim(density~place,family=quasipoisson)
anova(ml,test="F")

summary(ml)

plot(m1,which=1)
tapply(density,place,var)/tapply(density,place,mean
tapply(density,place,function(x) mean(x)*2/(var(x)-
library(MASS)

m2<-glm.nb(density~place)

anova(mz2)

summary(m2)

plot(m2,which=1)

exp(confint(m5))
barplot(tapply(predict(m2,type="response"),place,me
ylim=c(0,200))

lines(c(0.7,0.7),c(49.6,197.2))
lines(c(1.9,1.9),c(9.7,38.9))

an),ylab="Density",




Analyses o\
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BINOMTAISTHNULOTN

H Binomial data arise:

* when we count response to a certain stimuugose-response

studies

 whenever we record whether an event has occorradt within
a known populationn)

e events: death, birth, germination, attack, cornsion, reaction,
etc.

 there are no classical replications - recordschugtered t@ orq

 p .. probabillity of successes,. probability of failures

e clustering of responses:
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e distribution is bounded [0 p< 1]
e variance Is not constant, maximal whenq= 0.5

 estimated parameters are on logit scate )
* logistic model will always asymptote at O ang

|Og(i

1-p
- predicted values are then always within [0,

e inverse function to logit is ani-logit whe€is
a parameter estimate

e odds ratio




Analytical methods

» Exact binomial test (bi nom t est ) to compare a single
proportion

* Proportion test (pr op. t est ) to compare two proportions
e Contingency tables (xt abs) to study effect of factors

 Logistic regression to study effect of continuous predictors
« Standard regression (I m can be used after transformation

- angular transformation EIgasisAs

- can predict values out of bounds (negative or >1)

e Binomial GLM (gl m to study effect of both factorial and
continuous predictors




Binomial model

eglm(..., famly = binomal (link=...))

link functions

- logit (logit )
- probit (robit )
- complementary logitdfoglog )

log(-log@ - p))




Data format

e Binomial distribution ... individuals within a group are
homogenous
- two vectorsy, n-y) or (y, n) of integers

e Bernoulli (binary) distribution ... individuals within a
group are heterogenous, each characterised bytiawoms

character
-n=1
- single vector of O’s or 1's




QUERVAINNEEHISIEISION
e arises when dispersion parameier

- overdispersion: variance is largerg > 1
- underdispersion: variance is smallerp < 1

e causes:

- If the model is mispecified

- lacks important explanatory variables

- relative frequency is not constant within a group

e solution: useuasi bi nom al family in which variance is

estimated ayCA O I a¥))] instead aEWC IV ASr/)




o this will influence SE of parameter estimates
- If ¢ <1 then SE will be smaller

« when usingyuasi bi nom al x?- and z- tests
have to change to F- and t- tests




Regression

Background

Production of eggsac is influenced by a numberaoibles, such
as body size, i.e. amount of consumed food. Faxaerimental
study we need to be able to predict probabilitprduction at a
range of body sizes.

Design
In the laboratory, production of eggsacs was stuohe spider

with a variable body size [mm]. As the body sizeswaeasured
with the precision of 0.5 mm, all 160 individualene classified
Into size classes each containing 15 to 30 speant@males that
produced eggsac were recorded.




Hypotheses

* |s eggsac production related to the body size?

o If it is what Is the shape of the relationship?

* What is the model that can be used to predics@ggroduction
for spider sizes of 3—12 mm?

Variables:

body
n

€90S

Data
spi der . t xt




Analysis

dat<-read.delim("spider.txt"); attach(dat); names(d
p<-eggs/n

plot(body,p)

tr<-asin(sqrt(p))
m1<-Im(tr~body+I(body”~2),weights=n)
summary(ml)

m2<-update(ml,~.-1(body”2))

summary(m2)

x<-seq(0,12,by=0.1)

plot(body,tr)
lines(x,predict(m1,list(body=x)))
abline(m2,lty=2)
legend(3,1.5,c("m1","m2"),lty=1:2)
plot(body,p,xlim=c(3,12),ylim=c(0,1))
lines(x,sin(predict(m1,list(body=x)))"2)
lines(x,sin(predict(m2,list(body=x)))"2,lty=2)
legend(5,0.4,c("m1","m2"),lty=1:2)
y<-cbind(eggs,n-eggs)
m3<-gim(y~body+I(body”2),family=binomial)
summary(m3)

m4<-update(m3,~.-1(body”2))




plot(body,p,xlim=c(3,12),ylim=c(0,1))
lines(x,predict(m3,list(body=x),type="response"))
lines(x,predict(m4,list(body=x),type="response"),It
legend(5,0.7,c("m3","m4"),lty=1:2)

summary(m4)
mb5<-update(m4,family=quasibinomial)
summary(mb5)

anova(mb,test="F")




1-way ANCOVA

Background

Synthetic insecticides often have a species-segfficiency. The
recommended doses or concentrations then haveustedl

Design
In the laboratory an effect of an insecticide om mmortality of two

aphid species was studied. The insecticide waseapatl 6
concentrations [ppm]. Each concentration was teste80
Individuals of both aphid species.




Hypotheses

* |s mortality affected by the concentration?

* Was the efficiency similar for both species?

* What is the LG, (i.e. 50% lethal concentration) for both species?

Variables:
SPECIES A, B
conc

n

dead

Data
aphi d. t xt




WSS

dat<-read.delim("aphid.txt"); attach(dat); names(da
p<-dead/n

plot(conc,p,type="n")
text(conc,p,labels=as.character(species))
y<-cbind(dead,n-dead)
m1<-gim(y~log(conc)*species,binomial)
anova(ml,test="Chi")
m2<-update(ml,~.-log(conc):species)
anova(m2,test="Chi")

summary(mz2)

plot(m2,which=1)

pr<-resid(m2,type="pearson"); plot(log(conc),pr)
plot(log(conc),p,type="n",xlab="Log(Concentration)"
x<-seq(-3,2,0.1)

A<-1/(1+exp(-1.3825-1.2328*x)); lines(x,A)
B<-1/(1+exp(-1.3825+2.2117-1.2328*X)); lines(x,B, It
legend(1,0.3,c("A","B"),lty=1:2)
m3<-gim(y~species+log(conc)-1,binomial)
summary(m3)

library(MASS)

dose.p(m3,cf=c(1,3),p=0.5)
dose.p(m3,cf=c(2,3),p=0.5)

,ylab="Mortality")

y=2)




{-way Binary ANCOVA
Background

Granivorous ants collect various seeds and briagntimto nest.
Sympatrically occurring species may show trophahaipartitioning
related to the size of collected seeds.

Design
Seed preference of two ant species was studigskilaboratory.

Each of 25 ants of both species was offered sdedsiable size
expressed as its weight [mg]. Response of antxlaasified as
“yes” or “no” If it took or refused to take a se@dspectively.




Hypotheses

* |s acceptance related to the seed size?

 Did both species have similar preference for seses?

e If not what is the threshold size of seeds fahlspecies?

(The threshold size is defined as a size thatasg@ed with higher
than 90% probability)

Variables:
SPECIES specA, specB

seed
take

DEIE]
ant . t xt




A EWAIS

dat<-read.delim("ant.txt"); attach(dat); names(dat)
library(lattice)

xyplot(take~seed|species)
ml<-glm(take~seed*species,family=binomial)
summary(ml)

anova(ml,test="Chi")
m2<-glm(take~log(seed)*species,binomial)
AIC(m1,m2)

plot(seed,take,type="n",xlab="Seed weight",ylab="Tr
x<-se(q(0,3,0.01)

A<-1/(1+exp(-4.012+8.364*x)); lines(x,A)
B<-1/(1+exp(-4.012+10.957+(8.364-19.147)*x));lines(
legend(1.5,0.8,c("specA","specB"),lty=1:2)
(log(0.9/0.1)-4.012)/-8.346
(log(0.9/0.1)-4.012+10.957)/(-8.346+19.147)

ansported")

X,B,lty=2)




