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1) R Environment
Exploratory Data Analysis 
Regression models 

2) The first example
Systematic components

3) Stochastic components
Analyses of continual measurements 

4) Analyses of continual measurements II
Analyses of counts 

5)  Analyses of counts II
Analyses of proportions 
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• very fast due to use of computers
• chose statistical models that approach data characters

This course
• focuses on regression models in a broad sense
• only on linear models
• with only one response variable (univariate methods)
• with independent observations



Response variable
• (dependent) is the variable whose variation we aim to understand,
the variable that we measure, it goes on ordinate
- continuous measurement, count, proportion (y)

Explanatory variable
• (independent) is the variable that we manipulate (select levels),
interested to what extent is variation in response associated with
variation in explanatory variables, displayed on abscissa
- numeric: continuous or discrete measurements (x) .. covariate
- categorical .. a factor (A, B) with two or more levels (A1, A2, .. B1,
B2, ..)
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• software packages that include GLM



• environment for the manipulation of objects
- data manipulation, calculation and graphical display
- a high-level programming language

• combination of S (developed at AT&T Bell Laboratories and
forms the basis of the S-PLUS systems) and Scheme languages

• initially written by Gentleman & Ihaka (1996), nowadays with
many contributors (R Development Core Team)
- includes about 30 standard packages
- available 2000 additional packages

• user-unfriendly (limited pull-down menus)
- based on commands
- pull-down menus only for basic commands



Pros
• freeware
• one of the largest statistical systems
• open environment with more dynamic development than other
systems
• whereas Statistica or SAS  will give copious output, R will
provide minimal output
• makes you think about the analysis

Cons
• no warranty
• user-unfriendly



• available from www.r-project.com

• copy data to C:\Program Files\R\R-2.9.0\MABD

• install sciplot package



+ - * / > < 
== equal
!= not equal
<= less than or equal
^ power

• logical values T .. TRUE, F .. FALSE

Functions
• trigonometric
sin, cos, tan, asin, acos, atan
• logarithmic: log, log2, log10
• sqrt, exp, abs, sum, prod
• seq, c, which, length, cbind, xbind, matrix



• names are case sensitive

• “_” is not allowed to use

• avoid using names: break, c, C, D, diff, else, F, FALSE, for,
function, I, if, in Inf, mean, NA, NaN, next, NULL, pi, q, range,
rank, repeat, s, sd, t, T, tree, TRUE, var, while

• vectors: numeric, character, logical

• arguments (in parentheses): use their names or without at
specified order

• centring: to subtract mean
• scaling: to divide by SD



Created in R:
• use data.frame, rep, factor, levels, relevel
• export: write.table

Imported:
- from Excel via clipboard
dat <- read.delim("clipboard")

or via TXT file
dat <- read.delim("c:\\MABD\\metal.txt")

• data matrix:
- number of columns = number of variables
- first row contains names of variables (names without blank
spaces)



• each row corresponds to an observation (trial, etc.)
• factors levels can be names or coded as numbers
• all columns must have the same number of rows
• missing data are assigned as NA
- is.na
- $

attach(dat)
names(dat)

s oil fie ld dis tance amount
mois t pas ture 12 0.22
mois t pas ture 22 0.11
mois t pas ture 43 0.29
mois t pas ture 23 0.33
mois t rape 32 0.19
mois t rape 67 0.39
mois t rape 54 0.18
mois t rape NA 0.29
dry pas ture 11 1.16
dry pas ture 33 1.03
dry pas ture 45 1.11
dry pas ture NA 1.33
dry rape 55 1.02
dry rape 41 1.23
dry rape 14 1.05
dry rape 27 1.12
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• a visual (tabular or graphical) analysis of the data

Important to
- check errors
- get an idea of the result
- suggest a model
- check assumptions for use of desired methods
- set hypotheses
- look for unexpected trends

• use expected values and variation



• E(y), µ: theoretical long-term average of a variable
-  one of a few characteristics of a distribution
- for discrete distributions E(y) might not be a possible value
- estimate of E(y) is mean ...  mean
- a robust estimate for asymmetric distributions is median: ...
median
- another robust estimate is trimmed mean: mean where α*n
observations are removed from each tail ... mean(y, trim=)

Example
Find mean, median, and mean trimmed by 10% of the amount
variable.

Data:
metal.txt



• Var(y), σ2: a theoretical measure of the variability in a
variable
• minimum and maximum ...range, min, max
• quantiles (0, 25, 50, 75, 100%) ... quantile
• estimate of Var(y) is s2... var
• standard deviation (s) ... sd

• standard error of the mean ...

Example

Find variance, standard deviation, range and standard error of
the mean for amount.

n

s
SEM =



• of a parameter (mean): if large number of samples is taken froma
population then α% of intervals will contain mean
• based on quantiles of the t distribution qt

- lower CI95

- upper CI95

• for asymmetric distributions CI95 is estimated on transformed
values → asymmetric intervals
• from model objects use function confint

Example
Find 95% confidence intervals of mean for amount.

SEMty ×− ν,975.0

SEMty ×+ ν,975.0

1−= nν



• basic summaries (min, max, Q25, Q75, median, mean) for all
variables.. summary

• summary table for data with explanatory variable(s) .. tapply

• to count frequencies .. table

Example

Make a summary table, table of replications for FIELD, table of
means for SOIL and FIELD, and table of SEM for FIELD.



• see demo(graphics) or demo(image)
• graphs 
- basic: plot 
- advanced: xyplot (library lattice) 

• to get all graphic parameters: ?par
• to split window to subplots: par(mfrow)
• to add legend .. legend
• graph window size: x11



plot

Argument                  Values                                                                  
type= Style: "n" (empty), "p" (scatter), "l" (lines), 

"b" (both), "h" (vertical)
las= Style of axes values: 0 (parallel), 1 (horizontal)

2 (perpendicular), 3 (vertical)
xlab,ylab= Text of axes labels: "..."
cex.lab= Size of axes labels: 1,..
xlim,ylim= Range of axes: c(min, max)
cex.axis= Size of axes values: 1,..
log= Logarithmic scale of x, y or xy
main= Text of title: "..."
main.cex= Size of title: 1,..



1
2
3
4
5
6
7

+

16
17
18
19
20

points

Argument       Values                                                    
pch= Type of symbols: 0,..,18, "letters" 
cex= Size of symbols: 1, ...
col= Colour: 1, 2, 3, 4, 5, 6, 7, 8
font= Font type: 1, 2, 3, 4



• to study distribution of a numeric (response) variable
• histogram .. hist
• stem-and-leaf plot .. stem
• q-q plots to compare distribution of two variables
- compare a single variable with normal: qqnorm
- compare distributions of two variables: qqplot
- to add diagonal line: qqline

Example

Make histogram and q-q plot of distance.
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Asymmetric, right-skewed Symmetric with extended tails Symmetric with heavy tails

Deviations from normal distribution



• for data with continuous explanatory variables
• to produce plots with points: plot

Example

Make scatterplot of distance on amount without and with
different points for two levels of SOIL.



• when there are categorical explanatory variables

• function .. plot
- central line represents median
- box is Q25 and Q75

- whiskers are 1.5 times interquartile range
- circles are outliers

• argument notch for boxes with CI95 for median
- if median of one level falls outside notches of another level, there
is likely significant difference

Example

Make boxplot of amount for SOIL without and with notches.



• for data with both categorical and continuous explanatory
variables

• xyplot from library lattice
- separate plots for each level of a factor: y ~ x|A
- several types: type="r" .. regression plot

Example

Make panel scatterplot regression plot of distance against amount
for SOIL.



• for data with two categorical explanatory variables
• to plot means of two factors (A, B) connected by lines

.. interaction.plot
- A is plotted on axis x
- B is in the legend

• visual assessment of interaction between factors A*B or A:B
- two factors can affect response additively or multiplicatively
- additive effect: parallel lines
- multiplicative effect: crossed lines

Example

Make interaction plot of SOIL and FIELD for amount.



• when data are counts or proportions
- data are arranged in a matrix or table
• barplot: beside, legend

Example

Make barplot of SOIL and FIELD for amount.



• when data include several continuous explanatory variables 
• pairs produces matrix of all possible plots

• when data include 2 continuous explanatory variables
• wireframe (lattice) produces 3-dimensional plot



• to display error bars use vertical lines or sciplot package
• plot empirical means and errors
- bargraph.CI
- lineplot.CI

Example

Make barplot of SOIL and amount and line plot of SOIL and
FIELD and amount .



1
2
3
4
5
6

lines

Argument       Values                                                    
x,y= Coordinates: c( ..,..)
lty= Line type: 1,...,6
col= Colour: 1, 2, 3, 4, 5, 6, 7, 8
lwd= Width: 1, ..

• final plot of estimated models

• lines connects points specified by coordinates
• abline produces line specified by intercept and slope



Example

Make lineplots for the following models:

inverse

exponential logarithmic

power logistic

squareroot

quadratic

inverse squareroot

x
y

1=

x
y

1=

xy =

)log(xy =

3xy =

xey =

2006.01.06.0 xxy +−=

xe
y

3.091

1
−+

=
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• includes systematic and stochastic components 

iii xy εβα ++=

y = a+bx + ε

Deterministic model Statistical model

y

x

y = a+bx
y

x0 0



• assumptions of the stochastic component:

= variance is equal = homoscedastic model

To find real model we need to estimate its parameters: α, β, σ2

as a, b, s2 so that we get

),0(~ 2σε Ni
iiii ′≠=′ ,0),(cor εε

00)(ˆ bxaxy +=



• extension of the systematic component

Simple regression 1-way ANOVA

iii xy εβα ++= ijjij Ay εβα ++=

iiy εα += iiy εα +=

0=β 0=β



εβββα +++++= kk xxxy ..2211

Linear model (LM) has a general form

x can include: u2, u1/2, log(u), exp(u), sin(u), factors

= model is linear in parameters when it includes only linear
combinations of parameters

Some nonlinear relationships can be linearised
• log-transformation of both sides:

linear predictor

εε ++=→+= + bxayeey ibxa )log(

ε++=→= bxazyz )log(



• eε has lognormal distribution while ε has normal distribution
• y has heterogenous variance z has homogenous variance
• eε is multiplicative while ε is additive
• curved relationship becomes linear

Other nonlinear relationships can not be linearised

use Nonlinear regression

)1( xey γβα −−=



kk xxxf βββαµ ++++= ..)( 2211

ondistributiy ~

kk xxx βββαµ ++++= ..2211

),0(~ 2σµε Ny −=

• extension of the stochastic component
- we model transformed expected value of y

f(µ) .. link function

For example,

),(~ 2σµNy



GLM has 3 components:

• link function
• linear predictor
• distribution family
- Gaussian (normal), Gamma, Inverse Gaussian, Poisson, 
Quasipoisson, Binomial, Quasibinomial, Quasi
 
• measure of fit is deviance not sum of squares
- null deviance = SST
- residual deviance = SSE
- ANODEV table = ANOVA table



• a useful simplification of the reality
- should include important aspects for which it is being made and
ignore aspects that we are not interested in
- like a good map

• Principle of parsimony: Simpler model is better if it explains
study phenomenon as good as complicated model.

G. E. P. Box: „All models are wrong. But some of them are
useful.“



Bottom -up or forward selection
• building up a model by adding available variables

Top-down or backward selection
• reducing maximal (saturated) model

1. Fit maximal model- all main effects and interactions
2. Remove insignificant interactions and main effects
3. Group together similar factor levels
4. Check diagnostic plots
5. Alter model if necessary
6. Achieve minimal adequate model
- contains only terms in which all parameters are significantly
different



• to assess model quality and assumptions
- study of both systematic and stochastic components
- we can never prove that model is adequate

Residuals

should not
• make trends when plotted against explanatory or response variables
• be heteroscdeastic
• have unusual distribution
• be interdependent

Checking assumptions
• informal using plots - plot produces 6 plots
• formal using tests

),0(~ 2σε Ni iiii ′≠=′ ,0),(cor εε



Fitted values
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• raw (LM) or deviance (GLM) residuals against fitted values
• curved pattern suggests lack of polynomial term

Fitted values
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• q-q plot of standardised (LM) standardised deviance (GLM)
residuals
• data from other than normal distribution can not have normally
distributed residuals
• when the pattern is “J” or “S” shaped change link function or
transform the variable

Theoretical quantiles
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• plot of standardised (LM) standardised deviance (GLM)
residuals against fitted/predicted values
• when variance increases with the mean use Poisson or gamma
distribution or log transformation

Fitted values

S
ta

n
d

a r
d

is
e d

 r
es

id
u

al
s

Fitted values

S
ta

n
d

a r
d

is
e d

 r
es

id
u

al
s



• plot of Cook’s distance for each observation shows the influence
of individual observations on the model fit
• values of influential observations are close to 1 and higher
• check for errors in the data
• omit influential observations or transform the explanatory
variables (using log, power, reciprocal)

0

1

Observation

C
oo

k‘
s 

di
st

an
ce
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Residuals at t Residuals at t

• dependence on continual explanatory variable 
- using standardised (LM) or Pearson residues (GLM)
• serial dependence if explanatory variable is time or space

Independence on x Serial independence Serial dependence
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Background
Nutritional quality of the diet affects growth of organisms in
various ways. To find optimal diet for cockroaches the following
experiments was performed.

Design
Effect of five diet types (control, lipid1, lipid2, protein1,
protein2) was tested on body weight [g] of male and female
cockroaches. For each diet 10 females and 7 males were used.
Their body weight [g] was recorded before and after the
experiment.



Hypotheses
Is weight influenced by the diet type?
If so which diet resulted in largest weight?
Is weight on diets similar for males and females?

Variables
DIET: control, lipid1, lipid2, protein1, protein2
SEX: male, female
start
weight

Data
cockroach.txt



• anova uses Type I Sum of Squares
- sequential assessment of effects according to the given order
- at first main effects are assessed then interactions
- in orthogonal the order is not important
- if data are unortogonal it is more appropriate to use Type III SS

Ortogonality
• independent variables are orthogonal - effects are straightforward
• correlated variables are unorthogonal - effects are complicated
- when there are missing values or unequal number of observations
per treatment



• check for curvature by fitting a separate quadratic term for
continuous explanatory variables

• quadratic model - a simple description of nonmonotonous trend
• use either poly(x,2) or  x + I(x^2)

εγβα +++= 2xxy



• remove insignificant interactions
- begin with the higher order terms because main effects are marginal
to interactions
- intercept is marginal to slope and both are marginal to the quadratic
term
• remove insignificant main effects

Criteria
• test (F or χ2) and a given p-value (anova)
• Akaike Information Criterion (AIC):

- the more there are parameters in the model the better fit but worse
explanatory power of the model
- the lower AIC the better model

pLogLik 22AIC +−=



• compare individual differences between factor levels 
• comparisons are valid only if a factor is significant

Options:
- Apriori contrasts (before analysis)
- Posteriori simplification (after analysis) 
- Multiple comparisons (after analysis)

- apriori contrasts are preferred to avoid excess of significant results



For a model

a contrast will be

where Aj .. mean value of a level, wj .. contrast coefficient

Creating contrasts
- levels lumped together get the same sign
- levels contrasted get opposite sign
- levels excluded get 0

.. so that sum of each contrast

ijjij Ay ε+=

∑
=

=
J

j
jj AwK

1

0
1

=∑
=

J

j
jw



Contrasts are arranged in a matrix
• only k-1 (k .. number of levels) contrasts are orthogonal, i.e. each
level (combination) is compared only once
... products of any two contrasts = 0

• specified by function contrasts prior to analysis

Pre-specified contrasts:
• Treatment (default in R) - compare specific level with the
reference level
• Helmert - compare specific level with the average of previous
levels
• Sum - compare specific level with the grand mean
• Textbook - compare each level with 0



• levels of a factor are compared using Wald statistics from ouput

• similar factor levels are the grouped together

• test each grouping by anova

• compare the final model with the first one



We should check as many aspects as possible
• use diagnostic plots
• use formal tests:
- Bartlett test to compare variances
- Shapiro-Wilk  test of normality



Analysis

dat<-read.delim("cockroach.txt"); attach(dat); name s(dat)
plot(diet,weight)
interaction.plot(diet,sex,weight)
library(lattice)
xyplot(weight~start|diet,groups=sex,pch=1:2)
m1<-lm(weight~diet*sex*start)
anova(m1)
m2<-lm(weight~diet*sex*poly(start,2))
anova(m1,m2)
m3<-update(m1,~.-diet:sex:start)
anova(m1,m3)
anova(m3)
m4<-update(m3,~.-diet:start)
anova(m4)
m5<-update(m4,~.-sex:start)
anova(m5)
m6<-update(m5,~.-diet:sex)
anova(m6)
m7<-update(m6,~.-start)
anova(m7)
m8<-update(m7,~.-sex)
anova(m8)



summary(m8)
levels(diet)
contrasts(diet)<-cbind(c(1,-1/4,-1/4,-1/4,-1/4),c(0 ,-1/2,-1/2,1/2,1/2),
c(0,0,0,1/2,-1/2),c(0,-1/2,1/2,0,0))
contrasts(diet)
summary(lm(weight~diet))
contrasts(diet)<-'contr.helmert'
summary(lm(weight~diet))
contrasts(diet)<-'contr.sum'
summary(lm(weight~diet))
diet1<-diet
levels(diet1)
levels(diet1)[4:5]<-"prot"
levels(diet1)
contrasts(diet1)<-'contr.treatment'
m9<-lm(weight~diet1)
anova(m8,m9)
diet2<-diet1
levels(diet2)[2:3]<-"lipid"
m10<-lm(weight~diet2)
anova(m9,m10)
summary(m10)
diet3<-diet2
levels(diet3)[2:3]<-"other"
m11<-lm(weight~diet3)



anova(m10,m11)
anova(m10,m1)
plot(m10,which=1:4)
shapiro.test(resid(m10))
library(sciplot)
lineplot.CI(diet2,weight,ylab="Weight",xlab="Diet")
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Explanatory variable(s)                                                Method    
Continuous  Regression
Categorical  ANOVA
Continuous and categorical ANCOVA

• the same explanatory variable can be taken once as continuous
other time as categorical: e.g. two levels of concentration
• continuous variable allows interpolation and extrapolation

Key to methods:

iii bxay ε++=



Linear predictor can include various terms:

- intercept .. α estimated as a
- linear term .. βx with b as coefficient of linear trend
- quadratic term .. γx2 with c as coefficient of quadratic trend
- cubic term .. τx3  with t as coefficient of cubic trend
- main effect .. A
- interaction between factors .. A:B
- interaction between continuous variables x1:x2

- linear interaction .. A:x
- quadratic interaction .. A:x2



• simple regression ... 1 explanatory variable
• multiple regression .. 2 and more explanatory variabels

General linear predictor of multiple regression

α .. intercept
βk .. linear coefficients of xk

x .. may represent polynomic functions (x3), interactions (x1.x2)

- rule of thumb: less than n/3 parameters in model at any time
- number of combinations of explanatory variables will often
exceed the number of data so we can not include all terms

kk xxx βββα ++++ ..2211



Simplification
• linear predictor with 2 explanatory variables (x1, x2) should include
all main effects, all interactions, and quadratic terms

with estimates a, b1, b2, c1,c2, d

Nested models are:

• 5 parameters (a, b1, b2, c1, c2),
at least c1 and c2 are significantly
different

2122112211 xxxxxx δγγββα +++++



• 4 parameters (a, b1, b2, c1), at least c1 is significantly different
• 3 parameters (a, b1, b2), at least b1 and b2 are significantly
different



If one explanatory variable (x2) turns out to be insignificant:

• 3 parameters (a, b, c), at least c is significantly different
• 2 parameters (a, b), at least b is significantly different
• 1 parameter (a) that is significantly different



• 1-way ANOVA .. 1 factor
• 2-way ANOVA .. 2 factors
• k-way ANOVA .. k factors

• k-way ANOVA might be with our without interactions

Given 2 categorical variables A and B each with 2 levels (A1, A2,
and  B1, B2) model with treatment contrasts is

α .. mean of A1B1, Ai and Bj .. main effects, A:Bij .. interaction

ijji BABA :+++α



• 4 parameters (A1B1, A2B1–A1B1, A1B2–A1B1 a A2B2–A1B2): interaction
is significant
• 3 parameters (A1B1, A2B1–A1B1, B2–B1): only A and B are significant
• 2 parameters (B1, B2–B1): only B is significant
• 1 parameter (grand mean): null model



• combination of regression and ANOVA
• continuous variable = covariate

Given 1 factor (Aj) and 1 covariate (x) linear predictor is:

α .. intercept, Aj .. effect of factor, β .. slope, δ .. effect of interaction

Given 1 categorical variable A with 2 levels (A1, A2) and 1 continual
x, the linear predictor will be

22 xxxxA jjj ωγδβα +++++

xxA jj δβα +++



• 6 parameters - 2 intercepts (a1, a2–a1), 2 slopes (b1, b2–b1), 3
quadratic (c1, c2–c1) - interaction A:x2 is significant

• 4 parameters - 2 intercepts (a1, a2–a1), 2 slopes (b1, b2–b1) -
interaction A:x is significant, but quadratic terms are not significant



• 4 parameters - 2 intercepts (a1, a2–a1), 1 slope (b), 1 quadratic
(c) - interactions A:x2 and A:x are not significant, but A and
quadratic terms are significant

• 3 parameters - 2 intercepts (a1, a2–a1), 1 slope (b) - only main
effects (A and x) are significant

• Further simplification → 1-way ANOVA or simple regression



response variable ~ explanatory variable(s)

• Operators:
- on left side any mathematical operator can be used
- on the right side only few:
+ .. add
- .. delete
: .. interaction
* .. all terms
1 .. intercept
I .. interpreter that translates operators into mathematical meaning
/ .. nested
| .. conditioned



Model formula            Description                                                         

y ~ 1 Null model

y ~ x Linear model with 
1 explanatory variable

log(y) ~ x -1 Linear model with 
1 explanatory variable, without intercept 
and with log-transformed response

y ~ x + I(x^2) Quadratic model with 1 
y ~ poly(x,2) explanatory variable

y ~ x1 + x2 Linear model with 
2 explanatory variables

αµ =)( if

ii xf βαµ +=)(

ii xβµ =)log(

2)( iii xxf γβαµ ++=

iii xxf 2211)( ββαµ ++=



Model formula            Description                                                      .
y ~ A*B*C 3-way ANOVA with
y ~ A +B+C+A:B  three main effects,
+ A:C+B:C+A:B:C  two 2-way interactions

and one 3-way interaction

y ~ (A+B+C)^2 3-way ANOVA with
only three 2-way interactions

y ~ x*A  1-way ANCOVA ijijij xxAf δβαµ +++=)(

jkikij

kjiijk

CBCABA

CBAf

:::

)(

+++

+++= αµ

ijk

jkikij

kjiijk

CBA

CBCABA

CBAf

::

:::

)(

+

+++

+++= αµ
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• choose distribution if using GLM
• there are many distributions but only some are available for GLM
• decision should be based upon theoretical models or previous
experience

Response variable can be

• continuous measurements
• counts
• proportions

iii bxay ε++=



• bell-shaped, symmetric around mean 
• mean = median = modus
• parameters: µ, σ2

- s2 is independent of mean

f(x)

s2

y y

• measurements that can be made with infinite precision 



• discrete values, made of integers
• asymmetric, skewed to the right
• variance increases with mean at quadratic trend
• after logarithmic transformation variances are similar



• positive real values
• asymmetric, skewed to the right
• variance increases with mean at a quadratic trend



• Inverse Gaussian distribution
- used to model diffusion processes
- variance increases steeply with mean



F
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• discrete values, made of integers
• asymmetric, skewed to the right
• variance is equal to expected value 
- variance increases with mean
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• discrete values, made of integers
• asymmetric, strongly skewed to the right
• variance is larger than expected value 
- variance increases with mean at a parabolic trend












− p

p

1
log

• arise when we counts events (y) from a whole population (n)
• p .. relative frequency = y/n
• we study only qualitative character of an event not its
quantitative aspect
• p is an estimate of a theoretical value π

• based on logit transformation



• measurements (y) are integers of n independent trials
• π .. a single parameter showing probability of event occurrence
• 0 ≤ π ≤ 1
• variance of π is maximal at 0.5
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� response variable is continuous
• measurements of length, width, distance, concentration, pH, etc.
• data are real numbers
• distribution is symmetric (-∞, +∞)
• parameters: µ, σ2  independent of each other



• t-test (t.test) to compare one or two means
• Linear model (lm) to study effect of categorical and
continuous variables
- inference is exact, reliable for each n
• GLM (glm) to study effect of categorical and continuous
variables
- Gaussian family (default)
- link: identity
- inference is asymptotic, valid only for large n

glm(formula, family=Gaussian)



Background
The number of grains in ears affects the yield of cereals.

Design
On 20 plots mean number of  seeds per oat ear was estimated.
Then at harvest the yield [t/ha] for each plot was estimated.



Hypotheses
Is number of seeds related to the yield?
What is the predictive model of this relationship?

Variables
grain
yield

Data
oat.txt



Analysis

dat<-read.delim("oat.txt"); attach(dat); names(dat)
plot(grain,yield)
m1<-lm(yield~poly(grain,2))
summary(m1)
m2<-lm(yield~grain)
summary(m2)
m3<-update(m2,~.-1)
summary(m3)
AIC(m2,m3)
plot(grain,yield,xlim=c(0,30),ylim=c(0,6))
abline(m2)
abline(m3,lty=2)
legend(18,3,c("m2","m3"),lty=1:2)
plot(m2,which=1)
sr<-rstandard(m2); plot(grain,sr)
0.07617+c(-0.0111,0.0111)*qt(0.975,19)
2*(1-pt((0.1-0.07617)/0.0111,18))



Background
Sexual size dimorphism may increases with ambient temperature in
spiders.

n

2σ

Weighting
• to increase/decrease effect of some measurements
• only positive values are allowed
• instead of least squares weighted least squares are used



Design
Males and females of Zodarion spiders were sampled on 13 sites
with a different temperature [ºC]. Of the average size of males and
females a size ratio was calculated for each site. The number of
individuals varied between sites (2 to 62 specimens).

Hypotheses
Is there relationship between the ratio and the temperature?
What is the model?

Variables
temp
number
ratio

Data
zodarion.txt



Analysis

dat<-read.delim("zodarion.txt"); attach(dat); names (dat)
plot(temp,ratio)
m1<-lm(ratio~poly(temp,2))
summary(m1)
m2<-lm(ratio~temp)
summary(m2)
m3<-update(m2,weights=number)
summary(m3)
plot(temp,ratio,xlab="Temperature",ylab="Size ratio ")
abline(m2)
abline(m3,lty=2)
legend(6,1.15,c("m2","m3"),lty=1:2)



Background
Yield of cereals is determined by a number of variables. To predict
yield with high accuracy, various effects have to be studied.

Design
On 100 plots, the yield of wheat [t/ha] was estimated together with
six other variables: 1. number of overwintering plants, 2. number of
ears/m2, 3. pH of soil, 4. content of phosphorus [mg/kg], 5. content
of potassium [mg/kg], 6. content of magnesium [mg/kg].



Hypotheses
Did any of six variables affect the yield?
If so which ones?
What is the model for prediction of yield?

Variables
winter
ears
pH
P
K
Mg
yield

Data
wheat.txt



Analysis

dat<-read.delim("wheat.txt"); attach(dat); names(da t)
pairs(yield~winter+ears+pH+P+K+Mg,panel=panel.smoot h)
m1<-lm(yield~(winter+ears+pH+P+K+Mg)^2+I(winter^2)+ I(ears^2)+I(pH^2)+
I(P^2)+I(K^2)+I(Mg^2))
anova(m1)
m2<-step(m1)
anova(m2)
summary(m2,corr=T)
w1<-scale(winter); e1<-scale(ears); pH1<-scale(pH)
P1<-scale(P); K1<-scale(K); Mg1<-scale(Mg)
m3<-lm(yield~(w1+e1+pH1+P1+K1+Mg1)^2+I(w1^2)+I(e1^2 )+I(pH1^2)+
I(P1^2)+I(K1^2)+I(Mg1^2))
anova(m3)
m4<-update(m3,~.-w1:pH1); anova(m4)
m5<-update(m4,~.-e1:K1); anova(m5)
m26<-lm(yield~w1+pH1+K1+I(pH1^2))
anova(m26)
mean(winter);sd(winter)
mean(pH);sd(pH)
mean(K);sd(K)
summary(m26,corr=T)



plot(m26,which=1)
plot(m26,which=2)
plot(m26,which=3)
sr<-rstandard(m26)
plot(w1,sr) 
plot(pH1,sr)
plot(K1,sr)
range(winter)
range(K)
plot(pH,yield,type="n")
phh<-seq(4,8,0.2)
y1<-8.71416+0.28494*(162-275.6)/50.94-0.01134*(phh- 5.852)/0.381-
0.1888*((phh-5.852)/0.381)^2-0.09666*(60-106.7)/40. 39
lines(phh,y1)
y2<-8.71416+0.28494*(162-275.6)/50.94-0.01134*(phh- 5.852)/0.381-
0.1888*((phh-5.852)/0.381)^2-0.09666*(320-106.7)/40 .39
lines(phh,y2,lty=2)
y3<-8.71416+0.28494*(400-275.6)/50.94-0.01134*(phh- 5.852)/0.381-
0.1888*((phh-5.852)/0.381)^2-0.09666*(320-106.7)/40 .39
lines(phh,y3,lty=3)
legend(6,9.5,c("w=162,K=60","w=162,K=320","w=400,K= 320"),lty=1:3)



Background
The carcinogenic disease is related to the production of toxins by
certain bacteria in the body of patients. Presence of toxins can be
used as an indicator of certain carcinogenic disease.

Design
In a clinical study, the amount of a toxin [units/µl] produced by four
bacteria species was measured in patients with two carcinogenic and
two non-carcinogenic diseases. For each disease there were 20
patients. In each patient only a single bacterial toxin was measured
so there were 5 replications per bacteria species.



Hypotheses
Is the amount of toxin similar for four bacteria species and four
diseases?
If not what is the difference?
Which species can be used as an indicator?

Variables
SPECIES:bacterA, bacterB, bacterC, bacterD
DIAGNOSIS:carc.rectum, carc.intestine, apendicitis, skin.absces
toxin

Data
bacteria.txt



Analysis

dat<-read.delim("bacteria.txt"); attach(dat); names (dat)
interaction.plot(species,diagnosis,toxin)
m1<-lm(toxin~species*diagnosis)
anova(m1)
summary(m1)
tapply(predict(m1),list(species,diagnosis),mean)
diagnosis1<-c(rep("carc",40),rep("non",40))
diagnosis1<-factor(diagnosis1)
m2<-lm(toxin~species*diagnosis1)
anova(m1,m2)
interaction.plot(species,diagnosis1,toxin)
species1<-species
levels(species1)
levels(species1)[2:3]<-"bacterBC"
m3<-lm(toxin~species1*diagnosis1)
anova(m2,m3)
levels(species1)
levels(species1)[c(1,3)]<-"bacterAD"
m4<-lm(toxin~species1*diagnosis1)
anova(m3,m4)
anova(m4)
summary(m4)
anova(m4,m1)



plot(m4,which=1)
plot(m4,which=2)
both<-paste(species1,diagnosis1)
both<-factor(both)
m5<-lm(toxin~both-1)
summary(m5)
confint(m5)
interaction.plot(species1,diagnosis1,toxin,type="p" ,
pch=1:2,ylim=c(1,2),ylab="Toxin amount",xlab="Speci es",legend=F)
legend(1.5,1.9,c("Carc","Non"),pch=1:2)
lines(c(1,1),c(1.85,1.96))
lines(c(1,1),c(1.09,1.2))
lines(c(2,2),c(1.35,1.46))
lines(c(2,2),c(1.07,1.18))



Background
Rate of population increase is a function of temperature in
ectotherms, such as mites. A model of the relationship is essential
for the control of mite pests.

Design
In the lab, population increase of two pest mite species was studied
at 11 temperatures between 10 and 35 °C. The rate of increase was
estimated using formula for exponential population growth. For
each temperature a single measurement for each species was
available.



Hypotheses
Did temperature affect the rate of increase?
Was the rate similar for both species?
What is the model of the relationship?

Variables
GENUS: genA, genB
temp
rate

Data
mite.txt



Analysis

dat<-read.delim("mite.txt"); attach(dat); names(dat )
plot(temp,rate,type="n")
points(temp[genus=="genA"],rate[genus=="genA"])
points(temp[genus=="genB"],rate[genus=="genB"],pch= 16)
m1<-lm(rate~poly(temp,3)*genus)
anova(m1)
m2<-lm(rate~poly(temp,3)+genus)
anova(m2)
m3<-lm(rate~temp+I(temp^2)+I(temp^3))
summary(m3)
m4<-lm(rate~temp+I(temp^2))
summary(m4)
plot(temp,rate,xlab="Temperature",ylab="Rate")
x<-seq(from=0,to=40,by=0.1)
lines(x,predict(m4,list(temp=x)))
ci<-predict(m4,list(temp=x),se.fit=T)
names(ci)
ciU<-ci$fit+qt(.975,19)*ci$se.fit
ciL<-ci$fit+qt(.025,19)*ci$se.fit
lines(x,ciL,lty=3)
lines(x,ciU,lty=3)
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� Gamma and lognormal data arise:
• precise measurements of small quantities (concentration),
weight, time, etc.

• measurements are continuous
- non-negative values and zeros are not allowed
- distribution is skewed to the right



• logarithmic transformation of measurements will homogenise
variance and adjust asymmetry of distribution

• moments - 2 parameters (µtr, σtr)
- while on log scale variance is independent of mean, on original
scale variance is a function of expected mean

• predicted values:
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• used to model inverse polynomials
 moments  - 2 parameters (µ, φ)

• dispersion parameter (φ) = Var(y) / µ2

µ=)(yE 2)( ϕµ=yVar

0 2 4 6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

y

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

x

y

0 2 4 6 8 10 12 14

0.
0

0.
5

1.
0

1.
5

x
yx

ba
y

11 +=

bxa
y

+=12cxbxa
y

x +−=



• Welch test (t.test) to compare two means with
heterogenous variances

• glm(formula, Gamma(link= ...))

• links:
- inverse (default)

- logarithmic (log )

- identity (identity )

•  lm(log(y)~..)

y

1



Background
In euryphagous predators the size of prey is positively related to
their body size. There is an upper limit due to e.g. morphological
constraints.

Design
In the laboratory, acceptance of food was studied in 36 species of
granivorous beetles. Each carabid beetle was offered seeds of
various sizes [g]. Preferred seed size was recorded. For each beetle
body size [mm] was recorded too.



Hypotheses
Is size of seeds related to the carabid body size?
What is the shape of the relationship?

Variables
body
seed

Data
granivore.txt



Analysis

dat<-read.delim("granivore.txt"); attach(dat); name s(dat)
plot(body,seed)
m1<-glm(seed~I(1/body),family=Gamma)
anova(m1,test="F")
m2<-glm(seed~I(1/body)+I(1/body^2),Gamma)
anova(m1,m2,test="F")
plot(m1,which=1) 
pr<-resid(m1,type="pearson"); plot(body,pr)
summary(m1)
plot(body,seed,type="n",xlab="Body size",ylab="Seed  weight")
x<-seq(from=0,to=40,by=1)
lines(x,predict(m1,list(body=x),type="response"))
ci<-predict(m1,list(body=x),type="link",se.fit=T)
names(ci)
ciU<-ci$fit-qt(0.975,34)*ci$se.fit
ciL<-ci$fit+qt(0.975,34)*ci$se.fit
lines(x,1/ciL,lty=3)
lines(x,1/ciU,lty=3)
m3<-lm(seed~poly(body,2))
summary(m3)
plot(body,seed)
lines(x,predict(m3,list(body=x)))
plot(m3,which=1)



Background
In the gift-giving spider a male brings a prey to a female in order to
avoid being cannibalised. Several variables can potentially
influence how quickly female will accept the gift.

Design
In the laboratory, effect of two variables was studied: satiation of
female (satiated, starved) and their mating experience (mated,
virgin). Time [s] of the gift presentation was recorded. Experiment
was fully factorial, for each combination 10 males and females
were used.



Hypotheses
Is presentation time affected by any of the two variables?
If it is what is the difference between factor levels?

Variables
MATING: mated, virgin
FEED: satiated, starved
time

Data
pisaura.txt



Analysis

dat<-read.delim("pisaura.txt"); attach(dat); names( dat)
interaction.plot(mating,feed,time)
hist(time)
m1<-lm(time~mating*feed)
anova(m1)
m2<-update(m1,~.-mating:feed)
anova(m1,m2)
m3<-update(m2,~.-mating)
anova(m2,m3)
anova(m3)
plot(m3,which=1)
m4<-glm(time~mating*feed,Gamma(link=log))
anova(m4,test="F")
m5<-update(m4,~.-mating:feed)
anova(m5,test="F")
m6<-update(m5,~.-mating)
anova(m6,test="F")
plot(m6,which=1)
summary(m6)
exp(6.8222)
exp(6.8222-1.6982)



tapply(time,feed,mean)
m7<-lm(log(time)~mating*feed)
anova(m7)
m8<-lm(log(time)~feed)
summary(m8)
tapply(log(time),feed,mean)
m7<-update(m6,~.-1)
exp(confint(m7))
boxplot(918,168,names=c("Satiated","Starved"),
ylab="Presentation time",ylim=c(0,1600))
lines(c(1,1),c(581.03,1574.9))
lines(c(2,2),c(106.3,288.23))



Background
The nutritional quality of the diet affects growth of organisms in
a various ways. To find optimal diet for cockroaches the
following experiments was performed.

Design
Effect of five diet types (control, lipid1, lipid2, protein1,
protein2) was tested on body weight [g] of male and female
cockroaches. For each diet 10 females and 7 males were used.
Their body weight [g] was recorded before and after the
experiment.



Hypotheses
Is weight influenced by the diet type?
If so which diet resulted in largest weight?
Is weight on diets similar for males and females?

Variables
DIET: control, lipid1, lipid2, protein1, protein2
SEX: male, female
start
weight

Data
cockroach.txt



Analysis

dat<-read.delim("cockroach.txt"); attach(dat); name s(dat)
m1<-lm(log(weight)~diet*sex*start)
anova(m1)
m7<-lm(log(weight)~diet)
anova(m7)
summary(m7)
diet2<-diet
levels(diet2)[4:5]<-"prot"
levels(diet2)[2:3]<-"lipid"
m9<-lm(log(weight)~diet2)
summary(m9)
plot(m9,which=1)
plot(m9,which=2)
m10<-lm(log(weight)~diet2-1)
exp(coef(m10))
exp(confint(m10))
boxplot(0.948,1.622,2.999,names=c("Control","Lipid" ,"Protein"), 
ylim=c(0,3.2),ylab="Weight",xlab="Diet")
lines(c(1,1),c(0.877,1.026))
lines(c(2,2),c(1.535,1.714))
lines(c(3,3),c(2.837,3.17))
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� Poisson data arise when data are:
- counts/frequencies of individuals, species, cells
- events of behaviour, etc.
- always positive integers
- counts are often low (including 0)

• we count how many times an event occurred but we do not know
how often it did not occur (we do not know n)

• moment: )()( yVaryE == µ



• χ2 test (chisq.test) to analyse 2-dimension tables
• Fisher exact test (fisher.test) to analyse 2x2 tables
• Mantel-Haenszel test (mantelhaen.test) to analyse 3-
dimension tables for independence
• Log-linear analysis (loglin) to study complex frequency tables
• Contingency tables (xtabs) to study effect of factors
• Standard regression (lm) can be used after transformation

- squareroot transformation

- can predict values out of bounds (negative)

• Poisson GLM (glm) to study effect of both factorial and
continuous predictors

y



• glm(..., family = poisson(link=...))

link functions:

- logarithmic (log )
- squareroot (sqrt )
- identity (identity )

• estimated parameters are on logaritmic scale (-∞, +∞)

• inverse function to log is exp Qe



Background
Diversity of organisms changes with the age of the habitat.
According to the intermediate disturbance hypothesis, the diversity
increases and then decreases with age, thus being highest at
medium age.

Design
In 15 apple orchards diversity of arachnids was studied on trees.
The orchards were of variable age, classified into 3 classes: 0-9,
10-19 and 20-30 years old. Each class was represented by 5
orchards.



Hypotheses
Is diversity related to the age of orchards?
What is the trend of change?

Variables
ORCHARD: young, older, oldest
divers

Data
9,6,8,13,10,
21,14,26,17,29,
15,17,12,10,11



Analysis

divers<-c(9,6,8,13,10,21,14,26,17,29,15,17,12,10,11 )
orchard<-factor(c(rep("young",5),rep("older",5),rep ("oldest",5)))
orchard<-relevel(orchard,ref="young")
plot(orchard,divers)
m1<-glm(divers~orchard,family=poisson)
anova(m1,test="Chi")
summary(m1)
contrasts(orchard)<-"contr.helmert"
m2<-glm(divers~orchard,family=poisson)
summary(m2)
m3<-glm(divers~orchard-1,poisson)
summary(m3)
exp(confint(m3))
barplot(tapply(predict(m1,type="response"),orchard, mean),
ylab="Diversity",ylim=c(0,25))
lines(c(0.7,0.7),c(6.79,12.12))
lines(c(1.9,1.9),c(17.6,25.7))
lines(c(3.1,3.1),c(10.1,16.4))



• arises when dispersion parameter φ

i.e. the residual deviance is not similar to the residual degrees of
freedom

- overdispersion: variance is larger → φ > 1
- underdispersion: variance is smaller → φ < 1

• causes:
- if the distribution is aggregated
- if counts are not independent
- lack of important variables, etc.
- suspicious data

1)(E)(Var ≠= yyϕ

µ== )()( yVaryE



• solution: use quasipoisson family

• this will influence SE of parameter estimates
- if φ > 1 then SE will be larger
- if  φ < 1 then SE will be smaller

• without correction for overdispersion there would be too many
false positive results (in favour of HA)

• when using quasipoisson χ2- and z- tests have to change to
F- and t- tests



Background
Abundance of carabid beetles in cereals depends on abiotic and
biotic factors. If we understand how abiotic factors influence
abundance of carabids then we can adapt certain management
practices to increase the abundance when needed.

Design
In the field, on 21 wheat plots the abundance of carabid beetles
was studied by means of pitfall traps. At every site average day
temperature [ºC] and average sun activity [W/m2] was recorded.



Hypotheses
Was abundance of beetles affected by any of the two variables? 
If so what is the model of the relationship?

Variables
temp
sun
abun

Data 
carabid.txt



Analysis

dat<-read.delim("carabid.txt"); attach(dat); names( dat)
pairs(abun~temp+sun,panel=panel.smooth)
m1<-glm(abun~temp*sun,family=poisson) 
summary(m1)
m2<-update(m1,family=quasipoisson)
anova(m2,test="F")
plot(m2,which=1)
plot(m2,which=4)
pr<-resid(m2,type="pearson")
plot(sun,pr)
plot(temp,pr)
abun[21]
m3<-glm(abun~temp*sun,poisson,subset=-21)
anova(m3,test="Chi")
m4<-update(m3,~.-temp:sun)
anova(m4,test="Chi")
summary(m4)
(75.292-22.836)/75.292
range(sun)
range(temp)
xyz<-expand.grid(sun=seq(900,3500,50),temp=seq(9,30 ,0.5))
xyz$density<-as.vector(predict(m4,xyz,type="respons e"))
library(lattice)
wireframe(density~sun+temp,xyz)



Background
Some predators use conditional strategies to catch prey. The use of
strategy often depends on the characteristics of prey.

Design
In the field, it was observed which of three strategies spiders used to
capture prey. For each trial, size (two size classes) and movement
(slow or fast) of prey was recorded. Altogether 88 trials were
observed.

small large small large
stratA 19 10 21 12
stratB 4 10 0 8
stratC 0 1 1 2

slow fast



Hypotheses
Is use of strategy influenced by prey size and its movement?
If so which prey is captured by strategy A, B and C?

Variables
PREY: fast, slow
SIZE: large, small
STRATEGY: stratA, stratB, stratC
freq

Data
predator.txt



Analysis

dat<-read.delim("predator.txt"); attach(dat); names (dat)
interaction.plot(strategy,prey,freq)
interaction.plot(strategy,size,freq)
m1<-glm(freq~strategy*size*prey,family=poisson)
summary(m1)
anova(m1,test="Chi")
m2<-update(m1,~.-strategy:size:prey)
anova(m2,test="Chi")
m3<-update(m2,~.-strategy:prey)
anova(m3,test="Chi")
summary(m3)
attacks<-tapply(predict(m3,type="response"),list(si ze,strategy),mean)
attacks
both<-paste(strategy,size)
m4<-glm(freq~factor(both)-1,poisson)
summary(m4)
exp(confint(m4))



barplot(attacks,beside=T,ylab="No. of attacks", xla b="Strategy",
legend.text=c("large","small"),ylim=c(0,25))
lines(c(1.5,1.5),c(7,16.3))
lines(c(2.5,2.5),c(14.4,26.9))
lines(c(4.5,4.5),c(5.5,13.8))
lines(c(5.5,5.5),c(0.6,4.6))
lines(c(7.5,7.5),c(0.4,3.9))
lines(c(8.5,8.5),c(0.03,2.2))
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� NB is a parametric alternative to Poisson model with
overdispersion
• distribution of y is strongly asymmetric with many zeros
• NB has two parameters, µ and θ
• moments:

- θ is aggregation parameter (0,∞)
- if θ ≥ 1 .. random distribution, θ < 1 .. aggregated distribution

- θ can be estimated from

θ
µµ
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)( +=yVar
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2

2
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glm.nb(formula) from MASS library

• links:
log (default)
sqrt
identity

• begin with Poisson model, if overdispersion is large switch to
glm.nb



Background
Grain beetles are serious pests in grain stores. They may occur not
only in the grain but also in crevices of corridors. It is essential to
know where they occur before control methods are applied.

Design
Density of grain beetles was surveyed in a grain store by means of
sticky traps. Traps were installed in two places: 25 traps in the
corridors and 25 traps in the grain. After few days number of
beetles was recorded.



Hypotheses
Is density of beetles similar on both places?
If not how different it is?

Variables
PLACE: floor, grain
density

Data
beetle.txt



Analysis

dat<-read.delim("beetle.txt"); attach(dat); names(d at)
plot(place,density)
table(density)
tapply(density,place,mean)
m1<-glm(density~place,family=quasipoisson)
anova(m1,test="F")
summary(m1)
plot(m1,which=1)
tapply(density,place,var)/tapply(density,place,mean )
tapply(density,place,function(x) mean(x)^2/(var(x)- mean(x)))
library(MASS)
m2<-glm.nb(density~place)
anova(m2)
summary(m2)
plot(m2,which=1)
exp(confint(m5))
barplot(tapply(predict(m2,type="response"),place,me an),ylab="Density",
ylim=c(0,200))
lines(c(0.7,0.7),c(49.6,197.2))
lines(c(1.9,1.9),c(9.7,38.9))
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■  Binomial data arise:
• when we count response to a certain stimulus → dose-response
studies
• whenever we record whether an event has occurred or not within
a known population (n)
• events: death, birth, germination, attack, consumption, reaction,
etc.
• there are no classical replications - records are clustered to p or q

• p .. probability of successes, q .. probability of failures

• clustering of responses:
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• distribution is bounded [0 < p < 1]
• variance is not constant, maximal when p = q = 0.5
• moments

• estimated parameters are on logit scale (-∞, +∞)
• logistic model will always asymptote at 0 and 1

- predicted values are then always within [0, 1]

• inverse function to logit is ani-logit where Q is
a parameter estimate

• odds ratio
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• Exact binomial test (binom.test) to compare a single
proportion
• Proportion test (prop.test) to compare two proportions
• Contingency tables (xtabs) to study effect of factors
• Logistic regression to study effect of continuous predictors
• Standard regression (lm) can be used after transformation

- angular transformation

- can predict values out of bounds (negative or >1)

• Binomial GLM (glm) to study effect of both factorial and
continuous predictors

parcsin



• glm(..., family = binomial(link=...))

link functions:

- logit (logit )

- probit (probit )

- complementary logit (cloglog )
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Data format:

• Binomial distribution ... individuals within a group are
homogenous
- two vectors (y, n-y) or (y, n) of integers

• Bernoulli (binary) distribution ... individuals within a
group are heterogenous, each characterised by a continuous
character
- n = 1
- single vector of 0’s or 1’s



• arises when dispersion parameter φ

- overdispersion: variance is larger → φ > 1
- underdispersion: variance is smaller → φ < 1

• causes:
- if the model is mispecified
- lacks important explanatory variables
- relative frequency is not constant within a group

• solution: use quasibinomial family in which variance is

estimated as       instead of
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• this will influence SE of parameter estimates
- if φ > 1 then SE will be larger
- if  φ < 1 then SE will be smaller

• when using quasibinomial χ2- and z- tests
have to change to F- and t- tests

changes P values



Background
Production of eggsac is influenced by a number of variables, such
as body size, i.e. amount of consumed food. For an experimental
study we need to be able to predict probability of production at a
range of body sizes.

Design
In the laboratory, production of eggsacs was studied in a spider
with a variable body size [mm]. As the body size was measured
with the precision of 0.5 mm, all 160 individuals were classified
into size classes each containing 15 to 30 specimens. Females that
produced eggsac were recorded.



Hypotheses
• Is eggsac production related to the body size?
• If it is what is the shape of the relationship?
• What is the model that can be used to predict eggsac production
for spider sizes of 3–12 mm?

Variables:
body
n
eggs

Data
spider.txt



Analysis

dat<-read.delim("spider.txt"); attach(dat); names(d at)
p<-eggs/n
plot(body,p)
tr<-asin(sqrt(p))
m1<-lm(tr~body+I(body^2),weights=n)
summary(m1)
m2<-update(m1,~.-I(body^2))
summary(m2)
x<-seq(0,12,by=0.1)
plot(body,tr)
lines(x,predict(m1,list(body=x)))
abline(m2,lty=2)
legend(3,1.5,c("m1","m2"),lty=1:2)
plot(body,p,xlim=c(3,12),ylim=c(0,1))
lines(x,sin(predict(m1,list(body=x)))^2)
lines(x,sin(predict(m2,list(body=x)))^2,lty=2)
legend(5,0.4,c("m1","m2"),lty=1:2)
y<-cbind(eggs,n-eggs)
m3<-glm(y~body+I(body^2),family=binomial)
summary(m3)
m4<-update(m3,~.-I(body^2))



plot(body,p,xlim=c(3,12),ylim=c(0,1))
lines(x,predict(m3,list(body=x),type="response"))
lines(x,predict(m4,list(body=x),type="response"),lt y=2)
legend(5,0.7,c("m3","m4"),lty=1:2)
summary(m4)
m5<-update(m4,family=quasibinomial)
summary(m5)
anova(m5,test="F")



Background
Synthetic insecticides often have a species-specific efficiency. The
recommended doses or concentrations then have to adjusted.

Design
In the laboratory an effect of an insecticide on the mortality of two
aphid species was studied. The insecticide was applied at 6
concentrations [ppm]. Each concentration was tested on 30
individuals of both aphid species.



Hypotheses
• Is mortality affected by the concentration?
• Was the efficiency similar for both species?
• What is the LC50 (i.e. 50% lethal concentration) for both species?

Variables:
SPECIES: A, B
conc
n
dead

Data
aphid.txt



Analysis

dat<-read.delim("aphid.txt"); attach(dat); names(da t)
p<-dead/n
plot(conc,p,type="n")
text(conc,p,labels=as.character(species))
y<-cbind(dead,n-dead)
m1<-glm(y~log(conc)*species,binomial)
anova(m1,test="Chi")
m2<-update(m1,~.-log(conc):species)
anova(m2,test="Chi")
summary(m2)
plot(m2,which=1)
pr<-resid(m2,type="pearson"); plot(log(conc),pr)
plot(log(conc),p,type="n",xlab="Log(Concentration)" ,ylab="Mortality")
x<-seq(-3,2,0.1)
A<-1/(1+exp(-1.3825-1.2328*x)); lines(x,A)
B<-1/(1+exp(-1.3825+2.2117-1.2328*x)); lines(x,B,lt y=2)
legend(1,0.3,c("A","B"),lty=1:2)
m3<-glm(y~species+log(conc)-1,binomial)
summary(m3)
library(MASS)
dose.p(m3,cf=c(1,3),p=0.5)
dose.p(m3,cf=c(2,3),p=0.5)



Background
Granivorous ants collect various seeds and bring them into nest.
Sympatrically occurring species may show trophic niche partitioning
related to the size of collected seeds.

Design
Seed preference of two ant species was studied in the laboratory.
Each of 25 ants of both species was offered seeds of variable size
expressed as its weight [mg]. Response of ants was classified as
“yes” or “no” if it took or refused to take a seed, respectively.



Hypotheses
• Is acceptance related to the seed size?
• Did both species have similar preference for seed sizes?
• If not what is the threshold size of seeds for both species?
(The threshold size is defined as a size that is accepted with higher
than 90% probability)

Variables:
SPECIES: specA, specB
seed
take

Data
ant.txt



Analysis

dat<-read.delim("ant.txt"); attach(dat); names(dat)
library(lattice)
xyplot(take~seed|species)
m1<-glm(take~seed*species,family=binomial)
summary(m1)
anova(m1,test="Chi")
m2<-glm(take~log(seed)*species,binomial)
AIC(m1,m2)
plot(seed,take,type="n",xlab="Seed weight",ylab="Tr ansported")
x<-seq(0,3,0.01)
A<-1/(1+exp(-4.012+8.364*x)); lines(x,A)
B<-1/(1+exp(-4.012+10.957+(8.364-19.147)*x));lines( x,B,lty=2)
legend(1.5,0.8,c("specA","specB"),lty=1:2)
(log(0.9/0.1)-4.012)/-8.346
(log(0.9/0.1)-4.012+10.957)/(-8.346+19.147)


