Lecture 10: J-coupling, spin echoes Direct dipole-dipole coupling J-coupling (indirect, through-bond) J-coupling Hamiltonian \ V -^2,2? B2,z; 2ir 7172 V Jxx Jxy Jxz Jyx Jyy Jyz Jzx Jzy Jzz ' V2,x N • V2,y ( V2,z ) 8 = —fii • B2 = 2tt 7172 Ml,x Pl,y fJ>l,z ) • J- • /M2,xX M2,y V M2,z ) í y \ Ij2,x hu J2,zj I 2n{Tl,x h,y h z Jxx Ja \ xy Jxz Jyx Jyy Jyz Jzx J zy Jzz (f \ l2,x • {2, y { J2,z ) J-coupling Hamiltonian H J — 27r(JxxIl,xl2,x + Jxyll,xl2,y + Jxzh,x^2 z -\-JyxIi,yl2,x + Jyyll,yl2,y + Jyzli,yl2,z -\-JzxI\,zl2,x + JzyIl,zl2,yJzzIl,zl2,z Classical nucleus-electron interaction Classical nucleus-electron interaction Classical nucleus-electron interaction Classical nucleus-electron interaction Classical nucleus-electron interaction Fermi interaction J-coupling Stationary state of unperturbed a electrons Favorable state of electron-coupled nuclei Unavorable state of electron-coupled nuclei Scalar coupling 2 V Jxx Jxy Jxz Jyx Jyy Jyz Jzx Jzy Jzz ( f \ • T2,y { J2,z ) Jxy Jxz (Jxx 0 0 ) Jyx Jyy Jyz —> 0 Jyy 0 v Jzx Jzy Jzz ) ( o 0 Jzz i = 2ir Jxx + Jyy + Jzz (1 0 °1 (1 0 0) 0 1 0 = 2tt j 0 1 0 o 0 1 o 0 1 j = (JXx + Jyy + Jzz)/3 isotropic constant (scalar) (2Jzz — Jyy — Jxx)/6 = 0 no anisotropy (Jxx — Jyy)/2 = 0 no rhombicity Hj — nJ (2IizI2z + 2IixI2x + 2Tiyl2y J-coupling constants • 1J(31P-1H) < 700 Hz • 1 J(13C-1H) 140 Hz to 200 Hz • 1J(15N-1H) -90 Hz • 1 J(13C-13C) 30 Hz to 60 Hz • 3J(1H-1H) < 15 Hz torsion angle Secular approximation • isotropic J: no ensemble averaging is needed • 71 = 72 and S\ i « S\2 (strong coupling): Hj = 7rJ {2I-]_ZI2Z + 2Iixl2x + 2Tlyf2y) 71 7^ 72 or l<5j,i — ^i,2l^o > 27r| JI (wea/c coupling) Hj = 2irJIlzl2z = (2Ilzl2 z Density matrix at thermal equilibrium Diagonal elements: PZ « \ + 71(1 + ^U)^L + 72(1 +2) ^ 4 "------"afceT ' "------8kBT 16kBT ^^-71(1^11)^ + 7,(1+^^ ^ - t - 7id + sLl)^L _ 72(1 + f 2) -Jfi 4 ' ,'xy8feBT ' 8/cBT 16fcBT ttJ < 0.00001 7B0, < 0.00002 (1H), |<5i>2| < 0.0002 (13C,15N) ~eq i / I i \ JjBoh Density matrix evolution Qx = -7l^o(l + ^2 = -72^o(l + ^i,2) Weak coupling: = q\.f\z + ^2^2z + ^(2^12^2^) ■^iz< ^izi ^iz^iz commute =>• [>j, J^] = jj^ p = CJ?j -> CJj cos(oot) + CJ\ COS(wt) / P 3x for = <0\z,tPiziltPxz^iz in any order A 'Slz — y Qiŕ Six / Sly'/ s, Slx 1~S lz >slz y -2SXxJ2z / xS2z \-Slz B -2J*i J2J^2z ^ _ 7T J «^1 lx C D VSlzJ?2z _ 7T J / / '-->- 2-^1,-/2, i '-2./1:../2:. i-2./1:./2-, >Slz ^SXzJ2z f /" / s. Sly/ A/ 2Slyy2z Six Six \ [Slz \ 1-2SlzI2z l2Slzjr2z 1 1 1 y / / 1 1 1 \OJl \*-2Slxy2z -J- ly lx\ 2S^S2z ^-lSlzl2z Density matrix evolution p after a 90° pulse: p(b) = \jt + h^(—^iy — ^2y) y y x c\ = cos(Qit) c2 = cos(Q2*) Cj = COS(7T Jt) +n^ix —> -cicj +C1SJ + S1CJ C2CJ +S2CJ +S2«J ^lx^2z Six 2^1y^2z ^2y ^2x^lz ^2x 2^2y^l *i = sinCQ-^) «2 = sin(ft2*) sj = s\n(7rJt) Spectrum M+ = M (7l(/lx + \hy) + 72(/2x + \hy)) (M_|_) = Tr{p(t)M+} oc _ ^e--R2,ií ^ei(Qi-7rJ)i _|_ ei(Qi+7rJ)^ _|_ e-R2,2t f^e\(n2-TTJ)t _|_ ei(Q2+^)ť &{y(a;)} = NYhzB0 16fcBT «2,1 «2.1 V ä| ! + (w - Qi + ttJ)2 R2, 1 + (w - Qi - ttJ)2 «2.2 + «2.2 \ Ä| 2 + (w - Q2 + Tr J)2 R2, 2 + (w - Q2 - ^-02 Homo- and heteronuclear pairs Homonuclear: 7^^=72, J^i-p^j, Heteronuclear: 71 7^72, ^7,^7, e Homo- and heteronuclear pairs uj uj UJ UJ HOMEWORK: Spin echoes Sections 10.5-10.8 Spin echoes A ,HI- 13C or15N- B ,HLJ 13C or15N- C 'h'-j 13C or15N-* D ,HI_I 13C or15N-"