Lecture 13: Field gradients Homogeneous field Pulsed field gradients (Gz) Gradients dephase transverse magnetization (3 <3> (3> C3 C5) (3) C3 C5) C5> CS> (3 C3> <3) = 0 units Gradients dephase transverse magnetization CD C3 C3 O O o CD CD CD CD CD CO Gz = 1 units Gradients dephase transverse magnetization o o CD CD C3 O o (3) CD CD o Gz = 2 units Gradients dephase transverse magnetization Gradient-induced dependence of phase CD CD o CD CD CD o CD CD CD CD C3 CD O CD O CD CD O CD O CD O CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CZ> CD CD ->• — jy cos(Q't) + sin (n't) = — j% cos(Q — jGzzt) + j^sin(Q — jGzzt) Gradient-induced dependence of phase Gz = AB0//\z n'(z) = Q — 'jGzZ —jfy —»• — jfycosizi't) + j^sin(Q'£) = -^ycos(Q -jGzzt) +^rSin(Q -^Gzzt) +} = Ar72^2^0cigci(Q-^^)t 4fcBT Performing phase correction and including relaxation (M+) = AT^2^e-^ei(^-7fe)t Pulsed field gradients (Gy) AAAAAAAAA A A A A A AA ||| | B 0 Gradient-induced dependence of phase Gy — y — cos(n;t) + j^x sin (Q't) = -^,cos(Q - jGvyt) + ^xsin(Q - jGyyt) Gradient echoes X Wanted Unwanted Gz Gradient-enhanced HSQC Gz Cleaning echo imperfections Gz Cleaning INEPT imperfections Gradient-enhanced HSQC 7W ± ± y I 4J I 4J | 3C or15N Use of gradients • Cleaning, filtering, selection similar use as phase cycling • Translational diffusion measurement • Imaging GRADIENTS AND MAGNETIC RESONANCE IMAGING Lars G. Hanson Copenhagen University Hospital Hvidovre http: //eprints. drcmr. dk/37/l/MRI_English_a4. pdf Slice selection by G Slice selection by G Selective pulse: amplitude modulation Slice selection o cd O cd ct> o cd c3 (3) c3 cd cd o o cd c^d cd o c3 cd o c3 c3 o> cd cd o <3> cd O cd cd cd cd cd gd ^d cd cd o cd & (5d cd cz> cd cd <5d V2/ V2/ ^2/ K 4,BT ^6 KeiS2t-R2t(Af(z)e-ikzZ kz Slice selection <3> cd cd cd cd cd o <£> cd c3 cd o o cd s> cd o c3 cd cd o O c3 <3> O O <3> <3> c5) cd cd cd cd cs> cd cd cd cd o cd O o cd cd cd ^d V2/ ^2/ 7Gzz = Q : 7GZ* 7^ Q : V \ V V V V V V V V \ \ \ V V V V V V V \ V V V > \ \ V \ V V V V V \ V \ \ V V V V V V V V \ \ V \ \ \ \ \ V V V \ \ V V \ V V V V V V V \ V \ V V V V V \ V V V V \ \ V V V V V V V \ \ \ \ \ \ V V V V \ \ V \ V \ \ V V V V V V V V V \ \ \ V V V V V V V V V \ \ \ \ V V V \ \ V V \ \ \ \ V V V V V V V V V \ \ \ \ \ V V \ \ \ V \ \ \ \ \ V V V V V V V V \ \ \ V V V V \ V V V V \ \ \ V V V V V V V V V \ \ \ V V V V V V V V V \ \ \ V V V V V V V V V \ \ \ V V V V V V V V V \ \ \ V V V V V V V V > \ \ \ \ V V V V V V V V \ \ \ V V V V V V V V > \ \ \ V V V V V V V V V \ \ V V V V V V V \ V V \ V V V V \ V \ V \ V V V \ V V V V \ \ V V V V V V \ \ V V V \ V V V V V V V V V \ V V V \ V V V V \ \ \ \ V V V V V V \ \ \ V V V V V V \ V \ \ \ \ \ V V V V V V V V \ \ V V V V \ \ V V V V \ \ \ V \ V \ \ \ V V V \ \ \ V V V V V > V\/v v \ V \ \ V V V V V V V \ V \ \ \ \ V V V V V V V V \ V \ \ \ \ V V V V V V V V \ \ \ \ V V V V V V V V V V V \ \ \ V V V V V V V V V Magnetization in the slice with gradient \ V y v **. V v V ^ V ^ ~* v \ V ^■ **■ \ V ^ v V V v \ V v V **■ v v V ^ \ >». *■*. V v •>*■ V v -»-y v V V V ~* * * f t -r * / t t * <* * t t <* * t t -r <* * t f ^ ^ / t t jr / t t * / t t -r * * t t -r * * t t -r >r > / f * / t 1 -r * * f t -r * * f t -r " * f t * * t t -r Jf * f t -r * * t t * * t t -r * * t t * * t t * / f t * * * / t t \ \ \ t \ \ \ t \ \ \ ^ t \ \ \ t \ \ \ t \ \ \ t \ \ \ / 4 *■ * * 4 * ✓ / ^ *- / 4 *- * / 4 *- * * 4 " / 4 * * 4 \ * * 4 \ *- * / 4 i / t 1 x / i v v /fix / * v / f 1 x ✓ i V v / f 1 / * v / f IX ✓ * v v / f 1 x ✓ * V / f 1 X / i V V / t 1 K / * v / f 1 x ✓ * V v /fix / * v /fix ✓ * V v /fix v /fix ✓ * * v /fix / * v /fix / i V v /fix / * v /fix / * V v /fix / i v /fl^ ✓ * V v / f 1 * /i v /fix / * * v /fix ✓ * v /fix / * > v /fix / * v / f U ✓ * * v /fix / * v /fix / i v v /fix / * V / f 1 X ✓ * * v /fix /í v /fix / i \ * / f 1 X / ^ v /fix / < V v /fix v /fix / < V v /fix / v /fix / * V v /fix / v /fix / * V ^ / f U / v /fix / * V v /fix / v /fix / * V v /fix / v /fix / * V ^ /fix / * / f 1 x ✓ i V * Magnetization in the slice with gradient G Magnetization in the slice with gradient G Magnetization in the slice with gradient G vvvvvvvvvvvvvvvvvvvvvvvv ////// / / // // // // / // // // / tttttttttttttttttttttttt tttttttttttttttttttttttt tttttttttttttttttttttttt ************************ \\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\ 444*4444444* 4 / / 4 4 4 4 4 4 / 4 4 ************ V V V V \ V \ V V V V > ✓ ✓✓✓✓✓✓✓✓✓✓✓ ************ 4 4 4 4 4 4 4 4 4 4 4 4 ************ V \ V V V V V V \ V \ > Magnetization in the slice with gradient G ************************ tttttttttttttttttttttttt \\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\ /ft//////////*****//*//* / i / / i / / * / / * 4 / * i / 4 i / / i / / t V V V V V V V V V V V V V V V V V V V V V V V V vvvvvvvvv\vv\vv\vv\vvvvv ************************ tttttttttttttttttttttttt \\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\ ************************ /////////////////////// ^ V V V * V V \ V V V V V V V V \ \ \ \ V V \ \ \ Magnetization in the slice with gradient G tttttttttttttttttttttttt \\\\\\\\\\\\\\\\\\\\\\\\ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 / vvvvvvvvvvvvvvvvvvvvvvvv \\\\\\\\\\\\\\\\\\\\\\\\ V V V V V V V V V V V V V V V V V V V V V V V \ tttttttttttttttttttttttt \\\\\\\\\\\\\\\\\\\\\\\\ 4 4 4 4 4 4 4 4 4 \\\\\\\\\ ////ft/// \\\\\\\\\ 4 4 4 4 4 4 4 V V V V V V V / / / / / / / \ \ \ \ \ \ \ 4 4 4 4 4 4 4 4 V V V V V V V V \\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\ Combination of gradients Gx and G V t If \ t t \ t \ \ \ \ \ >r / f f t \ * * t t t \ \ \ \ \ ■»» \ t t \ \ \ ✓ 4 V V V I \ \ if ✓ 4 * 4 4 4 I V V V V V 4 4 \ \ \ V if / 4 4 \ V V \ 4 \ \ \ v 4 4 4 \ \ V V v V v -a. ✓ / 4 \ V V / 4 4 \ V V V 4 4 \ \ \ v / 4 4 \ V V ✓ 4 / 4 I V > V * 4 4 4 4 \ \ \ \ V \ > / 4 \ 4 \ \ V V \ \ \ v V V V ^ t t t t t t t t \ * / t / t t t t t / t \ t \ \ \ \ \ t t i t \ \ \ \ \ / t t t t t /> t t t t t t \ \ \ \ t t t \ t i t / t \ t \ \ \ \ \ t if if 4 ✓ ✓ If / 4 4 4 \ \ \ Combination of gradients Gx and Gy t t f \ \ t \ \ \ \ 4 \ > t \ \ \ tf 4 \ \ t \ If 4 V »s ^, 4 ** * * < 4 4 * * V > / t t i ^ A / ~ * * / t ♦ * \ _ * / ♦ * I v v v v v * * t t t t ♦ 1 *r f f * * t 4 + * 4 I \ \ 4 4 \ \ \ V V t t t \ t \ \ \ 4 4 \ \ V ^ Nk. -» * / t t t * t t \ \ 4 4 4 4 ✓ 4 \ tf 4 4 4 4 * v v v 4 4 \ \ V v \ \ \ V ^ / 4 \ \ \ 4 4 \ \ v ^ ~< * * * t i \ \ 4 4 I V V ^ ^ -» t 1 t t t t \ \ " * 4 4 4 I * V > \ v ^ >». ~*- * / t t t t t \ \ * it 4 4 4 \ Combination of gradients Gx and G v ^ -* ^ / t t \ X *s +- " * / * V v ^ -** f t * / * V V / t * X ^ *- * * / * V v > ^ ^ / t i \ X / * V t t \ \ \ \ X ^ * * 4 4 4 I V V V v ^ * / t / > t \ \ \ \ ^ ^ " * 4 4 4 I V V * * t t t \ \ \ \ X ^ 4 4 * V V V V ^ / * t * \ * X ^ / / I V V > t * *- * It 4 \ V V / t t \ X ^ *- * / 4 I V v ^ -* / t * X x +- * / 4 \ V V ^ > t * \ X *- ✓ / * V > v -* / / 4 V V V ^ ~* t t \ \ \ X ^ / / t * \ X ^ ^ / / * V t t \ \ \ X ^ <*- ^ ✓ / / * V v v ^ t i \ \ 4 4 \ V / > t * \ X ^ ^ " / / / 4 V t i \ \ \ X ^ <*. v v t t i \ \ X ^ > v ^ * * / t t t \ \ X ^ ^ / / 4 V > t f \ \ \ \ X x ^ ~ " * 4 4 4 I V > t t \ \ \ \ X ^ ^ * / 4 4 4 \ V V t i \ \ \ \ X ^ * * 4 4 4 \ \ \ v v t t \ \ \ \ X ^ Regular patterns enhance signal Sternum Cartilage X ✓ / t f \ \ x ^ ,r ✓ /■ f t * \ X - x t t t » 1 x ». * t * 1 X * \ X ••. *. X «. ~ „ „ " * t i \ \ \ * * / i i \ \ X X *"••*/ / **VxX"» ' / t * V * > ' ' ' / I M ii > ^ ' y / ^ * v v v * / * * * \ > "» i i, v x ~* «• y / / » V V x ✓ / < I \ > x ■» < ♦ v >. * > x x x > 4 i .* X /■ t t ^ .» A / t i \ \ / t t t \ \ X ^ ^jr/f/ft^XX*. X / f t t < X X ». „ v * / / m m \ ^ *■ *■ / i „ „ f i \ \ \ X X- „ „ , , , ,, ✓ /> * t * \ x x. «• ✓ , , j v >, c f f * \ x « ^//<^v^•»,' #- ✓ / t * \ \ x ✓ / * * \ \ x •» / / 4 ♦ V X •» - «• ✓ / f i \ \ x •» «■ ✓ / * I V V x * t \ V v x •» * V V X * x ■» * t t t * X X % t ♦ < \ X -K \ \ X -K X ». *. _ V V x t t t \ w / / m n ,r X / > t < \ X V ^ X / f t ^ X X v t t t < X X v t * \ X ^ ''til, Regular patterns enhance signal Unique shape as superposition of patterns Image reconstruction • resembles diffraction methods (crystallography) • wavelength of the phase patterns generated by gradients • wavelength of the radio waves is irrelevant (but starts to interfere at high field, where it approaches the body dimensions) • Q assumed to be identical differences must be corrected to avoid artifacts k space k space It J (} t ( t t ( t it 1111 ft * • * * t t ft t t t t t t t t t t t t t t tt t t t t t t t t t t It It t ^ t t ( t tt * * 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 k space 1 ♦ \ \ \ \ '} 0 0 0 0 0 t t t1 * t 0 0 0 0 0 t t t t t t t t t t t t t t t t 0 -4 8 -4 0 t t t' 11 t * t 0 0 0 0 0 1 \ 1 \ } 0 0 0 0 0 k space - ; - - < - if ; - i: 0 0 0 0 0 q t L * - 1 t t T 1 * - ♦ * L 1 - +1 +1 +1 +1 +1 t t t t £ * - t t t t t t t t £ I - li +2 -2 10 -2 +2 _ t L 1 - t t ' T i i - ♦ ♦ t q i - * * +1 +1 +1 +1 +1 - } 1 \ } » t - 0 0 0 0 0 k space _ ; - • \ » * _ —i- 1 1 1 1 1 d ♦ ♦ t c i - t d ♦ ♦ ♦ * d t +1 +1 +1 +1 +1 t t t ■ t * t t ■ t * t t Ltf t t t t +3 -1 11 -1 +3 ♦ * t C 1 - t ♦ t ♦ i i - t - * t +1 +1 +1 +1 +1 -1 1 j t i - 1 -1 i -1 +1 -1 -1 +1 See Figure 15 in http: //eprints. drcmr. dk/37/l/MRI_English_a4. pdf ID imaging in the slice Frequency encoding gradient L (M+)(kx) = f Ke'nt-R^Af(x)e-]kxX6x o oo f Ke^t-R2tj^f(x-)e-\kxx6x J K' —oo JV Signal (M_|_)(fcx) is Fourier transform of spin density Af(x) Spin density Af(x) can be reconstructed by Fourier transformation of the signal (M+)(kx) Frequency encoding gradients oo (M+)(kx) « K' / Af(x)e-lkxX6x —OO AtAf = 1 N kx = 7^x^ = n • Afcx a; = jAx A/ex = 7G*A£ = 7 x ATA/ A/-1 n=0 Better resolution than slice thickness ID imaging in the slice 2D imaging in the slice 2D frequency encoding possible Two frequency encoding gradients oo oo (M+)(kx,ky) « K' / / Af(x,y)e-*(kxX+kyy^dxdy —oo —oo 1 , 1 AtoAfo = — AtiAfi = — NX Ny A fcx = jGxAt2 = ATxA/2 Afcy = jGyAtx = 1 V Ny&h N(x,y) = —-^t— E E (M+)(kx,ky)e nx=0 ny=0 Frequency and phase encoding gradients Ak y y [ ^tXAGy MRI spin echo experiment Phase encoding typical in MRI MRI spin echo experiment Frequency encoding in x MRI spin echo experiment Phase encoding in y Frequency and phase encoding gradients oo oo (M+)(kx,ky) « K' I / Af(x,y)e-^kxX+kyy^dix6y —oo —oo AtA / = — X kx = lGxt = nx ■ Afcx x = jx£±x ky = iGyty = ny • Afcy 7/ = jyA*/ AT^A/ Afcy = jty/\.Gy MRI spin echo experiment Pre-phase gradient in x (—x —► x) Frequency and phase encoding gradients oo oo (M+)(kx,ky) « K' I / Af(x,y)e-^kxX+kyy^dix6y —oo —oo AtA / = — X kx = lGxt = nx ■ Afcx x = jx£±x ky = iGyty = ny • Afcy 7/ = jyA*/ AT^A/ Axial slice selection by G Sagittal slice selection by G Coronal slice selection by G 3D gradient echo imaging High resolution in all dimensions More time consuming 3D gradient echo imaging Short (~ 10°) pulse to save time =>• several measurements before return to equilibrium Two phase encoding gradients e rix ny nz / Jx-nx i i 3VnV i I, 1 1 Ny 1 1 N z J Contrast and weighting Contrast is more important than intensity (M+XM = ^e,nt^(l-e-fliTR)e-^W(x)e-,;^^ if not started from thermodynamic equilibrium (M+)(fe) oc / (l - e-ßiTR) e-^E ^(r) e"ife-W Ti weighting: difference in i?i = 1/Ti, short TR and TE T2 weighting: difference in = I/T2, long TR and TE spin density weighting: difference in A/\ long TR, short TE