Lecture 5: Spin Lessons from non-relativistic quantum mechanics: • A = Ψ|A|Ψ expected value • [ˆrj, ˆpk] = i¯h ⇒ [ˆLx, ˆLy] = i¯hˆLz, [ˆLy, ˆLz] = i¯hˆLx, [ˆLz, ˆLx] = i¯hˆLy commutators • ˆrjψ = rj · ψ, ˆpjψ = −i¯h ∂ ∂rj ψ operators of position and momentum • ˆHψ = i¯h ∂ ∂t , operator of energy, equation of motion • free particle: ˆH = (ˆp2 x + ˆp2 y + ˆp2 z )/2m p2/2m is kinetic energy • electric field: ˆH = (ˆp2 x + ˆp2 y + ˆp2 z )/2m + QV ⇒ ˆH − QV = (ˆp2 x + ˆp2 y + ˆp2 z )/2m • electromagnetic field: ˆH − QV = ((ˆpx − QAx)2 + (ˆpy − QAy)2 + (ˆpz − QAz)2)/2m, B = × A Lessons from relativistic quantum mechanics: t = t0 1 − v2/c2 m = m0 1 − v2/c2 Et = mc2 = m0c2 1 − v2/c2 , (1) E2 t − c2p2 x − c2p2 y − c2p2 z = m2 0c4 ⇒ E2 t − c2p2 x − c2p2 y − c2p2 z − m2 0c4 = 0 (2) ¯h2 ∂2 ∂t2 − c2¯h2 ∂2 ∂z2 − c2¯h2 ∂2 ∂x2 − c2¯h2 ∂2 ∂y2 + (m0c2)2 Ψ = 0 (3) not equation of motion! i¯h ∂ ∂t ˆγ0 + ic¯h ∂ ∂x ˆγ1 + ic¯h ∂ ∂y ˆγ2 + ic¯h ∂ ∂z ˆγ3 − m0c2ˆ1 Ψ = 0, (4) equation of motion electromagnetic field: ˆH − QV = ((ˆpx − QAx)2 + (ˆpy − QAy)2 + (ˆpz − QAz)2)/2m, B = × A i¯h ∂ ∂t − QV i¯h ∂ ∂t − QV ˆ1Ψ = i¯h ∂ ∂t − QV 2 Ψ =  c2 i¯h ∂ ∂x + QAx 2 ˆγ0ˆγ1ˆγ0ˆγ1 + c2 i¯h ∂ ∂y + QAy 2 ˆγ0ˆγ2ˆγ0ˆγ2 + c2 i¯h ∂ ∂z + QAz 2 ˆγ0ˆγ3ˆγ0ˆγ3   Ψ +m2 0c4ˆγ0ˆγ0Ψ −m0c3 i¯h ∂ ∂x + QAx ˆγ0ˆγ1ˆγ0 + i¯h ∂ ∂y + QAy ˆγ0ˆγ2ˆγ0 + i¯h ∂ ∂z + QAz ˆγ0ˆγ3ˆγ0 Ψ −m0c3 i¯h ∂ ∂x + QAx ˆγ0ˆγ0ˆγ1 + i¯h ∂ ∂y + QAy ˆγ0ˆγ0ˆγ2 + i¯h ∂ ∂z + QAz ˆγ0ˆγ0ˆγ3 Ψ +c2 i¯h ∂ ∂x + QAx i¯h ∂ ∂y + QAy ˆγ0ˆγ1ˆγ0ˆγ2 + i¯h ∂ ∂y + QAy i¯h ∂ ∂x + QAx ˆγ0ˆγ2ˆγ0ˆγ1 Ψ +c2 i¯h ∂ ∂y + QAy i¯h ∂ ∂z + QAz ˆγ0ˆγ2ˆγ0ˆγ3 + i¯h ∂ ∂z + QAz i¯h ∂ ∂y + QAy ˆγ0ˆγ3ˆγ0ˆγ2 Ψ +c2 i¯h ∂ ∂z + QAz i¯h ∂ ∂x + QAx ˆγ0ˆγ3ˆγ0ˆγ1 + i¯h ∂ ∂x + QAx i¯h ∂ ∂z + QAz ˆγ0ˆγ1ˆγ0ˆγ3 Ψ (5) HOMEWORK! i¯h ∂ ∂t − QV 2 ˆ1 ˆ0 ˆ0 ˆ1 Ψ = (6)  c2 i¯h ∂ ∂x + QAx 2 + c2 i¯h ∂ ∂y + QAy 2 + c2 i¯h ∂ ∂z + QAz 2 + m2 0c4   ˆ1 ˆ0 ˆ0 ˆ1 Ψ (7) −c2¯hQ Bx ˆσ1 ˆ0 ˆ0 ˆσ1 + By ˆσ2 ˆ0 ˆ0 ˆσ2 + Bz ˆσ3 ˆ0 ˆ0 ˆσ3 Ψ (8) Approximation for low speed: (m0c2)2 = E2 t − c2p2 = (m0c2 + E)2 − c2p2 = (m0c2)2 + 2E(m0c2) + E2 − c2p2 (9) free particle: E is kinetic energy, at low speed: E m0c2 (m0c2)2 ≈ (m0c2)2 + 2E(m0c2) − c2p2 (10) E = p2 2m0 (11) Approximation for low speed: ˆH ≈ 1 2m0   i¯h ∂ ∂x + QAx 2 + i¯h ∂ ∂y + QAy 2 + i¯h ∂ ∂z + QAz 2 + QV   0 1 1 0 (12) − ¯hQ 2m0 Bx 0 1 1 0 + By 0 −i i 0 + Bz 1 0 0 −1 . (13) E = −µ · B = −(µxBx + µyBy + µzBz) (14) ˆH = − ¯hQ 2m0 0 1 1 0 Bx + ¯hQ 2m0 0 −i i 0 By + ¯hQ 2m0 1 0 0 −1 Bz (15) ˆIxˆIy − ˆIy ˆIx = i¯hˆIz, ˆIy ˆIz − ˆIz ˆIy = i¯hˆIx, ˆIz ˆIx − ˆIxˆIz = i¯hˆIy. (16) Guess: γ = Q 2m ⇒ ˆIx = ¯h 0 1 1 0 ˆIy = ¯h 0 −i i 0 ˆIz = ¯h 1 0 0 −1 (17) Check: ˆIxˆIy − ˆIy ˆIx = ¯h2 0 1 1 0 0 −i i 0 − ¯h2 0 −i i 0 0 1 1 0 = (18) ¯h2 i 0 0 −i − −i 0 0 i = 2i¯h2 1 0 0 −1 = 2i¯hˆIz (19) ˆIxˆIy − ˆIy ˆIx = i¯hˆIz, ˆIy ˆIz − ˆIz ˆIy = i¯hˆIx, ˆIz ˆIx − ˆIxˆIz = i¯hˆIy. (20) New guess: γ = Q m ⇒ ˆIx = ¯h 2 0 1 1 0 ˆIy = ¯h 2 0 −i i 0 ˆIz = ¯h 2 1 0 0 −1 (21) Check: ˆIxˆIy − ˆIy ˆIx = ¯h2 4 0 1 1 0 0 −i i 0 − ¯h2 4 0 −i i 0 0 1 1 0 = (22) ¯h2 4 i 0 0 −i − −i 0 0 i = i ¯h2 2 1 0 0 −1 = i¯hˆIz (23) OperatorEigenfunction = Eigenvalue · Eigenfunction (24) ¯h 2 1 0 0 −1 1 h3 ψ 0 = ¯h 2 1 h3 ψ 0 (25) ¯h 2 1 0 0 −1 1 h3 0 ψ = − ¯h 2 1 h3 0 ψ (26) OperatorEigenfunction = Eigenvalue · Eigenfunction (27) ¯h 2 1 0 0 −1 1 h3 ψ 1 0 = ¯h 2 1 h3 ψ 1 0 (28) ¯h 2 1 0 0 −1 1 h3 ψ 0 1 = − ¯h 2 1 h3 ψ 0 1 (29) OperatorEigenvector = Eigenvalue · Eigenvector (30) ¯h 2 1 0 0 −1 1 0 = ¯h 2 1 0 (31) ¯h 2 1 0 0 −1 0 1 = − ¯h 2 0 1 (32) • If the particle is in state |α , the result of measuring Iz is always +¯h/2. The expected value is Iz = α|Iz|α = 1 0 ¯h 2 1 0 0 −1 1 0 = + ¯h 2 . (33) • If the particle is in state |β , the result of measuring Iz is always −¯h/2. The expected value is Iz = β|Iz|β = 0 1 ¯h 2 1 0 0 −1 0 1 = − ¯h 2 . (34) • Any state cα|α + cβ|β is possible, but the result of a single measurement of Iz is always +¯h/2 or −¯h/2. However, the expected value of Iz is Iz = α|Iz|β = c∗ α c∗ β ¯h 2 1 0 0 −1 cα cβ = (|cα|2 − |cβ|2) ¯h 2 . (35) |Ψ = |α −γ¯h 2 +γ¯h 2 1 2 3 4 5 6 7 8 9 10 µz = +γ¯h 2 µz |Ψ = |β −γ¯h 2 +γ¯h 2 1 2 3 4 5 6 7 8 9 10 µz = −γ¯h 2 µz Measurement number |Ψ = 1√ 2 |α + 1√ 2 |β −γ¯h 2 +γ¯h 2 1 2 3 4 5 6 7 8 9 10 µz = 0 µz Measurement number |Ψ (t = 0) = |α ; ˆH = −γB0ˆIz = ω0ˆIz 0 1 Pα|Ψ (t = 0) = |β ; ˆH = −γB0ˆIz = ω0ˆIz 0 1 Pα |Ψ (t = 0) = |α ; ˆH = −γB1ˆIx = ω1ˆIx 0 1 1/ω1 Pα t • The states described by basis functions which are eigenfunctions of the Hamiltonian do not evolve (are stationary). • It makes sense to draw energy level diagram for such states, with energy of each state given by the corresponding eigenvalue of the Hamiltonian. • Energy of the |α state is −¯hω0/2 and energy of the |β state is +¯hω0/2. • The measurable quantity is the energy difference ¯hω0, corresponding to the angular frequency ω0. • The states described by basis functions different from eigenfunctions of the Hamiltonian are not stationary • They oscillate between |α and |β with the angular frequency ω1, given by the difference of the eigenvalues of the Hamiltonian (−¯hω1/2 and ¯hω1/2). • It should be stressed that eigenstates of individual magnetic moments are not eigenstates of the macroscopic ensembles of nuclear magnetic moments. • Eigenstates of individual magnetic moments do not determine the possible result of measurement of bulk magnetization.