
Lecture 7: Chemical shift, one-pulse experiment



General strategy

1. Define ρ̂ at t = 0

2. Describe evolution of ρ̂ using the relevant Hamiltonians

usually several steps

3. Calculate the expectation value of the measured quantity

(magnetization components in the x, y plane) as 〈M+〉 = 〈Mx +

iMy〉 = NTr
{
ρ̂ M̂+

}



The procedure requires knowledge of

1. relation(s) describing the initial state of the system (ρ̂(0))

2. all Hamiltonians (H )

3. the operator representing the measurable quantity (M̂+)
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Operator of measured quantity

M+ = Mx + iMy

M̂+ =Nγ(Îx + iÎy) = NγÎ+

M̂+ = Nγ



0 1
0 0






The procedure requires knowledge of

1. the operator representing the measurable quantity (M̂+)

2. all Hamiltonians (H )

3. relation(s) describing the initial state of the system (ρ̂(0))



Hamiltonian of static field ~B0

Ĥ0,lab = −γB0Îz

Hamiltonian of the radio-frequency field ~B1

Phase = 0 (x):

Ĥ1,rot =(−γB0 − ωrot)Îz − γB1Îx = ΩÎz + ω1Îx

Phase = π/2 (y):

Ĥ1,rot =(−γB0 − ωrot)Îz − γB1Îy = ΩÎz + ω1Îy



Chemical shift Hamiltonian

Ĥδ = −γ(ÎxBe,x + ÎyBe,y + ÎzBe,z) = −γ( Îx Îy Îz )




Be,x

Be,y

Be,z




= −γ( Îx Îy Îz )




δxx δxy δxz
δyx δyy δyz
δzx δzy δzz







B0,x

B0,y

B0,z




= −γ~̂I · δ · ~B0

Ĥ = Ĥ0,lab + Ĥδ,i + Ĥδ,a + Ĥδ,r



Chemical shift Hamiltonian

Isotropic component (independent of orientation):

Ĥδ,i = −γB0δi(Îz)

Anisotropic (axially symmetric) component (depends on ϑ, ϕ):

Ĥδ,a = −γB0δa(3 sinϑ cosϑ cosϕÎx+3 sinϑ cosϑ sinϕÎy+(3 cos2 ϑ−1)Îz)

Rhombic (asymmetric) component (depends on ϑ, ϕ, χ):

Ĥδ,r = −γB0δr( (− cos 2χ sinϑ cosϑ cosϕ+ sin 2χ sinϑ cosϑ sinϕ)Îx +

(− cos 2χ sinϑ cosϑ sinϕ− sin 2χ sinϑ cosϑ cosϕ)Îy +

((cos 2χ sin2 ϑ)Îz)



Secular approximation

Molecular motions do not resonate with the precession frequency −γB0

⇒ Be,xÎx and Be,yÎy oscillate rapidly with frequency close to −γB0

~B0� ~Be⇒ much faster oscillations than precession about Be,x, Be,y

effectively average to zero on timescale longer than 1/(γB0) (∼ ns)

⇒Terms with Be,xÎx and Be,yÎy can be neglected on timescales > ns

Ĥ = −γ~1

2



B0 + Be,z Be,x − iBe,y

Be,x + iBe,y −(B0 + Be,z)






Averaging in isotropic solvent

No orientation of the molecule is preferred

⇒ all values of χ are equally probable and independent of ϑ

⇒ cos 2χ = 0

ax = sinϑ cosϕ

ay = sinϑ sinϕ

az = cosϑ

a2
x + a2

y + a2
z = 1⇒ a2

x + a2
y + a2

z = 1⇒ 3a2
z − 1 = (3 cos2 ϑ− 1) = 0
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Secular approximation and averaging

Isotropic component:

Ĥδ,i = −γB0δi(Îz)

Anisotropic (axially symmetric) component:

Ĥδ,a = −γB0δa(3 sinϑ cosϑ cosϕÎx+3 sinϑ cosϑ sinϕÎy+(3 cos2 ϑ−1)Îz)

Rhombic (asymmetric) component:

Ĥδ,r = −γB0δr( (− cos 2χ sinϑ cosϑ cosϕ+ sin 2χ sinϑ cosϑ sinϕ)Îx +

(− cos 2χ sinϑ cosϑ sinϕ− sin 2χ sinϑ cosϑ cosϕ)Îy +

((cos 2χ sin2 ϑ)Îz)



Hamiltonian without radio waves ( ~B0, δi)

Ĥ0,lab = −γB0(1 + δi)Îz = ω0Îz

Ĥ0,rot = (ω0 − ωrot)Iz = ΩÎz

Hamiltonian with radio waves ( ~B0, δi, ~B1)

Phase = 0 (x):

Ĥ1,rot =(−γB0 − ωrot)Îz − γB1Îx = ΩÎz + ω1Îx

Phase = π/2 (y):

Ĥ1,rot =(−γB0 − ωrot)Îz − γB1Îy = ΩÎz + ω1Îy



Hamiltonian without radio waves ( ~B0, δi)

Ĥ0,lab = −γB0(1 + δi)Îz = ω0Îz

Ĥ0,rot = (ω0 − ωrot)Iz = ΩÎz

Hamiltonian with radio waves ( ~B0, δi, ~B1)

Phase = 0 (x), close to resonance Ω� ω1:

Ĥ1,rot =ΩÎz + ω1Îx ≈ ω1Îx

Phase = π/2 (y), close to resonance Ω� ω1:

Ĥ1,rot =ΩÎz + ω1Îx ≈ ω1Îy



The procedure requires knowledge of

1. the operator representing the measurable quantity (M̂+)

2. all Hamiltonians (H )

3. relation(s) describing the initial state of the system (ρ̂(0))



Thermal equilibrium as the initial state

Classically, Ej = −~µj · ~B0 = −µB0 cosϑj = −µz,jB0

Boltzmann: P (ϑ) = e−E(ϑ)/kBT ≈ 1− E(ϑ)/kBT for E(ϑ)� kBT

Quantum mechanically, E is eigenvalue of Ĥ = −γB0(1+δi)Îz ≈ −γB0Îz

ρ̂eq =




1
2 + γB0~

4kBT
0

0 1
2 −

γB0~
4kBT


 =

1

2




1 0
0 1


 +

γB0~
4kBT




1 0
0 −1


 = It + κIz

Mixed state: The two-dimensional density matrix does not imply

that all magnetic moments are in one of two eigenstates!



Relaxation due to chemical shift anisotropy

Bloch - Wangsness - Redfield semiclassical theory

(spin magnetic moments classically, molecular environment classically)

R1 =
3

4
b2




1

2
J(ω0) +

1

2
J(−ω0)


 ≈ 3

4
b2J(ω0)

R2 = b2



1

2
J(0) +

3

8
J(ω0)


 ≈ R0 +

1

2
R1.

Same equations as derived classically



One pulse experiment

HOMEWORK: Section 7.8



Conclusions

Density matrix evolves as

ρ̂(t) ∝ (Ixcos(Ωt+ φ) + Iysin(Ωt+ φ) + terms orthogonal to I+,

Magnetization rotates during signal acquisition as

〈M+〉 = |M+|e−R2teiΩt = |M+|e−R2teiφ (cos(Ωt) + i sin(Ωt))

unimportant phase shift which is empirically corrected

Fourier transform gives a complex signal proportional to

Nγ2~2B0

4kBT




R2

R2
2 + (ω −Ω)2

− i
ω −Ω

R2
2 + (ω −Ω)2






Signal

ρ̂(t) ∝ (Ixcos(Ωt+ φ) + Iysin(Ωt+ φ) + terms orthogonal to I+,

cosine modulation of Ix = real component of signal

sine modulation of Iy = imaginary component of signal
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and that the magnetization rotates during signal acquisition as

〈M+〉 = |M+|e−R2teiΩt (7.28)

(with some unimportant phase shift which is empirically corrected).

• Fourier transform gives a complex signal proportional to

Nγ2~2B0

4kBT

(
R2

R2
2 + (ω − Ω)2

− i
ω − Ω

R2
2 + (ω − Ω)2

)
. (7.29)

• The cosine modulation of Ix can be taken as the real component of the signal and the sine
modulation of Iy can be taken as the imaginary component of the signal:
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• The signal-to-noise ratio (without relaxation) is proportional to |γ|5/2B
3/2
0 , with the optimal

temperature given by relaxation properties (close to room temperatures for proteins in aqueous
solutions).

HOMEWORK

Analyze the One-pulse experiment (Section 7.8).

|M+|e−R2teiφ (cos(Ωt) + i sin(Ωt))



Spectrum

After Fourier transformation:

Nγ2~2B0

4kBT




R2

R2
2 + (ω −Ω)2

− i
ω −Ω

R2
2 + (ω −Ω)2



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Signal-to-noise ratio

Signal/noise = K
~2N |γ|5/2B

3/2
0

k
3/2
B T

3/2
sample

· 1− e−R2t2,max

R2 t
1/2
2,max︸ ︷︷ ︸

Relaxation

Relaxation: ∼ 1/R2 for long acquisition time t2,max

1/R2 ≈ 6Drot/b2 for large rigid spherical molecules

6Drot =
3kBT

4πr3η(T )
,

1/b2 = γ−2B−2
0 δ−2

a for chemical shift anisotropy,

but chemical shift anisotropy is usually not dominant

⇒ High field/high γ usually advantageous (exception: 13C=)


