Lecture 9: 2D spectroscopy, N O ESY HOMEWORK p(a) = \jt + + ^2z) HOMEWORK: iti\ Tm p(a) = \jt + \^iz + ^2z) PÍP) = + - ^2y) HOMEWORK p(a) = \jt + ?k(siz + s2z) -j ^ P(C) = 2^ + 2« (-cll^ly + Sll^lar ~ C2l^2y + S21^2x) en -+ e-^.!*! cosCQ^i) Sll e-^iti sinCQ^i) c2i -» e-^i cos(Q2*i) «21 e-^i sin(Q2*i) HOMEWORK: p(a) = \jt + \*(S\z + ^2z) p(b) = + \k{-J\v - J?2y) p(c) = + ^ (-CllAy + SH^lx - C21^2y + S21^2x) en -> e-^2-1*1 cos(Qiti) an -> e"^1*1 sin(Qiti) c e-«2,2*i cos(Q2*i) «21 -> e"^2*1 sin(Q2*i) p(li2sjn(Qlt2)^ _|_ ^-#2,2*2 Sin(Q2£2)) ) Sty = Mf^0e SkBT l2h2B0 ■i2l,l-nne-i22,l*l cOS(fiiti) «2.1 8kBT e-Ri,2Tme-R2,2ti cos(Q2^i) «2,1 + (W - ^l)2 «2,2 «2,2 + (W - ^2)2 MODULATION IN 2D EXPERIMENT Tm e-Ri,irme-fi2,i*i cos(Qiti) (e^1*2 cos(Qit2) e-fii,2Tme-fi2,2*i cos(Q2ti) (e^2-2*2 cos(Q2i2) ie--R2,i*2Sjn(n1t2)) + ie-fl2,2*2 sin(Q2*2)) ) SkBT i2h2B0 ■i2l,l-nne-i22,l*l cOS(fiiti) «2.1 8/cBT e-i?i,2Tme-#2,2ti Cos(Q2*i) «2,1 + (w - ^l)2 «2,2 «2,2 + (w - ^2)2 Transmitter on Transmitter of F Receiver on Receiver off t2 Transmitter on Transmitter of F Receiver on Receiver off t2 Transmitter on Transmitter of F Receiver on Receiver off ti 7"m t2 Transmitter on Transmitter off Receiver on Receiver off ti tm *2 Transmitter on Transmitter off Receiver on Receiver off ti tm *2 *2 Transmitter on Transmitter off Receiver on Receiver off ti tm *2 *2 Transmitter on Transmitter off Receiver on Receiver off ti tm *2 *2 Transmitter on Transmitter off Receiver on Receiver off ti tm *2 *2 Transmitter on Transmitter off Receiver on Receiver off ti 7"m t2 Transmitter on Transmitter of F Receiver on Receiver off t2 ti 7"m t2 f: f: 07 ( H7) 3 04 06 C5—C4 N7 /( // _ \ H8_f ^05^ H6-C6 I N3H3 9° w NNim \ / N3 \ 02 N2 H22 1 2 3 4 5 6 C T G A A T H H H H H H G A C T T A 6' 5' 4' 3' 2' 1' G6' G3 T3' T2 T2' T6 f2 Relaxation due to dipolar coupling Bloch-Wangsness-Redfield theory applicable dipolar coupling: different Hamiltonian, large effect dipolar b = 47rr3 dA(!f1") = -^(6J(w0)i)+2J(wo,i - w0,2) + 127(^0,1 + ^o,2))A(Ml2) dt 8 + — (2J(w0,l - w0)2) - 12J(w0,l + W0,2))A(M2^> = -ÄalA dt 8 b2 + — (2J(w0,i - wo,2) - 12J(w0,l + w0,2))A(Mu) = -fia2A(M2z) - ßxA(Mlz) = -^(4J(0) + 3J(u;o,l)+6J(cuo,2) dt 8 + J(wq,1 -^0,2) + 6J(w0,l + "0,2))(^1+) = - (#0,1 + |Äal) = -Ä2,i(M1+) (M+> = a/VK Ai (e-^1*2 cos(Qií2) - ie~-R2,ií2sin(Qií2)) + X2 (e-ß2,2i2 Cos(Q2í2) - ie-^2'2*2 sin(Q2í2)) ) sfty = A/7 Ä2,1 +A/7/1 ^2 #2,2 R\ 2 + (w - Q2)2 NOESY ÖA{^lz) = RalA(Mlz) + RxMM2z) dA HOMEWORK Sections 9.4, 9.5.1, 9.5.2 NOESY dA(HM2z) = R^{M2z) + RxMMiz) ót Ä! = -((1 - C)e_i?2.líl cos(Qiíi) + Ce_i?2>2Í1 cos(Q2íi))e"(i?a+i?x)Tm A2 = -((1 - C)e_i?2.2Í1 cos(Q2íi) + Ce"^2'1*1 cos(Qiíi))e-(i?a+i?x)Tm 1 2 3 4 5 6 C T G A A T H H-H G A C T T A 6' 5' 4' 3' 2' 1' G6' G3 T3' T2 T2' T6 f2 10 kDa protein: 0.5H 1-oH E 1.5H CL CL 2.0H 2.5H 3.0J 9.0 8.5 8.0 _i_i_._i_i_j_i—_i_ o íj ó K> 7.5 7.0 J_I_I_I_I_I_I_I_L -0 • )0 § o • 0 0 o 0 9.0 6.5 J_I_I_L. 6.5 h0.5 1.0 1.5 h2.0 h2.5 h3.0 C02 - 1H (ppm) NOESY CROSS-PEAK HEIGHT Yt If rm < 1/Äx : Vmax oc -- (eRxTm - e~RxTmj e~RaTm ss -R ^o\2i4^(Jio)_6J(2uJo))Tm xt m \8tt/ r J(0) = -rr J(2w0) = c Slow motions, long tq. 2u0tc > 1 => J(0) = §rc > 6 J(2^0) « 0 ymax > 0 Fast motions, short tq. 2ujQTC < 1 J(0) = |rc < 6 J(2w0) « 6 x |rc ymax < 0 NOESY CROSS-PEAK HEIGHT Yt If rm < 1/Äx : Vmax oc -- (eRxTm - e_jRxTm) e~RaTm « -R r ^-( J(0) - 6 J(2cü0))rm xT m \8tt/ r •J(O) = -rC ^(2cu0) = C 5 5 1 + (2w0rC)2 Slow motions: 2üJ0tc > 1 => J(0) = |rc > 6 J(2w0) ~ 0 =>■ Fmax > 0 Fast motions: 2cj0tc < 1 j(0) = |rc < 6 j(2cu0) « 6 x |rc =j> Fmax < 0 NOESY CROSS-PEAK HEIGHT Yt Yr max Mmax,ref v r / r rref -Mnax.ref max Reference protons distance geminal in methylene H-C-H 0.17 nm vicinal in aromatic ring H-C=C-H 0.25 nm meta in aromatic ring H-C=CH-C-H 0.42 nm