3. DETERMINATION OF SPACE GROUPS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups

TRICLINIC. Laue class 1

Point group

Extinction symbol 1 1

PI1(1)

Reflection conditions

None P-

MONOCLINIC, Laue class 2/m

Unique axis b Laue class 1 2/m 1
Reflection conditions Point group
hkl h0l
Okl hkO h00 00! 0k0 Extinction symbol |2 m 2/m
P1-1 P121 (3) P1m1 (6) P12/m1 (10)
k P12;1 P1241 (4) P12;/m1(11)
h Plal Plal (7) P12/a 1 (13)
h k P12/al P12i/al (14)
l Plcl Plcl (7) P12/c1(13)
1 k P12;/cl P12,/c1(14)
h+1 Plnl Plnl (7) P12/n1 (13)
h+1 k P12,/n1 P12,/n1(14)
h+k h k C1-1 C121 (5) Clm1 (8) C12/m1(12)
h+k h,l k Clcl Clcl (9) C12/c1(15)
k+1 I k Al-1 Al21 (5) Alm1 (8) Al2/m1(12)
k+1 h,l k Alnl Alnl (9) Al2/n1 (15)
h+k+1 h+1 k -1 1121 (5) Ilm1 (8) 112/m1 (12)
h+k+1 h,l k Ilal Ilal (9) I12/al (15)
Unique axis ¢ Laue class 1 12/m
Reflection conditions Point group
hkl hkO
0kl hOl h00 0kO 00! Extinction symbol |2 m 2/m
P11- P112 (3) P11m (6) P112/m (10)
l P112, P112; (4) P112y/m (11)
h Plla Plla (7) P11 2/a (13)
h l P112/a P112/a (14)
k P11b P11b (7) P112/b (13)
k l P112,/b P112,/b (14)
h+k Plln P11n (7) P112/n (13)
h+k l P112;/n P112;/n (14)
h+1 h l B11- B112 (5) Bl1m (8) Bl112/m (12)
h4-1 h, k l Blin Blln (9) B112/n (15)
k+1 k i All- Al12 (5) Allm (8) Al12/m (12)
k+1 h, k l Alla Alla (9) All 2/a (15)
h+k+1 h+k 1 I11- 1112 (5) I11m (8) I112/m (12)
h+k+1 h, k 1 110 11156 (9) I112/b (15)

(3) Incorrect assignment of the Laue symmetry

This may be caused by pseudo-symmetry or by ‘diffraction
enhancement’. A crystal with pseudo-symmetry shows small
deviations from a certain symmetry, and careful inspection of the
diffraction pattern is necessary to determine the correct Laue class.
In the case of diffraction enhancement, the symmetry of the
diffraction pattern is higher than the Laue symmetry of the crystal.
Structure types showing this phenomenon are rare and have to fulfil
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specified conditions. For further discussions and references, see
Perez-Mato & Iglesias (1977).

3.1.5. Diffraction symbols and possible space groups

Table 3.1.4.1 contains 219 extinction symbols which, when
combined with the Laue classes, lead to 242 different diffraction
symbols. If, however, for the monoclinic and orthorhombic systems



3.1. SPACE-GROUP DETERMINATION AND DIFFRACTION SYMBOLS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)
MONOCLINIC, Laue class 2/m (cont.)

Unique axis a Laue class 2/m 1 1
Reflection conditions Point group
hkl Okl
h0l hkO 0k0 00! h00 Extinction symbol |2 m 2/m
P-11 P211 (3) Pml1 (6) P2/m 11 (10)
h P2,11 P2,11 (4) P2,/m 11 (11)
k Pbl11 Pb11 (7) P2/b 11 (13)
k h P2,/b 11 P2,/b 11 (14)
l Pcll Pcll (7) P2/c 11 (13)
l h P2i/c 11 P2y/c 11 (14)
k+1 Pnll Pnll (7) P2/n 11 (13)
k+1 h P2, /n 11 P2, /n 11 (14)
h+k k h C-11 211 (5) Ccmll (8) c2/m 11 (12)
h+k k, 1 h Cnll Cnll (9) C2/n 11 (15)
h+1 l h B-11 B211 (5) Bmll (8) B2/m 11 (12)
h+1 k, 1 h Bb11 Bb11 (9) B2/b 11 (15)
h+k+1 k+1 h I-11 211 (5) Iml1l (8) I12/m 11 (12)
h+k+1 k, [ h Icll Ic11 (9) 12/c 11 (15)

ORTHORHOMBIC, Laue class mmm (2/m 2/m 2/m)
In this table, the symbol e in the space-group symbol represents the two glide planes given between parentheses in the corresponding extinction symbol. Only for
one of the two cases does a bold printed symbol correspond with the standard symbol.

Reflection conditions Laue class mmm (2/m 2/m 2 /m)
Point group
mm?2
Extinction m2m
hkl Okl hOl hk0Q h00 0kO 00! symbol 222 2mm mmm
P——— |P222(16)  |Pmm2 (25) |Pmmm (47)
Pm2m (25)
P2mm (25)
! P—-2,  |P222,(17)
k P=2,— P22,2 (17)
k l P-2,2,  |P22,2, (18)
h P2——  |P2,22(17)
h ! P2-2,  |P2,22, (18)
h k P22~ |P2.2:2 (18)
h k I P21212)  |P242:2; (19)
h h P— —a Pm2a (28)
P2yma (26) |Pmma (51)
k k P——b Pm2,b (26)
P2mb (28) | Pmmb (51)
h+k h k P— —n Pm2n (31)
P2ymn (31) | Pmmn (59)
h h P—a— Pma2 (28) |Pmam (51)
P2yam (26)
h h h P—aa P2aa (27) Pmaa (49)
h k h k P—ab P2yab (29) |Pmab (57)
h h+k h k P—-an P2an (30) Pman (53)
l l P—c— Pmc2, (26)
P2cm (28) Pmcem (51)
h h ) P—ca P2ica (29) |Pmca (57)
i k k I P—ch P2ch 32) | Pmcb (55)
l h+k h k [ P—cn P2ycn (33) | Pmcn (62)
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ORTHORHOMBIC, Laue class mmm (2/m 2/m 2/m) (cont.)

3. DETERMINATION OF SPACE GROUPS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)

Reflection conditions

Laue class mmm (2/m 2/m 2 /m)

Point group
mm?2
Extinction m2m
hkl Okl hOl hk0O h00 0k0 00/ symbol 222 2mm mmm
h+1 h l P—n— Pmn2; (31)
P2ynm (31) |Pmnm (59)
h+1 h h / P—-na P2na (30) Pmna (53)
h+1 k h k / P—nb P2ynb (33) |Pmnb (62)
h+1 h+k h k l P—nn P2nn (34) Pmnn (58)
k k Pb— — Pbm?2 (28)
Pb2ym (26) |Pbmm (51)
k h h k Pb—a Pb2ya (29) |Pbma (57)
k k k Pb—b Pb2b (27) Pbmb (49)
k h+k h k Pb—n Pb2n (30) Pbmn (53)
k h h k Pba— Pba2 (32) Pbam (55)
k h h h k Pbaa Pbaa (54)
k h k h k Pbab Pbab (54)
k h h+k h k Pban Pban (50)
k I k l Pbc— Pbc2, (29) |Pbcm (57)
k l h h k [ Pbca Pbca (61)
k 1 k k [ Pbcb Pbcb (54)
k 1 h+k h k / Pbcn Pbcn (60)
k h+1 h k / Pbn— Pbn2, (33) |Pbnm (62)
k h+1 h h k l Pbna Pbna (60)
k h+1 k h k [ Pbnb Pbnb (56)
k h+1 h+k h k [ Pbnn Pbnn (52)
I l Pc— — Pcm2; (26)
Pc2m (28) Pcmm (51)
1 h h l Pc—a Pc2a (32) Pcma (55)
l k k l Pc—b Pc2,b (29) | Pcmb (57)
l h+k h k ) Pc—n Pc2yn (33) | Pcmn (62)
1 h h l Pca— Pca2, (29) |Pcam (57)
1 h h h l Pcaa Pcaa (54)
1 h k h k l Pcab Pcab (61)
1 h h+k h k l Pcan Pcan (60)
1 1 l Pcc— Pcc2 (27) Pccm (49)
1 1 h h l Pcca Pcca (54)
1 1 k k [ Pcch Pcchb (54)
l 1 h+k h k [ Pccn Pccn (56)
1 h+1 h l Pcn — Pcn2 (30) Pcnm (53)
1 h+1 h h l Pcna Pcna (50)
l h+1 k h k [ Pcnb Pcnb (60)
1 h+1 h+k h k l Pcnn Pcnn (52)
k+1 k l Pn — — Pnm?2, (31) | Pnmm (59)
Pn2;m (31)
k+1 h h k l Pn—a Pn2ia (33) |Pnma (62)
k+1 k k l Pn—b Pn2b (30) Pnmb (53)
k+1 h+k h k l Pn—n Pn2n (34) Pnmn (58)
k+1 h h k l Pna — Pna2, (33) |Pnam (62)
k+1 h h h k l Pnaa Pnaa (56)
k+1 h k h k l Pnab Pnab (60)
k+1 h h+k h k l Pnan Pnan (52)
k+1 1 k l Pnc — Pnc2 (30) Pncem (53)
k+1 1 h h k I Pnca Pnca (60)
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3.1. SPACE-GROUP DETERMINATION AND DIFFRACTION SYMBOLS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)
ORTHORHOMBIC, Laue class mmm (2/m 2/m 2/m) (cont.)

Reflection conditions

Laue class mmm (2/m 2/m 2 /m)

Point group
mm?2
Extinction m2m
hkl Okl hol hk0 h00 0k0 00/ symbol 222 2mm mmm
k+1 l k k [ Pncb Pncb (50)
k+1 1 h+k h k l Pncn Pncn (52)
k+1 h+1 h k / Pnn — Pnn2 (34) |Pnnm (58)
k+1 h+1 h h k l Pnna Pnna (52)
k+1 h+1 k h k l Pnnb Pnnb (52)
k+1 h+1 h+k h k [ Pnnn Pnnn (43)
h+k k h h+k h k C——- C222 (21) Cmm?2 (35) |Cmmm (65)
Cm2m (38)
C2mm (38)
h+k k h h+k h k l C— -2 C222; (20)
h+k k h h, k h k C— —(ab) Cm2e (39) |Cmme (67)
C2me (39)
h+k k h,l h+k h k [ C—c — Cmc2, (36) |Cmem (63)
C2cm (40)
h+k k h, 1 h, k h k l C—c(ab) C2ce (41) Cmce (64)
h+k k, 1 h h+k h k [ Cc — — Cem2; (36) | Cemm (63)
Cc2m (40)
h+k k, 1 h h, k h k l Cc —(ab) Cc2e (41) Ccme (64)
h+k k, 1 h, 1 h+k h k l Cee — Ccc2 (37) Ccem (66)
h+k k, 1 h,l h, k h k l Ccc(ab) Ccce (68)
h+1 l h+1 h h [ B——— B222 (21) Bmm?2 (38) | Bmmm (65)
Bm2m (35)
B2mm (38)
h+1 l h+1 h h k l B-2,— B22,2 (20)
h+1 l h+1 h, k h k l B— —b Bm2,b (36) |Bmmb (63)
B2mb (40)
h+1 l h,l h h [ B —(ac)— Bme2 (39) | Bmem (67)
B2em (39)
h+1 l h, 1 h, k h k l B —(ac)b B2eb (41) Bmeb (64)
h+1 k, 1 h+1 h h k l Bb — — Bbm2 (40) | Bbmm (63)
Bb2,m (36)
h+1 k, 1 h+1 h, k h k [ Bb—b Bb2b (37) Bbmb (66)
h+1 k, [ h,l h h k [ Bb(ac)— Bbe2 (41) Bbem (64)
h+1 k, 1 h,l h, k h k [ Bb(ac)b Bbeb (68)
k+1 k+1 l k k l A———  |A222 (21) Amm?2 (38) |Ammm (65)
Am2m (38)
A2mm (35)
k+1 k+1 1 k h k [ A2)— — A2,22 (20)
k+1 k+1 1 h, k h k [ A— —a Am2a (40) |Amma (63)
A2;ma (36)
k+1 k+1 h, 1 k h k l A—a — Ama2 (40) |Amam (63)
A2;am (36)
k+1 k+1 h,l h, k h k [ A—aa A2aa (37) Amaa (66)
k+1 k, [ 1 k k [ A(bc)— — Aem2 (39) |Aemm (67)
Ae2m (39)
k+1 k, 1 1 h, k h k l A(bc)—- a Ae2a (41) Aema (64)
k+1 k, 1 h, 1 k h k l A(bc)a — Aea2 (41) Aeam (64)
k+1 k, 1 h,l h, k h k l A(bc)aa Aeaa (68)
h+k+1 k+1 h+1 h+k h k l I——— {1222 (23) }* Imm?2 (44) |Immm (71)
I212121(24)| | 1m2m (44)
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3. DETERMINATION OF SPACE GROUPS
Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)
ORTHORHOMBIC, Laue class mmm (2/m 2/m 2/m) (cont.)

Reflection conditions

Laue class mmm (2/m 2/m 2 /m)

Point group
mm?2
Extinction m2m
hkl Okl h0l hkO h00 0kO 001 symbol 222 2mm mmm
R2mm (44)
h+k+1 k+1 h+1 h, k h k [ I — —(ab) Im2a (46) Imma (74)
I2mb (46) Immb (74)
h+k+1 k+1 h,l h+k h k [ I —(ac)— Ima?2 (46) Imam (74)
Rcm (46) Imcm (74)
h+k+1 k+1 h,l h, k h k [ I—cb 2cb (45) Imceb (72)
h+k+1 k1 h+1 h+k h k [ I(be)— — Iem?2 (46) Temm (74)
Ie2m (46)
h+k+1 k, 1 h+1 h, k h k l Ic —a Ic2a (45) Icma (72)
h+k+1 k1 h,l h+k h k / Iba — Iba2 (45) Ibam (72)
h+k+1 k1 h,l h, k h k [ Ibca Ibca (73)
Icab (73)
h+kh+1Lk+1 |kl h,l h,k h k [ F——— |F222(22) Fmm?2 (42) |Fmmm (69)
Fm2m (42)
F2mm (42)
h+kh+Lk+1 |k h+l=4n;h l|h+k=4n;h,k|h=4n |k =4n|l=4n |F-dd F2dd (43)
h+kh+Lk+1|k+1=4n k1 |h 1 h+k=4n;h k|h=4n |k =4n|l=4n |Fd—d Fd2d (43)
h+kh+Lk+1|\k+1=4nk | |h+1=4n;h, I |h k h=4n |k =4n|l=4n |Fdd— Fdaz2 (43)
h+kh+Lk+1|k+1l=4n k| |h+1=4n;h,l|h+k=4n;h k|h=4n |k =4n|l=4n |Fddd Fddd (70)
* Pair of space groups with common point group and symmetry elements but differing in the relative location of these elements.
TETRAGONAL, Laue classes 4/m and 4/mmm
Laue class
4/m 4/mmm (4/m2/m 2/m)
Reflection conditions Point group
Extinction
hkl hkO | Okl hhl | 00! 0kO | hhO | symbol 4 4 4/m 422 4mm 42m 4m?2 4/mmm
P——— |P4(75) P4 (81) |P4/m (83) |P422(89) P4mm (99) P2m (111) | P4/mmm (123)
P4m2 (115)
k P-2,— P42,2 (90) PA2,m (113)
I Pdy— — | P4y (77) P4y /m (84) | P4,22 (93)
I k P42, - P4,2,2 (94)
SO e (Fd 2wy
I=dn |k P42, {ijﬁé Egé;}f
11 P——c Pdyme (105) |P42c (112) | P4y/mme (131)
1ot P-2ic PA2,c (114)
k P—b- P4bm (100) | P4b2 (117) | P4/mbm (127)
k 1|1 P —be Pdybe (106) P4, /mbe (135)
I I P—c— Pdyem (101) | Pac2 (116) | P4y /mem (132)
i / i P —cc Péce (103) P4/mcc (124)
k+1 [ k P—n-— Pdynm (102) |P4n2 (118) | P4y /mnm (136)
k+1 1 [ k P —nc P4nc (104) P4/mnc (128)
h+k k Pn—— P4/n (85) P4/nmm (129)
h+k 1 k Py /n— — P4y /n (86)
h+k / l k Pn—c P4, /nmc (137)
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3.1. SPACE-GROUP DETERMINATION AND DIFFRACTION SYMBOLS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)

TETRAGONAL, Laue classes 4/m and 4/mmm (cont.)

Laue class
4/m 4/mmm (4/m2/m 2/m)
Reflection conditions Point group
Extinction — — —
hkl WkO |OkL  |Rhl {001 |OKO [BO | qymbot |4 i 4/m 422 4mm 2m dm2 | 4/mmm
h+k |k k Pnb — P4/nbm (125)
hvkl|k |1 |t k Pnbe P4y Jnbe (133)
h+k |l [ k Pnc — P4, /ncm (138)
h+k |l l l k Pncc P4 /ncc (130)
h+k [k+1 l k Pnn — P4, /nnm (134)
h+k (k+1 |1 l k Pnnc P4 /nnc (126)
htk+1 |htk|k+1 |0 |1 k I——— |19 14(82) |14/m (87) |22 97) Hmm (107)  [182m (121) | 14/mmm (139)
I4m2 (119)
h+k+1 |h+k |k+1 |1 =4n |k 14— — 14, (80) 14,22 (98)
htk+1 |h+k|k+1 |t |i=dn |k |0 |I-—d I4md (109) |142d (122)
h+k+1 |h+k |kl |I [ k I—c— Tdem (108)  |I4c2 (120) |14 /mem (140)
h+k+1 |h+k |k i l=4n |k h I—cd I41cd (110)
htk+1 |k |k+1 |1 |I=4n |k 14, /a— — 14, /a (88)
h+k+1 |hk |k+1 |f =4n |k h |la-d 14, /amd (141)
htk+1 |k ki |t |i=4n|k |h |lacd 14, Jacd (142)

1 Pair of enantiomorphic space groups, cf. Section 3.1.5.
1 Condition: 2h + 1 = 4n; I.

(as well as for the R space groups of the trigonal system), the
different cell choices and settings of one space group are
disregarded, 101 extinction symbols* and 122 diffraction symbols
for the 230 space-group types result.

Only in 50 cases does a diffraction symbol uniquely identify just
one space group, thus leaving 72 diffraction symbols that
correspond to more than one space group. The 50 unique cases
can be easily recognized in Table 3.1.4.1 because the line for the
possible space groups in the particular Laue class contains just one
entry.

The non-uniqueness of the space-group determination has two
reasons:

(i) Friedel’s rule, i.e. the effect that, with neglect of anomalous
dispersion, the diffraction pattern contains an inversion centre, even
if such a centre is not present in the crystal.

Example
A monoclinic crystal (with unique axis ) has the diffraction
symbol 1 2/m 1P1cl. Possible space groups are Plcl (7) without
an inversion centre, and P12/c1 (13) with an inversion centre. In
both cases, the diffraction pattern has the Laue symmetry
12/m1.

One aspect of Friedel’s rule is that the diffraction patterns are the
same for two enantiomorphic space groups. Eleven diffraction
symbols each correspond to a pair of enantiomorphic space groups.

* The increase from 97 (IT, 1952) to 101 extinction symbols is due to the separate
treatment of the trigonal and hexagonal crystal systems in Table 3.1.4.1, in
contradistinction to IT (1952), Table 4.4.3, where they were treated together. In
IT (1969), diffraction symbols were listed by Laue classes and thus the number of
extinction symbols is the same as that of diffraction symbols, namely 122.
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In Table 3.1.4.1, such pairs are grouped between braces. Either of
the two space groups may be chosen for structure solution. If due to
anomalous scattering Friedel’s rule does not hold, at the refinement
stage of structure determination it may be possible to determine the
absolute structure and consequently the correct space group from
the enantiomorphic pair.

(i1) The occurrence of four space groups in two ‘special’ pairs,
each pair belonging to the same point group: 1222 (23) &
1212,2; (24) and 123 (197) & 12,3 (199). The two space groups
of each pair differ in the location of the symmetry elements with
respect to each other. In Table 3.1.4.1, these two special pairs are
given in square brackets.

3.1.6. Space-group determination by additional methods
3.1.6.1. Chemical information

In some cases, chemical information determines whether or not
the space group is centrosymmetric. For instance, all proteins
crystallize in noncentrosymmetric space groups as they are
constituted of L-amino acids only. Less certain indications may
be obtained by considering the number of molecules per cell and the
possible space-group symmetry. For instance, if experiment shows
that there are two molecules of formula A, B per cell in either space
group P2; or P2, /m and if the molecule A,B3 cannot possibly have
either a mirror plane or an inversion centre, then there is a strong
indication that the correct space group is P2;. Crystallization of
A,Bg in P2, /m with random disorder of the molecules cannot be
excluded, however. In a similar way, multiplicities of Wyckoff
positions and the number of formula units per cell may be used to
distinguish between space groups.



3. DETERMINATION OF SPACE GROUPS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)

TRIGONAL, Laue classes 3 and 3m

Laue class
B 3ml (32/m 1) _ _

Reflection conditions 3 3m 31m (312/m)
Hexagonal axes Point group

Extinction 321 3ml 3ml
hkil hhol hh2hl | 000! symbol 3 3 32 3m 3m 312 3lm 31m

P—-—- P3 (143) P§(l47) P321 (150) P3ml (156) | P3ml (164) | P312 (149) P31m (157) P§lm(162)

P3,(144) P3,21 (152) P3,12 (151)
l=3n |P3;—— {P32(145) § P3,21 (154) § P3,12 (153) §
l 1 P-—c¢ P31c (159) |P31c (163)
1 1 P—c— P3cl (158) | P3cl (165)

—h+k+1=3n |h+1=3n I =3n |l =3n |R(obv)— — q|R3 (146) R3 (148) | R32 (155) R3m (160) |R3m (166)
—h+k+1=3n |h+1=3n;1 |l=3n|l=6n |R(obv)-c R3c (161) | R3c (167)
h—k+1=23n —h+1=3n I=3n |l=3n |R(rev)— — R3 (146) R3 (148) | R32 (155) R3m (160) | R3m (166)
h—k+1=3n —h+1=3n;1|l=3n |[l=6n [R(rev)—c R3c (161) | R3c (167)
Rhombohedral axes Point group

Extinction
hkl hhl hhh symbol 3 3 32 3m 3m

R-- R3(146) R3 (148) | R32 (155) R3m (160) |R3m (166)

! h R-c R3c (161) | R3c (167)

§ Pair of enantiomorphic space groups; cf. Section 3.1.5.
9§ For obverse and reverse settings cf. Section 1.2.1. The obverse setting is standard in these tables.
The transformation reverse — obverse is given by a(obv.) = —a(rev.), b(obv.) = —b(rev.), c(obv.) = c(rev.).

HEXAGONAL, Laue classes 6/m and 6/mmm

Laue class
6/m 6/mmm (6/m2/m2/m)
Reflection conditions Point group
Extinction 62m
hhOl hh2hl 000/ symbol 6 6 6/m 622 6mm 6m2 6/mmm
P——— |P6es) P6 (174) | P6/m (175) |P622 (177) P6mm (183) | P62m (189) | P6/mmm (191)
P6m2 (187)
! P6—— | P6s (173) P63 /m (176) | P6522 (182)
P6; (171)) 4. P6,22 (180)) ,.,
[=3n | P6—— {P64 (172) P6,22 (181)
P6; (169)) ,., P6,22 (178)) .,
[=6n | P6—— {P63 (170) P6522 (179)
1 l P-—-c¢ P63me (186) | P62c (190) | P63/mmc (194)
l l P—c— P63cm (185) | P6c2 (188) | P63/mem (193)
l l l P—cc Pb6cc (184) P6/mcc (192)

** Pair of enantiomorphic space groups, c¢f. Section 3.1.5.
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3.1. SPACE-GROUP DETERMINATION AND DIFFRACTION SYMBOLS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)

CUBIC, Laue classes m3 and m3m

Laue class
m3 (2/m 3) m3m (4/m 3 2/m)
Reflection conditions (Indices are permutable, apart from
space group No. 205) T .. |Point group
Extinction
hkl Okl hhi 00! symbol 23 m3 432 43m m3m
P——— |P23(195) Pm3 (200) | P432 (207) P43m (215) |Pm3m (221)
P2|— -
l {P42— _ |P2,3(198) P4,32 (208)
P4,32 (213
I=4n |Pdj—— {P4;32 gmi}ﬁ
l l P——n P43n (218) | Pm3n (223)
kit / Pa — — Pa3 (205)
k+1 l Pn — — Pn3 (201) Pn3m (224)
k+1 [ l Pn—n Pn3n (222)
123 (197) - _ _
h+k+1 k+1 l l I——— {1213 (199) } 88 | Im3 (204) |1432 (211) 143m (217) |Im3m (229)
h+k+1 k+1 [ l=4n |14;— - 14,32 (214)
h+k+1 k+1 2h+1=4nl |l=4n |I-—d 143d (220)
h+k+1 k, 1 [ l la — — 1a3 (206)
h+k+1 k1 2h+1=4n,l |l=4n |la—d la3d (230)
h4+k,h+Lk+1 |k 1 h+1 l F——— |F23(196) Fm3 (202) | F432 (209) F43m (216) |Fm3m (225)
h+kh+1Lk+1 |k h+1 l=4n |F4,—- F4,32 (210)
h+kh+1Lk+1 |k h,l l F— —c F43c (219) | Fm3c (226)
h+kh+Lk+1 |k+1=4nk, ] |h+1 l=4n |Fd—- - Fd3 (203) Fd3m (227)
h+kh+Lk+1 |k+1=4nk, |h 1 l=4n |Fd—c Fd3c (228)

11 For No. 205, only cyclic permutations are permitted. Conditions are 0kl: k = 2n; hOL: [ = 2n; hkO: h = 2n.

11 Pair of enantiomorphic space groups, cf- Section 3.1.5.

8§ Pair of space groups with common point group and symmetry elements but differing in the relative location of these elements.

3.1.6.2. Point-group determination by methods other than
the use of X-ray diffraction

This is discussed in Chapter 10.2. In favourable cases, suitably
chosen methods can prove the absence of an inversion centre or a
mirror plane.

3.1.6.3. Study of X-ray intensity distributions

X-ray data can give a strong clue to the presence or absence of an
inversion centre if not only the symmetry of the diffraction pattern
but also the distribution of the intensities of the reflection spots is
taken into account. Methods have been developed by Wilson and
others that involve a statistical examination of certain groups of
reflections. For a textbook description, see Lipson & Cochran
(1966) and Wilson (1970). In this way, the presence of an inversion
centre in a three-dimensional structure or in certain projections can
be tested. Usually it is difficult, however, to obtain reliable
conclusions from projection data. The same applies to crystals
possessing pseudo-symmetry, such as a centrosymmetric arrange-
ment of heavy atoms in a noncentrosymmetric structure. Several
computer programs performing the statistical analysis of the
diffraction intensities are available.

3.1.6.4. Consideration of maxima in Patterson syntheses

The application of Patterson syntheses for space-group determi-
nation is described by Buerger (1950, 1959).
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3.1.6.5. Anomalous dispersion

Friedel’s rule, |F(hkl)|* = |[F(hkI)|*, does not hold for non-
centrosymmetric crystals containing atoms showing anomalous
dispersion. The difference between these intensities becomes
particularly strong when use is made of a wavelength near the
resonance level (absorption edge) of a particular atom in the crystal.
Synchrotron radiation, from which a wide variety of wavelengths
can be chosen, may be used for this purpose. In such cases, the
diffraction pattern reveals the symmetry of the actual point group of
the crystal (including the orientation of the point group with respect
to the lattice).

3.1.6.6. Summary

One or more of the methods discussed above may reveal whether
or not the point group of the crystal has an inversion centre. With
this information, in addition to the diffraction symbol, 192 space
groups can be uniquely identified. The rest consist of the eleven
pairs of enantiomorphic space groups, the two ‘special pairs’ and
six further ambiguities: 3 in the orthorhombic system (Nos. 26 &
28, 35 & 38, 36 & 40), 2 in the tetragonal system (Nos. 111 & 115,
119 & 121), and 1 in the hexagonal system (Nos. 187 & 189). If not
only the point group but also its orientation with respect to the
lattice can be determined, the six ambiguities can be resolved. This
implies that 204 space groups can be uniquely identified, the only
exceptions being the eleven pairs of enantiomorphic space groups
and the two ‘special pairs’.
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4.1. Introduction to the synoptic tables

By E. F.

4.1.1. Introduction

The synoptic tables of this section comprise two features:

(i) Space-group symbols for various settings and choices of the
unit cell. Changes of the basis vectors generally cause changes of
the Hermann—-Mauguin space-group symbol. These axis transfor-
mations involve not only permutations of axes, conserving the
shape of the cell, but also transformations which lead to different
cell shapes and even to multiple cells.

(i) Extended Hermann—-Mauguin space-group symbols, in
addition to the short and full symbols. The occurrence of ‘additional
symmetry elements’ (see below) led to the introduction of
‘extended space-group symbols’ in IT (1952); they are system-
atically developed in the present section. These additional
symmetry elements are displayed in the space-group diagrams
and are important for the tabulated ‘Symmetry operations’.

For each crystal system, the text starts with a historical note on
the synoptic tables in the earlier editions of International Tables*
followed by a discussion of points (i) and (ii) above. Finally, those
group-subgroup relations (cf. Section 8.3.3) are treated that can be
recognized from the full and the extended Hermann-Mauguin
space-group symbols. This applies mainly to the translationen-
gleiche or t subgroups (type I, c¢f. Section 2.2.15) and to the
klassengleiche or k subgroups of type Ila. For the k subgroups of
types IIb and Ilc, inspection of the synoptic Table 4.3.2.1 provides
easy recognition of only those subgroups which originate from the
decentring of certain multiple cells: C or F in the tetragonal system
(Section 4.3.4), R and H in the trigonal and hexagonal systems
(Section 4.3.5).

4.1.2. Additional symmetry elements

In space groups, ‘due to periodicity’, symmetry elements occur that
are not recorded in the Hermann—-Mauguin symbols. These
additional symmetry elements are products of a symmetry
translation T and a symmetry operation W. This product is TW
and its geometrical representation is found in the space-group
diagrams (cf. Sections 8.1.2 and 11.1.1).}

Two cases have to be distinguished:

(i) Symmetry operations of the same nature

The symmetry operations W and TW are of the same nature and
only the locations of their symmetry elements differ. This occurs
when the translation vector t is perpendicular to the symmetry
element of W (symmetry plane or symmetry axis); it also holds
when W is an inversion or a rotoinversion (see below).

Table 4.1.2.1 summarizes the symmetry elements, located at the
origin, and the location of those ‘additional symmetry elements’
which are generated by periodicity in the interior of the unit cell.
‘Additional’ axes 3, 6, 61, 6, 63, 64, 65 do not occur. The first
column of Table 4.1.2.1 specifies W, the second column the
translation vector t, the third the location of the symmetry element
of TW. The last column indicates space groups and plane groups
with representative diagrams. Other orientations of the
symmetry axes and symmetry planes can easily be derived from
the table.

* Comparison tables, pp. 28-44, IT (1935); Index of symbols of space groups, pp.
542-553, IT (1952).

T Wis represented by (W, w) where W is the matrix part, w the column part, referred
to a conventional coordinate system. T is represented by (I, £) and TW by (W, w +¢).

BERTAUT

Example
Let W be a threefold rotation with Seitz symbol (3/0,0,0) and
axis along 0, 0, z. The product with the translation T(1,0,0),
perpendicular to the axis, is (3/1,0,0) and again is a threefold
rotation, for (3/1,0,0)* = (1/0,0,0); its location is 21z

Table 4.1.2.1 also deals with certain powers W” of symmetry
operations W, namely with p = 2 for operations of order four and
with p = 2, 3,4 for operations of order six. These powers give rise
to their own ‘additional symmetry elements’, as illustrated by the
following list and by the example below (operations of order 2 or 3
obviously do not have to be considered).

W |4, 4,]4,,451416 |6 3_ 6, 65 635 |60 |64
WP |2 2 213,213, m|3,131,21132,2113,21132,21(31,2
Example
6, in 0, 0, z; the powers to be considered are
(6" =35 (62’ =2 (62)* = (32"

The axes 3, and 2 at 0, 0, z create additional symmetry elements:

hatdldz iz and 2at}0,z 04,7412

If W is an inversion operation with its centre of symmetry at point
M, the operation TW creates an additional centre at the endpoint of
the translation vector %t, drawn from M (cf. Table 4.1.2.1, where M
is in 0,0,0).

(ii) Symmetry operations of different nature

The symmetry operations W and TW are of a different nature and
have different symbols, corresponding to rotation and screw axes, to
mirror and glide planes, to screw axes of different nature, and to
glide planes of different nature, respectively.i

In this case, the translation vector t has a component parallel
to the symmetry axis or symmetry plane of W. This parallel
component determines the nature and the symbol of the additional
symmetry element, whereas the normal component of t is
responsible for its location, as explained in Section 11.1.1. If the
normal component is zero, symmetry element and additional
symmetry element coincide geometrically. Note that such addi-
tional symmetry elements with glide or screw components exist
even in symmorphic space groups.

Integral and centring translations: In primitive lattices, only
integral translations occur and Tables 4.1.2.1 and 4.1.2.2 are
relevant. For centred lattices, Tables 4.1.2.1 and 4.1.2.2 remain
valid for the integral translations, whereas Table 4.1.2.3 has to be
considered for the centring translations, which cause further
‘additional symmetry elements’.

4.1.2.1. Integral translations

Table 4.1.2.2 lists representative symmetry elements, corre-
sponding to W, and their associated glide planes and screw axes,
corresponding to TW. The upper part of the table contains the
diagonal twofold axes and symmetry planes that appear as tertiary
symmetry elements in tetragonal and cubic space groups and as

1 The location and nature (screw axis, glide plane) of these additional symmetry
elements were listed in the space-group tables of IT (1935) under the heading
Weitere Symmetrieelemente, but were suppressed in IT (1952).
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