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Composition of the Earth’s Crust, Seawater, and the Human Body*

Earth’s Crust Seawater Human BodyJr

Element % Compound mM Element

O 47 Cl™ 548

Si 28 Na™ 470

Al 7.9 Mg~ " 54

Fe 4.5 SOf B 28

Ca 3.5 Ca>™" 10

Na 2.5 K* 10

K 2.5 HCOs 2.3 0.08
Mg 2.2 NOs 0.01 K 0.06
Ti 0.46 HPOf— <0.001 S 0.05
H 0.22 Na 0.03
C 0.19 Mg 0.01

*Figures for the earth’s crust and the human body are presented as percentages of the total
number of atoms; seawater data are millimoles per liter. Figures for the earth’s crust do not
include water, whereas figures for the human body do.

"Trace elements found in the human body serving essential biological functions include M,
Fe, Co, Cu, Zn, Mo, I, Ni, and Se.
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NMR hardware

1)Magnet
2)Spectrometer
3)Control units




NMR spectrometer

Earth’s Magnetic Field



Ampere’s law & solenoid

B= unl

LA VLL

Magnet

- superconducting solenoids immersed into He bath

- He-bath ~4 K further improved to ~2.1 K with J-T pump

- field strength 25-28 Tesla

- (Nb, Ta);Sn superconductor of 0.81 mm with ~271 filaments
buried in OFHC copper matrix

The magnetic
field is
concentrated
into a nearly
uniform field

in the center
of a long
solenoid. The
field outside
IS weak and
divergent.

02 mm
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Improvement of sensitivity, resolution and signal-to-noise ratio
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Quench

an abnormal termination of magnet operation

Occurs when part of the superconducting coil enters the normal (resistive) state.

This can occur

i) because the field inside the magnet is too large

ii) the rate of change of field is too large (causing eddy currents and resultant
heating in the copper support matrix)

iii) or a combination of the two.

iv) a defect in the magnet can cause a quench.

MOVIE: https://www.youtube.com/watch?v=d-G3Kg-7n_M



NMR Probe(head)
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NMR Spectrometer - Overview
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NMR radiofrequency pulse

¢-Shift instruction

rsnmeavae - \\VWAVANVAMAVAMAN

Gate instruction P U I Zy :

¢-Shifted pulse _I\AAN\AAW_
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¢=0 ‘x-pulse’
¢=m/2 ‘y-pulse’

¢=n ‘x-pulse’ or * —x-pulse’
¢ =3n/2 ‘y-pulse’ or ‘- y-pulse’




For NMR, nuclear spin is needed!!!

Spm analogy to a compass needle

E The Earth’s Magnetic Field
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In the planetary model of the atom, an

Atom electron orbits a nucleus, forming a closed-
current loop and producing a magnetic field
with a north pole and a south pole.

Electron

Proton
Neutron

Molecule is hence a group of small magnetic fields and each atom within the molecule
experiences different local magnetic field.



NMR - rRefresh

1) nuclear spin = 0 ('H, 13C, ¥N, 31P)
- number of neutrons and the number of protons both even — NO nuclear spin
- number of neutrons plus the number of protons odd = half-integer spin (i.e. ’2, 3/2, 5/2)
- number of neutrons and the number of protons both odd = integer spin (i.e. 1, 2, 3)

2) | v=y*B (1)}- when placed in a magnetic field of strength B, a nuclei with a net spin can

absorb a photon, of frequency v. The frequency v depends on the gyromagnetic ratio, y of
the nuclei

3) from quantum mechanics we know that nucleus with spin / can have 2/ +1
orientations = nuclei with a spin "2 can have two orientations in an external
magnetic field— low / high energy

oy
s |




Nuclear Magnetic Resonance

Refresh
From (1) and (2): E=hy B

Energy

Magnetic Field
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Problem of NMR
the magnitude of the energy changes in NMR spectroscopy small =

Solution I.
increase sensitivity by recording many spectra, and then add them together;
because noise is random, it adds as the square root of the number of spectra
recorded.

, if 100 spectra of a compound were recorded and summed, then the noise
would increase by a factor of 10,

the signal would increase in magnitude by a factor of 100
—> large increase in sensitivity.

, if this is done using a CW-NMR, the time needed to collect the spectra is very
large (one scan takes 2 - 8 minutes).



Solution Il.

FT-NMR = in a spectrum are irradiated
simultaneously with a radio frequency pulse.

Following the pulse, the nuclei return to thermal equilibrium.
A time domain emission signal is recorded by the instrument as

the nuclei relax.
A frequency domain spectrum is obtained by Fourier transformation.

_ __Ml.nﬁ 1 “
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frequency domain

time domain (FID — free induction decay)



Each proton =1 NMR signal
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Each (non-exchangeable) proton =1 NMR signal
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Each (non-exchangeable) proton =1 NMR signal
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Relaxation

slow (i.e. long t, time)

medium

fast

NMR line(width) after FT
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NMR line(width) after FT
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NMR data processing



Window functions:

| 1) improvements od S/N ratio

2) increasing resolution
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NMR data processing - summary

) Solvent suppression
II)  Window function
llI) Zero-filling

V) FT

V) Transpose (in case of multidimensional spectra)

|[nmrPipe -fn POLY -time \
|[nmrPipe -fn SP -off 0.33 -end 0.98 -pow 2 -c 1.0 \

|[nmrPipe -fn ZF -size 2048
[nmrPipe -fn FT -auto \
|nmrPipe -fn PS -p0 -76.0 -pi 0.0™=

|nmrPipe -fn EXT -x1 11.0ppm -xn 6.0ppm -sw \
|[nmrPipe -fn POLY -ord 3 -auto \
|[nmrPipe -fn TP\
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NMR as a tool for study structure, dynamics and interactions of biomolecules
1) Structure determination of NAs and proteins

2) Protein — metal interaction
3) Protein — ligand interaction

For most of the modern applications, enrichment by 13C, 1°N and often 2H needed!

Isotope Ground state Natural Rel. Sensitivity
spin abundance [%]
1H 2

~100 1.00x10%0
13C V2 1.10 1.59x102
5N iz 0.37 1.04x1073
19F iz 100 8.30x101
3ip iz ~100 6.63x1072
12C 0 98.90 -

160 0 ~100 -



0)
1)
2)

3)

NMR as a tool for study structure, dynamics and interactions
of biomolecules

AA/NA sequence, resonance assignment, standard chemical shifts

Structure determination of proteins/NAs

NMR can provide detailed information about the structure at the atomic level resolution relying on the
spatial proximity of two interacting protons — nuclear Overhauser enhancement (NOE)

Additional structural information can be obtained (residual dipolar couplings — RDCs, J-couplings, backbone
chemical shifts - CSI)
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Iterative procedure of structure determination by NMR

Distance information
from NOESY

Structure calculation

Analyze more data,
Repeat

Random starting model
Final
structure

Uncertainty of the final structure
represented as a family of 10-20
structures with deviation among
individual members indicated by
RMSD (typically <1.5 A2)

Nrd1 CID
PDB ID: 2LO6

http://www.fbreagents.com/basics nmr/9proteins.htm



http://www.fbreagents.com/basics_nmr/9proteins.htm

Studying interactions by NMR titration
1) Slow exch. regime (on the NMR timescale) - individual peaks for each of the studied states (e.g. free / complexed forms of

a protein), peak intensity representing population of a given state
2) Intermediate exchange regime

3) Fast exchange regime — single peak whose chemical shift position is given by the molar ratio of the

states present in solution

Slow (Kp<1l uM) Intermediate (Kp ~1-10 uM) Fast exchange regime (Kp>10 uM)
Free Bound Free Bound Free Bound
100% 0% 100% 0% 100% 0%
Z150% 50% 50% 50% 50% 50%
© © '
0% 100% 0% T 100% 0% . 100%

'H / ppm




15N-1H HSQC — Heteronuclear Single Quantum Coherence

1) 1 peak =1 amino acid
2) good estimate of the protein folding status
3) no information about sequential assignment (which peak is which amino acid)

4) for sequential assignment third dimension needed (13C)
5) once assighnment of the peaks known — HSQC is optimal tool for monitoring interactions by NMR through titrations (i.e.

stepwise addition of small amounts of ligand to the nearly constant volume solution with the isotopically enriched
molecule)
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1H-15N HSQC, cca 155 aa, well folded, 600MHz, 293K
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Interaction of Nrd1-CID with C-terminal domain (CTD)

NMR Titration - 15N enriched CID + unlabeled CTD-Ser5P in n-steps, n=6 in our case
- peaks corresponding to the interacting residues of CID change
their chemical shift (position in the spectrum)
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Nrd1 CID interaction surface — ciD residues experiencing the largest chemical

shift variations upon the interaction with 5-phospho-Ser CTD shown in blue with side-
chains in stick representation




CTD-CID interaction with studied by fluorescence anisotropy

wt S25D R28D K30D R74D



Interligand NOEs between CID and CTD — 900MHz, 150ms, 293K

CID resonances
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Transferred-NOE

NOE = pbound'NOEbound t pfree'NOEfree

Tc,bound >> Tc,free (and pL,free >> pL,bound)

NOEbound > NOEfree

Nmax
60

40 =

20 + \
0 | | | |

0.1 1 10

-20 -
-40 -
60 L
80 L

100 L NOE




Transferred NOE Experiments

tr-NOESY~600uM Discodermolide without and with ~12uM tubulin

800MHz,

mixing time=80ms

6 ppm

disco w/o tub

disco:tub 50:1 T




protein

Magnetization to

be transferred
T ' :

ligand2

Transferred
magnetization
Note the weak “signa

II’

They “compete” for same
place but never “meet”



interligand NOE Experiments




interligand NOE Experiments
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interligand NOE Experiments
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interligand NOE Experiments
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