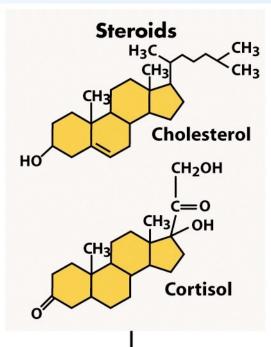


BIOMARKERS AND TOXICITY MECHANISMS 10 – Mechanisms Nuclear Receptors

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.



Various signalling types ... now focus on nuclear receptors

Polypeptides His Ser Asp Gly Thr Ser Leu Glu Ser Thr Leu Arg Asp Ser Ala Leu Arg Glu Leu Arg Glu Gly Leu Val Secretin

Amino Acid Derivatives

Not lipid soluble; bind to receptors on surface of target cell Most not lipid soluble; bind to receptors on surface of target cell Lipid soluble; often bind to receptors inside target cell

Figure 47-3 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

NUCLEAR (Intracellular) RECEPTORS in summary

- Important physiological functions, and
- Important roles in pathologies and chemical toxicity
 - Endocrine disruption
 - Dioxin-like toxicity,etc.
- All NRs share similar structure and mechanisms of action
 - Act as direct transcription factors on DNA
- Natural ligands are small lipophilic hormones (steroids, thyroids, retinoids)
 - Role in toxicity NR are modulated (activated/inhibited) by structurally close xenobiotics

Natural ligands of NR

Small, lipid-soluble molecules

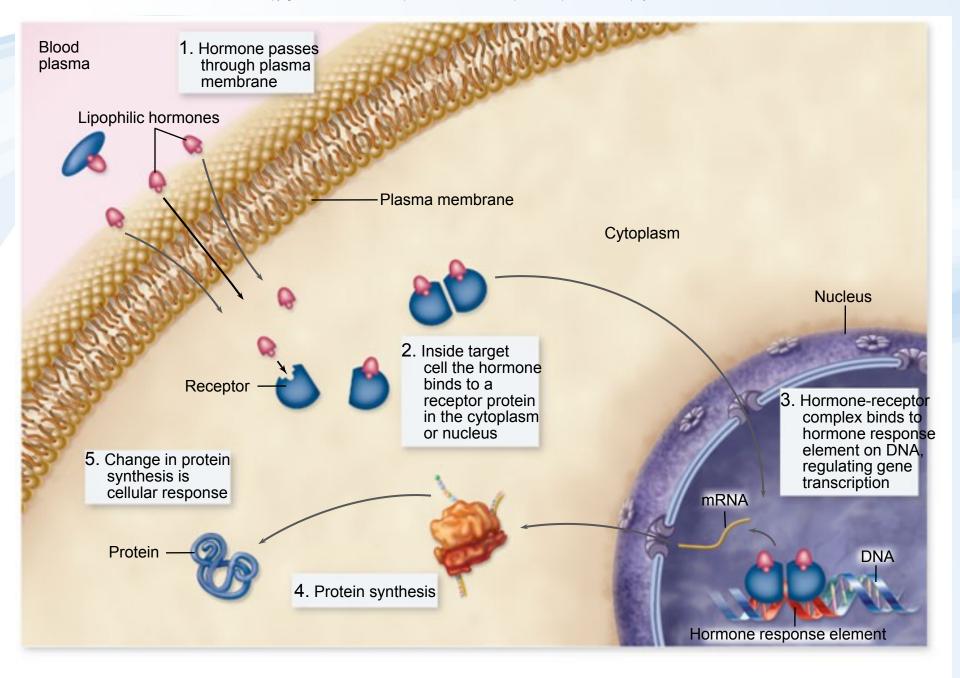
 Diffuse through plasma and nuclear membranes and interact directly with the transcription factors they control.

– STEROID HORMONES:

- sex steroids (estrogen, progesterone, testosterone)
- corticosteroids (glucocorticoids and mineralcorticoids)
- OTHER HORMONES and ligands

Thyroid hormone, vitamin D3, retinoic acid, ligands of AhR

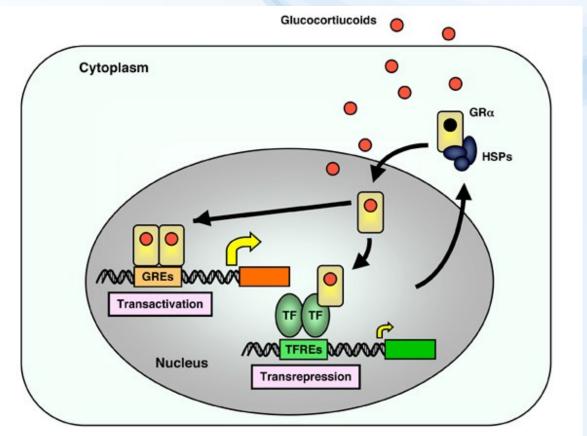
Small molecules - gases


e.g. NO (signaling for immune reactions)

Retinoic acid

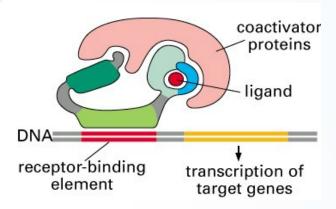
$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

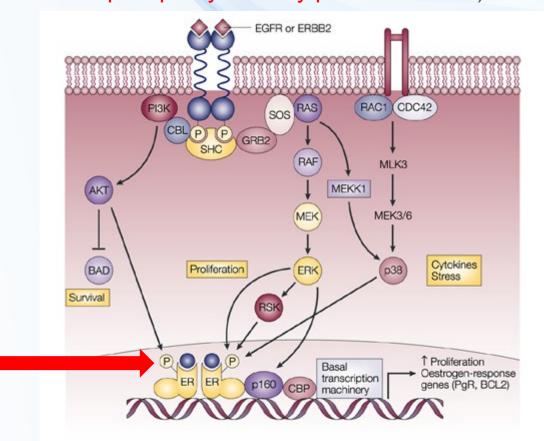
Thyroxine


Fate and action of **HORMONES** activating NRs

- Circulation in the blood bound to transport proteins
- Dissociation from carrier at target cells
- Passing through cell membrane
- Binding to an intracellular receptor (either in the cytoplasm or the nucleus)
- Hormone-receptor complex binds to hormone responsive elements in DNA
 - → Regulation of gene expression
- → De-regulation at any level described above = TOXICITY

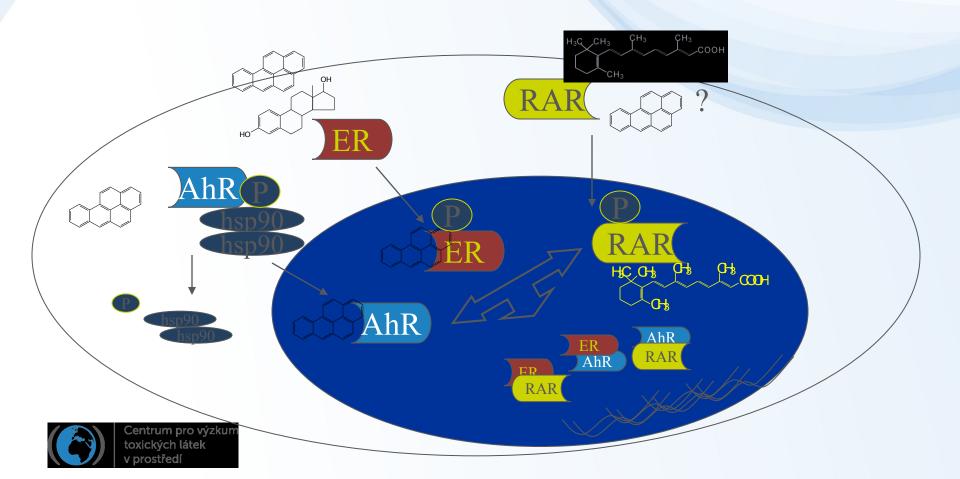
NR signalling is complex ... examples of complexity (1)


- Receptor activation is dependent not only on "ligand" (glucocorticoid) but also on "inhibitor" protein (HSPs)
- 2. Dimerization (after the activation) is often needed for proper action (binding to **GREs** *glucocorticoid responsive elements*)
- 3. Receptor with ligand can activate its own targets (GREs) as well as "repress" other binding sites (TFREs)



NR signalling is complex ... examples of complexity 2

4. "Co-activator" proteins are needed for proper action on DNA


5. Nuclear receptor action are (also) controlled - stimulated / suppressed - by other signalling pathways (e.g. phosphorylation by protein kinases)

NR signalling is complex ... examples of complexity 3

6. Interaction (crosstalk) among various NRs

- "antiestrogenicity" of AhR ligands
- •fast clearance of retinoids after AhR activation
- •Immunosuprresions after ER activations

Details - specificities of NRs

- Regulation of transcription activity mechanisms may vary
 - Steroid receptors often dimerize with a partner to activate gene transcription
 - Receptors for vitamin D, retinoic acid and thyroid hormone form heterodimers and then bind to responsive elements on DNA
 - Second component of the heterodimer is RXR monomer (i.e, RXR-RAR; RXR-VDR)

NR dimers

- Heterodimeric receptors exclusively nuclear;
 - without ligand represses transcription (by binding to their cognate sites in DNA)
- Homodimeric receptors
 - mostly cytoplasmic without ligands → hormone binding leads to nuclear translocation of receptors

STEROIDs - most studied ligands detailed view

Steroid hormones - a review

Steroid hormones are derived from cholesterol metabolism in mitochondria

Cortisol

The dominant glucocorticoid in humans. Synthesized from progesterone in the zona fasciculata of the adrenal cortex. Involved in stress adaptation, elevates blood pressure and Na* uptake. Immunomodulation.

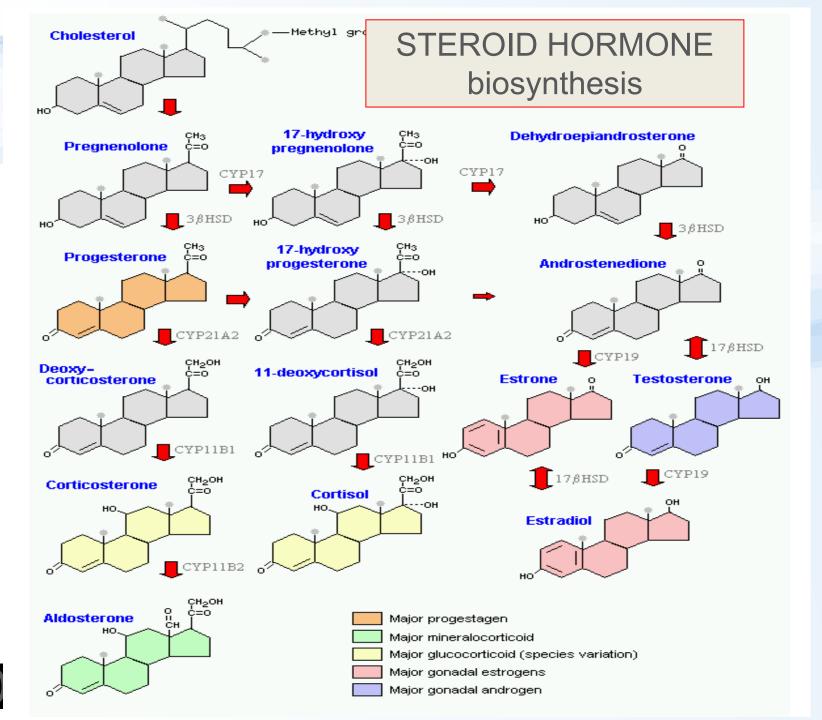
Aldosterone

Principal mineralocorticoid. Produced from progesterone in the zona glomerulosa of adrenal cortex, raises blood pressure and fluid volume, increases Na* uptake.

Estradiol

An estrogen, principal female sex hormone, produced in the ovary, responsible for secondary female sex characteristics. After menopause estrogen is produced from testosterone in the adrenal glands.

Progesterone


Produced from pregnenolone and secreted from the corpus luteum. Responsible for changes associated with luteral phase of the menstrual cycle, differentiation factor for mammary glands

Testosterone

An androgen, male sex hormone synthesized in the testes from progesterone. Responsible for secondary male sex characteristics

Pregnenolone

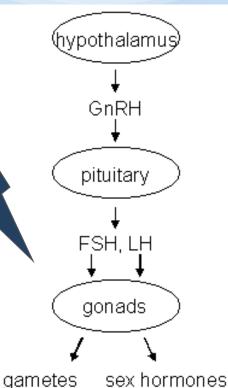
Made directly from cholesterol, the precusor molecule for all C₁₆, C₁₆ and C₂₁ steroids

Why are NR important?

→ common mediators of Endocrine Disruption

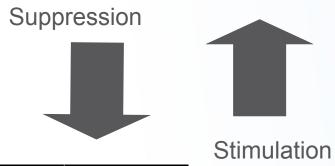
Endocrine disruption

Interference of xenobiotics with normal functioning of hormonal system


Known consequences

- → Disruption of homeostasis, reproduction, development, and/or behavior (and other hormone-controlled processes), such as
 - Shift in sex ratio, defective sexual development
 - Low fecundity/fertility
 - Hypo-immunity, carcinogenesis
 - Malformations
 - etc.

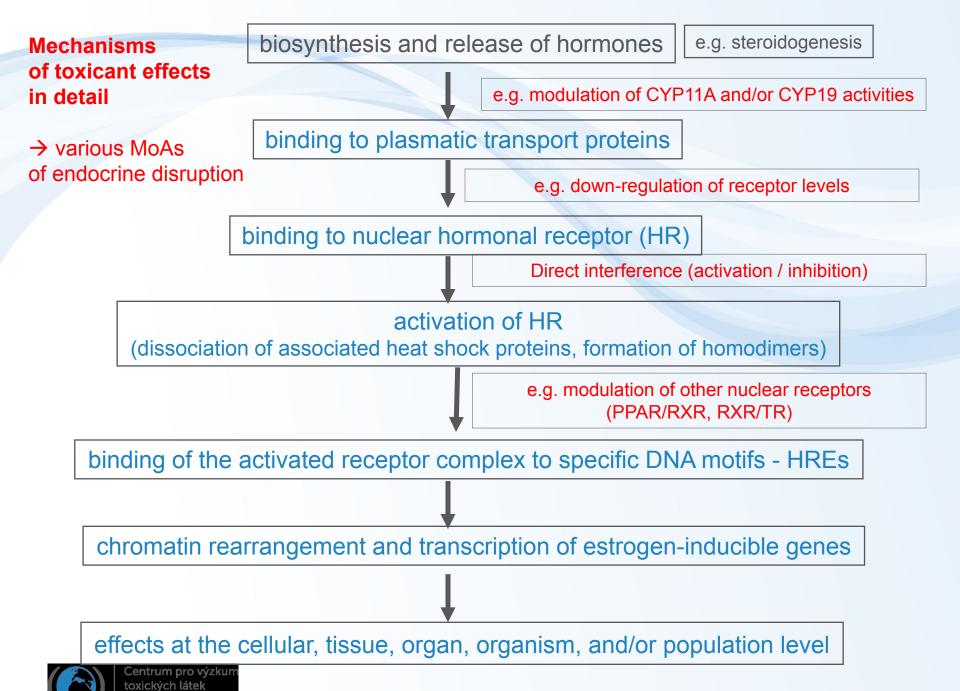
Toxicants interact with hormonal system at different levels


Synthesis

Transport

Interaction with receptors

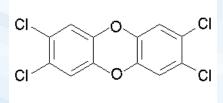
Metabolization


Consequences (both negative!)

toxických látek

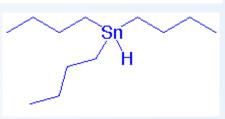
Possible mechanisms of endocrine disruption

- Disruption of the "master" hormones (FSH/LH)
- Decrease of HR cellular levels
- Nonphysiological activation of hormone receptor (HR)
- Binding to HR without activation
- Changes in hormone metabolism (clearance)



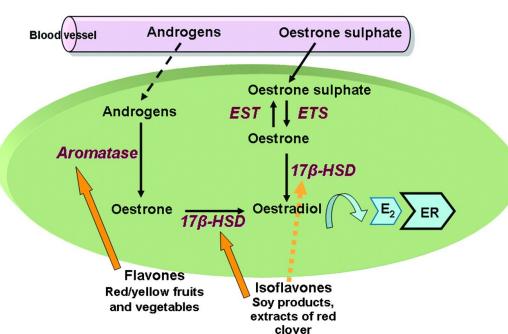
prostředí

Endocrine disrupters in the environment?

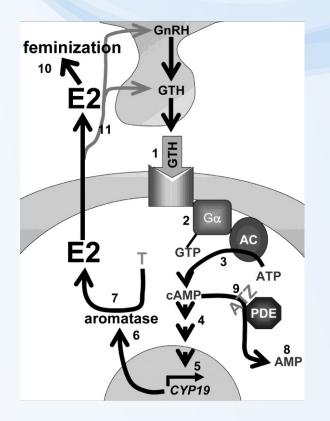

EDCs...

- Persistent Organic Compounds (POPs and their metabolites)
- steroid hormones and their derivatives from contraception pills
- alkylphenols
- organometallics (butyltins) alkylphenols
- pharmaceuticals
- Pesticides
- + number of unknowns ...

ethinylestradiol

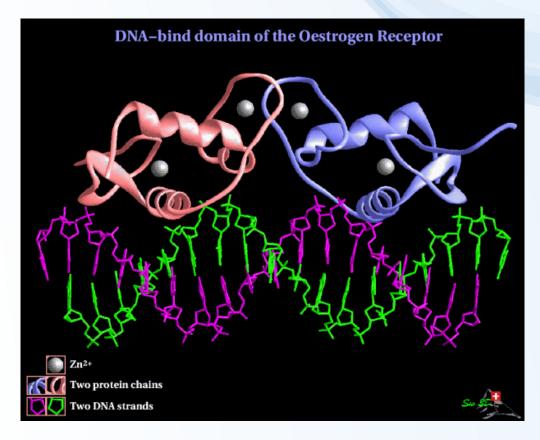


Examples – modulations of (synthetic) enzyme activities


Phytoestrogens promote synthesis of estrogens

→ feminization

Conversion of circulating steroid precursors into oestrogens in human breast carcinoma tissue


Crosstalk with other signalling pathways (such as **cAMP**), which can be target to toxicants

ESTROGEN RECEPTOR - ER

the most studied target of EDCs

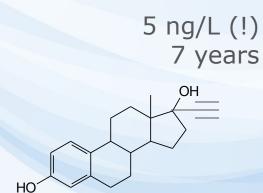
Estrogens

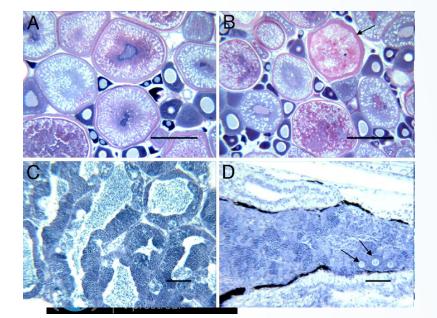
Synthesis in ovaries

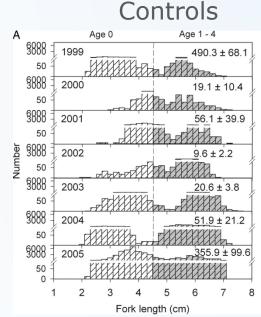
17-β-estradiol

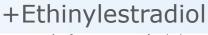
estriol

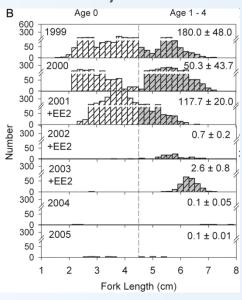
Functions

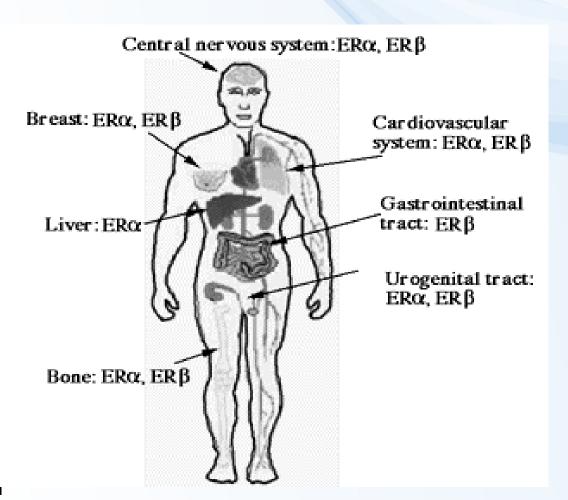

- key roles in female hormone regulation and signalling
- responsible for metabolic, behavioural and morphologic changes occurring during stages of reproduction
- involved in the growth, development and homeostasis in a number of tissues
- control the bone formation, regulation of homeostasis, cardiovascular system and behaviour
- regulate production, transport and concentration of testicular liquid and anabolic activity of androgens in males
- DISRUPTION OF ESTROGEN SIGNALLING
 - → many documented effects in aquatic biota & laboratory organisms




Kidd, K.A. et al. 2007. <u>Collapse of a fish population</u> following exposure to <u>a synthetic estrogen</u>. *Proceedings of the National Academy of Sciences* 104(21):8897-8901

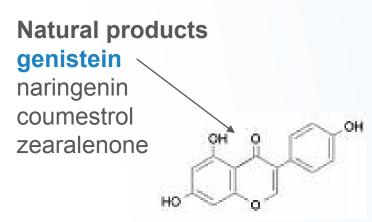






ESTROGEN RECEPTORS - subtypes

ER- α (in breast, ovary, brain, liver, bone and cardiovascular system, adrenals, testis and urogenital tract) ER- β (in kidneys, prostate and gastrointestinal tract)


(ER- γ in fish)

Environmental estrogens (xenoestrogens, exoestrogens)

- >> Highly diverse group of substances
- >> Do not necessarily share structural similarity to the prototypical estrogen 17β-estradiol
- >> may act as **AGONISTS** and/or **ANTAGONISTS** (depending on situation and concentration!)

Various POPs

DDT kepone PCBs/OH-PCBs PAHs and dioxins

Industrial chemicals

Bisphenol A

Nonionic surfactants

Pthalate esters (eg. DEHP)

Endosulfan (pesticide)

Pharmaceuticals

Ethinyl estradiol Diethylstilbestrol gestodene norgestrel

Exoestrogens - Relative Potencies to bind to ERa (REPs)

REP – a measure of toxic potency of a compound (similar also at other NRs)

Chemical group	Substance	REP
Endogenous hormones	Estradiol	1
	Estriol	$6,3.10^{-3}$
	Testosteron	9,6.10-6
Phytoestrogens	Cuomestrol	6,8.10 ⁻³
	Genistein	4,9.10-4
Pesticides	o,p´-DDT	1,1.10 ⁻⁶
PCBs	2,4,6-trichlorbiphenyl-4'-ol	1.10^{-2}
	2,5-dichlorobiphenyl-4'-ol	$6,2.10^{-3}$
	3,3',5,5'tetrachlorobiphenyl-4,4'-diol	1,6.10-4
alkylphenoles	4-tert-oktylphenol	3,6.10-6
phthalates	butylbenzylphthalate	4.10 ⁻⁶

REP (RElative Potencies) of selected compounds related to 17-β-estradiol derived from reporter yeast assay

How to assess ESTROGENICITY?

Number of in vivo and in vitro methods available

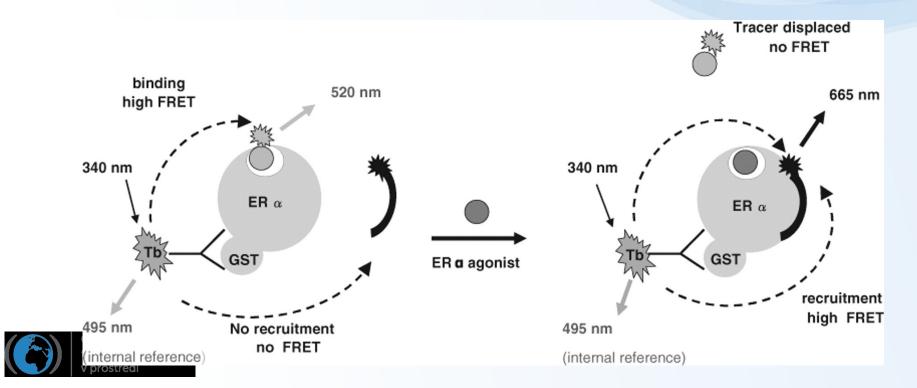
Assay (ref.)	Exposure type	Detects ER-dependent agents?	Detects non- ER-dependent agents?	Distinguishes agonist versus antagonist?	Pharmacokinetic and metabolism included?
Receptor-based assays			1.1		
Receptor binding assay (27)	Cell lysate	Yes	No	No	No
Receptor activation assay (32-34)	Cells in vitro	Yes	No	Yes*	No
In vitro estrogen-regulated response assays					
MCF-7 cell proliferation assay (41)	Cells in vitro	Yes	Limited	Yes"	No
Induction assays (46,48)	Cells in vitro	Yes	Limited	Yes*	No
DNA synthesis assays (47)	Cells in vitro	Yes	Limited	Yes	No
In vivo estrogen-regulated response assays					
Uterotrophic response assay (49)	Whole animal	Yes	Limited	Yes	Yes
Vaginal cornification assay (50)	Whole animal	Yes	Limited	Yes"	Yes
Vaginal opening (11)	Whole animal	Yes	Limited	Yes*	Yes
Uterine fluid imbibition (11)	Whole animal	Yes	Limited	Yes	Yes
Uterine epithelial hypertrophy (51)	Whole animal	Yes	Limited	Yes	Yes
Inhibition of steroid synthesis assays					
In vitro ovarian steroid assay (55)	Minced tissue	No	Yes	Yes	No
Ex vivo ovarian steroid assay (56)	Whole animal	No	Yes	Yes	Yes

[&]quot;Detection of antagonists requires use of additional groups with test material + estradiol.

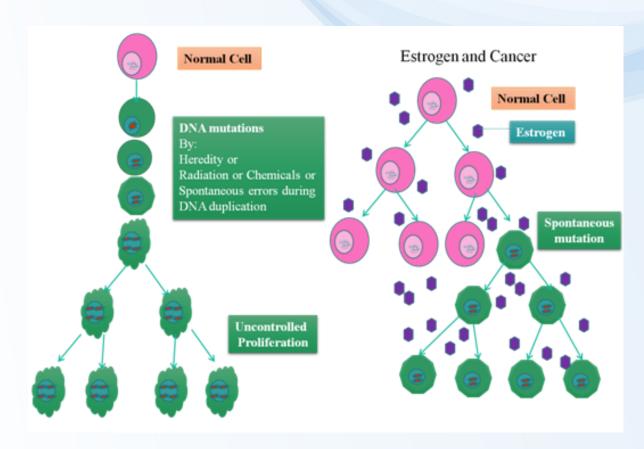
Janošek, J., Hilscherová, K., Bláha, L., and Holoubek, I. (2006). Environmental xenobiotics and nuclear receptors-Interactions, effects and in vitro assessment. *Toxicology in Vitro* 20, 18-37.

IN VIVO ASSAYS FOR ESTROGENICITY

- uterotropic assay
- vaginal cornification assay



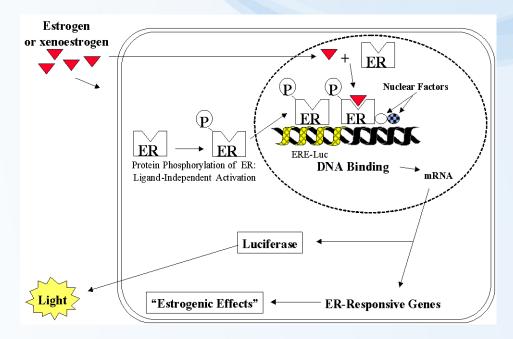
- production of estrogen-inducible proteins
 (e.g. vitellogenin and zona radiata protein)
 - → also discussed at "biomarkers" part
- standard (in vivo) test procedures for reproductive and developmental toxicity
 - using mice, rats, fish, amphibians etc.


In vitro assays for estrogenicity

- Level 1 interaction of toxicant with the protein (receptor)
 - INTERACTION (BINDING) to the receptor
 - competitive ligand binding assays
 - Various variants (e.g. displacement of radioactive substrate, fluorescence resonance energy transfer (FRET) techniques etc.
 - → information only about "binding potency" but the effect remains unknown (? Activation / suppression / no effect ?)

In vitro assays for estrogenicity

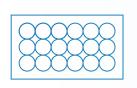
- Level 2 effects at cellular level
 - → interference with receptor biological activity
- Cell proliferation assays
 - Estrogens induce proliferation

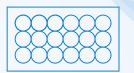

In vitro assays for estrogenicity

- Level 2 effects at cellular level
 - → interference with receptor biological activity
- Endogenous protein expression (or enzyme activity) assays
 - reporter gene assays

Cell assays in vitro

- •Cells (e.g. breast carcinoma) naturally carrying functional ER.
- •Genetic modification stable transfection with firefly **luciferase gene**: under the control of ER
- •Estrogens in media → light induction




Luciferase reporter assay for estrogenicity in brief

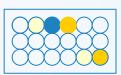
96 microwell plate cultivation of transgenic cell lines

ER: breast carcinoma MVLN cells

Exposure (6 - 24 h) standards / samples

Similar principle for other NRs activities

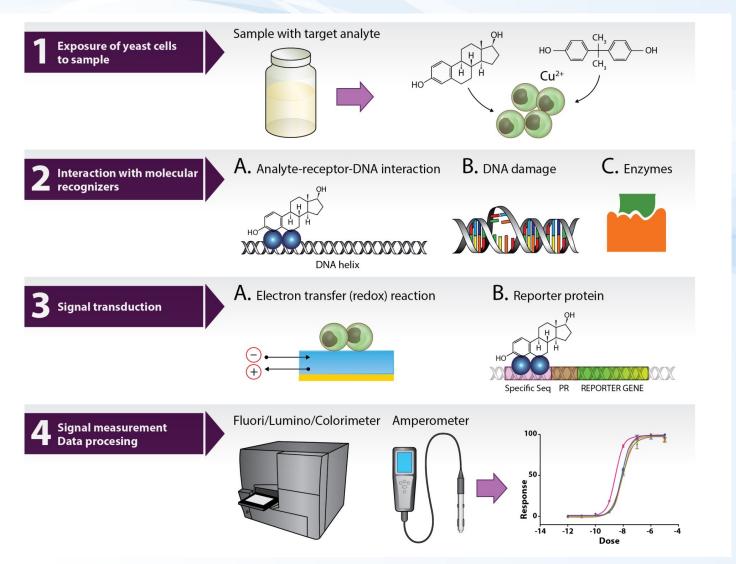
Mammalian cells


- * AhR H4IIE.luc cells (CALUX)
- * AR MDA.kb2 cells
- * RAR/RXR P19/A15 cells

Yeast models

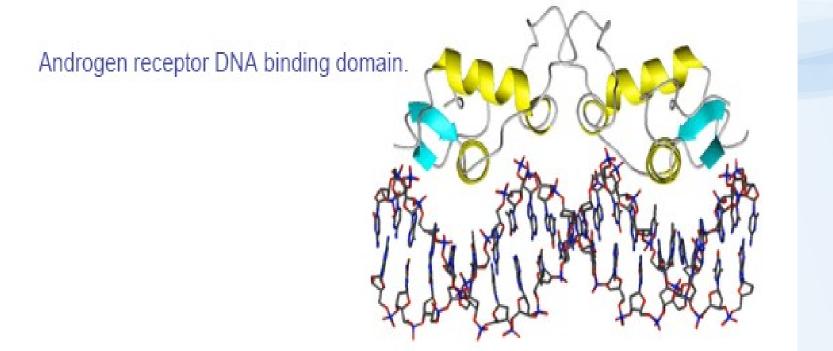
- * Luciferase based
- * Also beta-galactosidase etc.

→ extraction of induced luciferase



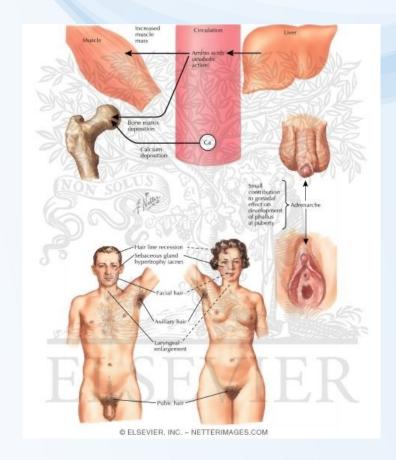
Luminescence determination (microplate luminescence reader)

Bioassay (biosensor) for NR-modulator based on yeast cells

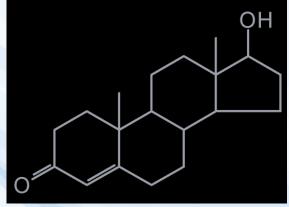


Jarque, S., M. Bittner, L. Bláha and K. Hilscherová (2016). "Yeast biosensors for detection of environmental pollutants: current state and limitations." Trends in Biotechnology 34(5): 408-419 (doi:10.1016/j.tibtech.2016.01.007).

ANDROGEN RECEPTOR (AR)


role in toxicity confirmed ... but less explored than ER

Androgens


- Role in males similar to the of estrogens in females
 - development of male sexual characteristics
 - stimulating protein synthesis, growth of bones
 - cell differenciation, spermatogenesis
 - male type of behaviour

Androgens

- Endogenous ligands androgen hormones
 - Two key androgens
 - testosterone (T)
 - dihydrotestosterone (DHT)
 - Other androgens androstanediol,
 dehydroepiandrosterone, androstenedione
- T: synthesis in testis (Leydig cells)
 - in lesser extent in adrenals
- DHT: Formed extratesticulary from T
 - In several tissues (seminal vesicles, prostate, skin)
 higher affinity to androgen receptor than T
 - Daily production 5-10% of testosterone

Testosterone

Mechanisms of androgen signalling disruption

1) Binding to AR

- Mostly competitive inhibition
- Xenobiotics mostly DO NOT activate AR-dependent transcription
- Only few compounds able to activate AR in the absence of androgen hormones but they are anti-androgenic in the presence of strong androgens like T or DHT
 - metabolites of **fungicide vinclozoline**, some PAHs

vinclozoline

2) FSH/LH (gonadotropins) signalling disruption – less explored

- FSH/LH expression regulation via negative feedback by testosterone
- Suppression → alterations of spermatogenesis

Mechanisms of androgen signalling disruption

3) Alterations of testosterone synthesis

- Inhibition of P450scc needed for side chain cleavage of cholesterol or inhibitions of 17-beta-hydroxylase and other CYPs
 - fungicide ketoconazol

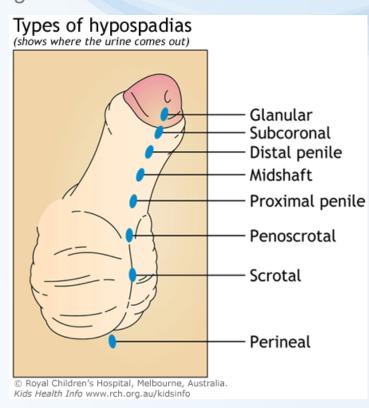
4) Testosterone metabolic clearance

- Induction of detoxification enzymes (UDPglucuronosyltransferase or monooxygenases CYP1A, 1B)
 - Pesticides endosulfan, mirex, o-p´-DDT

Effects of male exposure to antiandrogens

Exposure during prenatal development:

- malformations of the reproductive tract
 - reduced anogenital distance
 - hypospadias (abnormal position of the urethral opening on the penis)
 - vagina development
 - undescendent ectopic testes
 - atrophy of seminal vesicles and prostate gland


Exposure in prepubertal age:

- delayed puberty
- reduced seminal vesicles
- reduced prostate

Exposure in adult age:

- oligospermia
- azoospermia
- loss of sexual libido

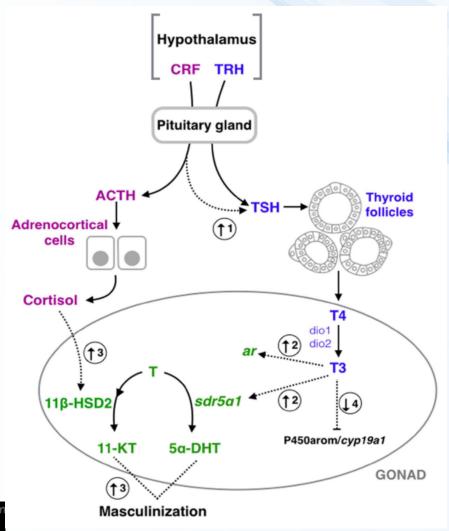
AR-binding – potencies - reference **DHT**: **EC50** ~ **0.1** μ **M**)

Compound	$IC_{50} (\mu M)$
Benz[a]anthracene	3.2
Benzo[a]pyrene	3.9
Dimethylbenz[a]anthracene	10.4
Chrysene	10.3
Dibenzo[a,h]anthracene	activation in range 0.1-10µM
Bisphenol A	5
vinclozolin metabolites	9.7
hydroxyflutamide	5
Aroclor typical values	0.25-1.11
Individual PCBs typical values	64 - 87
tris-(4-chlorophenyl)-methanol	0.2

Antiandrogenic compound

tris-(4-chlorophenyl)-methanol

- Ubiquitous contaminant of uncertain origin
- Probable metabolite of DDT-mixtures
- Levels in human blood serum cca. 50nM
- antiAR potency EC50 cca. 200nM



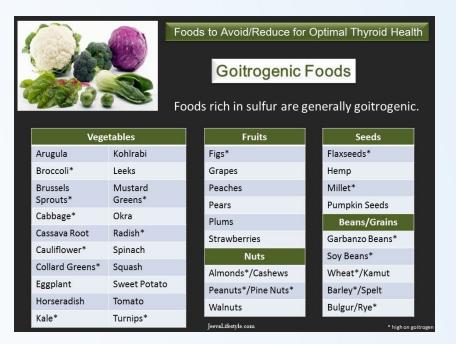
(Anti)androgenicity assessment

- In vivo Hershberger assay
 - castrated rats treated with examined substance
 - Endpoint after 4-7 days seminal vesicles and ventral prostate weight
- In vivo measurement of testosterone blood levels
- In vitro cell proliferation assays
 - cells with androgen-dependent growth: mammary carcinoma cell lines
 - prostatic carcinoma cell lines
- Receptor-reporter assays
 - Gene for luciferase (or GFP) under control of AR
 - AR-CALUX (human breast carcinoma T47D)
 - PALM (human prostatic carcinoma PC-3)
 - CHO515 (Chinese hamster ovary CHO)
 - Yeast transfected cells
 - beta-galactosidase reporter

THYROID SIGNALLING

Thyroid hormones

- Crucial roles in metabolism, development and maturation
 - Regulation of metabolism
 - increasing oxygen consumption
 - modulating levels of other hormones (insulin, glucagon, somatotropin, adrenalin)
 - Important in cell differenciation
 - Crucial role in development of CNS, gonads and bones
- EDC compounds interfering with thyroid signalling "GOITROGENS"
- Many food (vegetables) contain goitrogens



HYPOTHYROIDISM

HYPERTHYROIDISM

Thyroid hormones

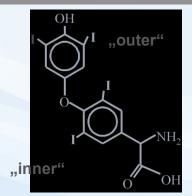
Thyroxine (T4)

Also called tetraiodothyronine Contains 4 iodide ions

Triiodothyronine (T3)

Contains 3 iodide ions

-Most T3 produced by deiodination in target tissues (deiodinases)



T4 – prohormone

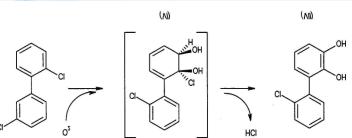
Disruption of enzymes involved in Thyroid metabolism


- Thyroid peroxidases
 - iodination of tyrosyl residues
 - coupling of iodinated tyrosyl residues
- Thyroid deiodinases
 - D1, D2 activation of T4 into T3 via deiodination on "outer" ring
 - D3 deactivation into rT3 via deiodination on "inner" ring

- Many goitrogens affect expression, activities and outcomes of these key enzymes
 - PTU propylthiouracil
 - →effect deiodinases

Thiocyanate ([SCN]⁻) or perchlorate (NaClO₄)

→effect on iodine uptake


Disruption of transport of thyroid hormones in blood

- SPECIFIC TRANSPORTERS in blood
 - regulating free T4 and T3 levels
 - 3 types :
 - Thyroid-binding prealbunin (transthyretin) (20-25%)
 - Albumin (5-10%)
 - Thyroid binding globulin (TBP, 75%)

NUMBER OF EDCs → act on transport proteins

- OH-PCBs, brominated and chlorinated flame retardar or DDT, dieldrin
- OH-PCBs equal affinity to TBP as T4 and T3 (!!!)
- Increased levels of "free T4" in blood
 - negative feedback to TSH release
 - → increased depletion
 - → increased weight, changes in thyroid gland
 - Documented after exposures to POPs in vertebrates

Hydroxylated PCB formation

Polybrominated diphenyl ethers (PBDEs) – flame retardants

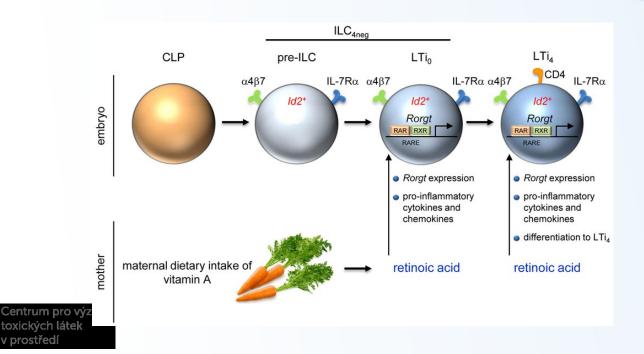
$$Br_m$$
--- Br_n


Effects of thyroid disruption

Exposures during prenatal stages

- severe damage of CNS (cretenism, delayed eye opening, cognition)
- Megalotestis
- Histological changes in thyroid gland (goitre)

Exposures during development


- nervous system fails to develop normally
- mental retardation
- skeletal development

RAR/RXR receptors

- vitamin A and its derivatives: RETINOIDS -

& their role in toxicity

RETINOIDS

Sources: from diet - dietary hormones

Retinyl esters – animal sources Plant carotenoids

Retinol (vitamin A)

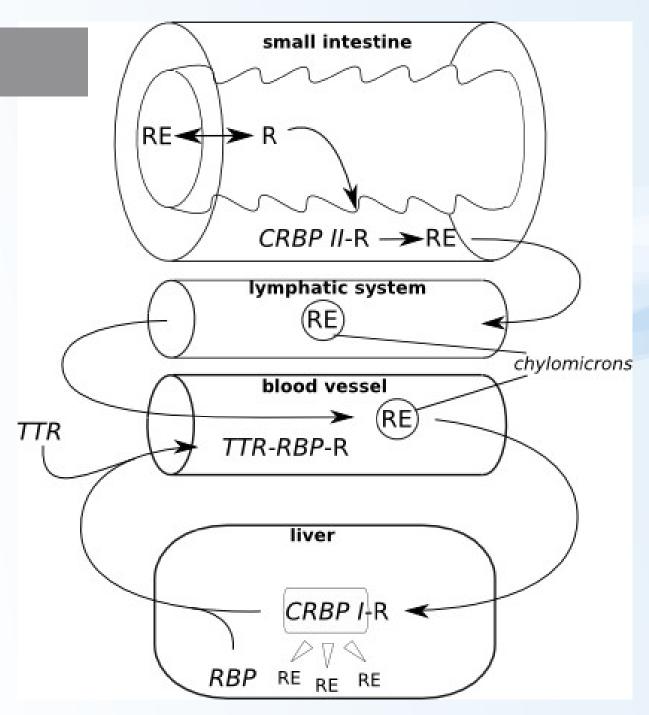
atRA – all trans - Retinoic Acid

 CH_3

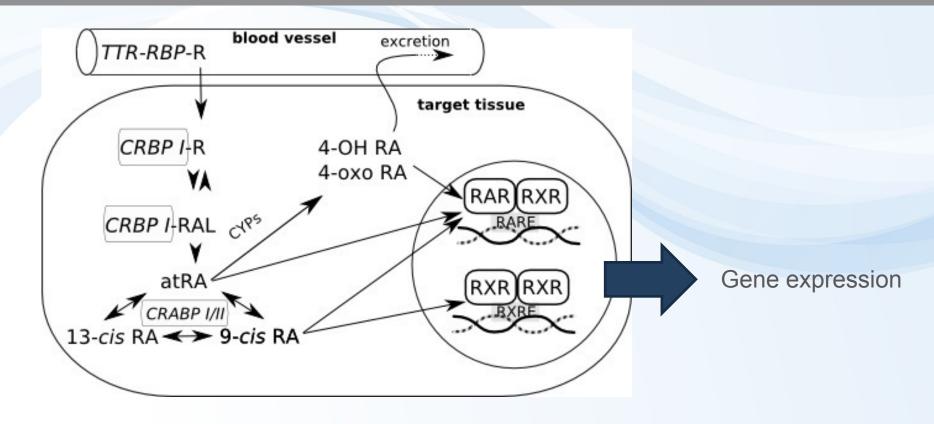
Retinoids and their functions

- Regulation of development and homeostasis in tissues of vertebrates and invertebrates
- Development of embryonic, epithelial cells (gastrointestinal tract, skin, bones)
- Necessary for vision
- Suppressive effects in cancer development
- Important for cell growth, apoptosis and differenciation
- Antioxidative agent
- Affect nervous and immune function

Retinoid transport


RE: Retinol-Ester

R: Retinol


RBP: Retinol Binding Protein (*LMW*)

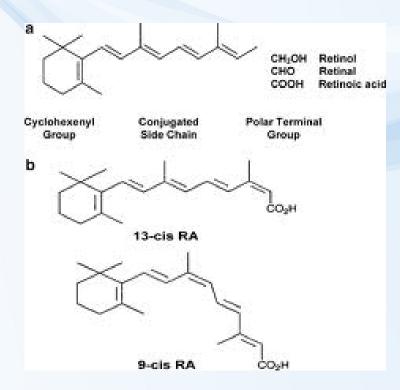
TTR: Transthyrethin (*HMW*)

Retinoid fate in the cells

Retinoid binding proteins

CRBP – cellular retinol binding protein

- binding of retinol, immediate decrease of retinol concentration


CRBAP – cellular retinoic acid binding protein

- Controlling the ratio free retinol/free retinoic acid

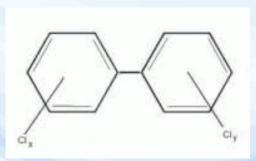
RAR/RXR and RA

- Isoforms of RAR a RXR
 - Formation of homo- and heterodimers
 - 48 possible RAR-RXR heterodimers
 - → sensitive regulation of gene expression
- RXR heterodimers with other receptors
 - VDR, TR, PPAR ... → see crosstalk
- RETINOIC ACID (RA)
- 3 basic subtypes
 - all-trans- (ATRA)
 - 9-cis- and 13-cis-retinoic acid
- All-trans RA (ATRA) binds selectively to RAR
- Cis RA bind to both receptor types

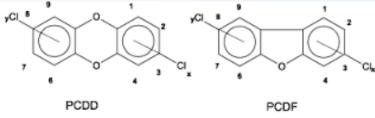
Disruption of retinoid signalling by xenobiotics

Possible modes of action – disruption of retinoid signalling:

- Metabolization of retinoids by detoxication enzymes
- Disruption of binding retinoids to transport proteins
- Retinoids as antioxidants may be consumed by oxidative stress induced by xenobiotics
- Interference during binding to RAR/RXR


Effects

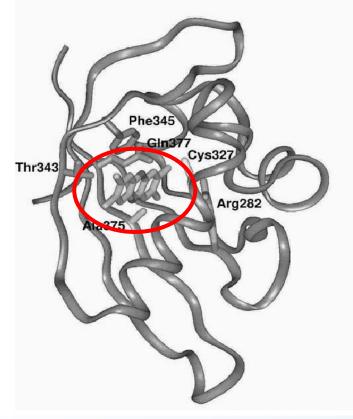
- Decreased retinoid levels in organisms
 - Downregulation of growth factors
 - Xerophtalmia, night blindness
 - Embryotoxicity, developmental abnormalities
- Increased ATRA concentration
 - teratogenic effects



Disruption of retinoid signalling by xenobiotics

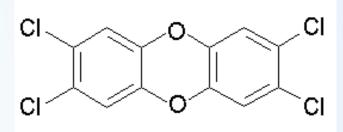
- Polluted areas
 - mostly decrease of retinoid levels
 - Documented in aquatic birds, mammals and fish
- Disruption of retinoid transport: PCBs

- **Effects on retinoid receptors:**
 - RAR, RXR binding and/or transactivation
 - pesticides (chlordane, dieldrin, methoprene, tributyltin...)
 - Effect on ATRA mediated response TCDD, PAHs
- **Disruption of retinoid metabolism:**
 - PCDD/Fs, PAHs, PCBs, pesticides
 - changes of serum concentrations of retinol and RA
 - mobilization of hepatic storage forms



AhR (Arylhydrocarbon receptor)

AhR structure



2,3,7,8-TCDD (dioxin) bound to AhR

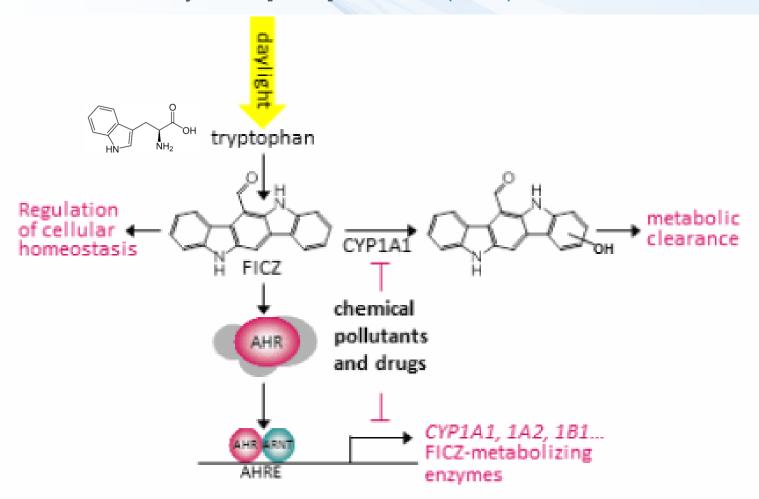
AhR

- Also known as "dioxin-receptor" (and its modulation leads to so called "dioxin-like" activity or toxicity)
- Ligand-activated transcription factor
 - Similar to all NRs
- AhR has effects on many different genes
- important mediator of toxicity of POPs primary target of planar aromatic substances
 - regulator of xenobiotic metabolism and activation of promutagens
- Crossactivation/crosstalk with other NRs
- Strongest known ligand TCDD
 - (not endogeneous!)

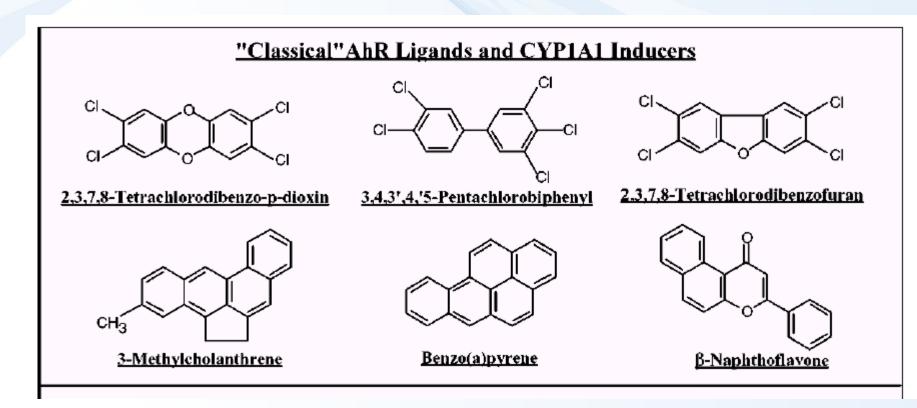
AhR regulated genes

- Many genes contain xenobiotic response elements (XRE) or dioxin responsive elements (DRE) in their promoter region:
 - Detoxification genes phase I enzymes (CYP 1A1, CYP 1A2, CYP 1B1) and phase II enzymes (UDP-glucuronosyltransferase, GST-Ya, NADP(H):oxidoreductase)
 - Detoxification after toxicant exposure
 ... also with possible toxic consequences (oxidative stress, activation of promutagens accelerated clearance of hormones)
 - Other genes regulation of cell cycle and apoptosis
 - Bax (apoptosis control), p27Kip1, Jun B (MAP-kinase), TGF-b (tumor growth factor)
 - → Various adverse toxic effects

Physiological role of AhR

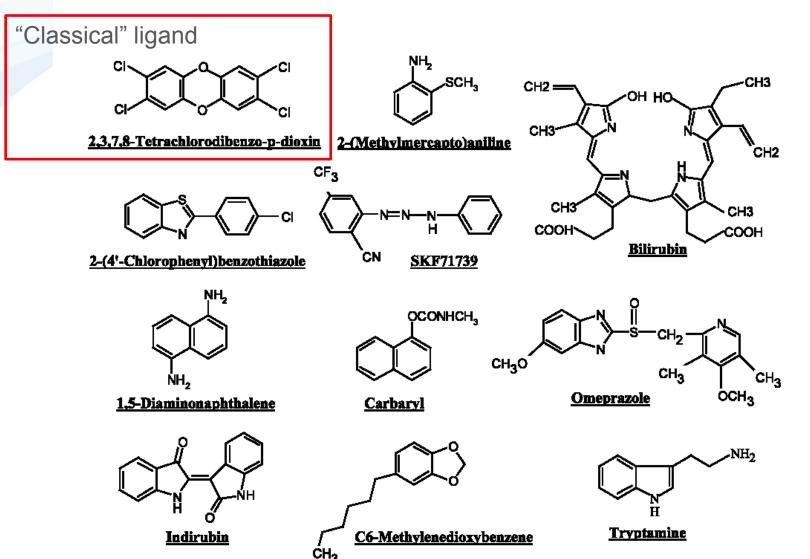

- Physiological role for AhR still not known completely (?)
 - Most likely "protection" against toxicants → induction of detoxification
- Many adverse effects documented in AhR-deficient mice
 - significant growth retardation;
 - defective development of liver and immune system;
 - retinoid accumulation in liver;
 - abnormal kidney and hepatic vascular structures.
 - resistant to BaP-induced carcinogenesis and TCDD-induced teratogenesis;
 - no inducible expression of CYP 1A1 and 2.

→ this implies presence of natural endogeneous ligand(s) (not only exogeneous toxicants can bind AhR)

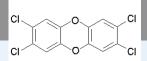

What is the natural (endogenous) physiological ligand of AhR?

Potential candidate: 6-formylindolo[3,2-b]carbazole (FICZ)

Classical and "non-classical" AhR ligands


Classical = planar structures → direct binding to AhR

Denison & Nagy, Annu. Rev. Pharmacol. Toxicol. 43:309


"Non-classical" AhR ligands – various structures

M.S. Denison et al. | Chemico-Biological Interactions 141 (2002) 3-24

Biological responses to TCDD & AhR ligands

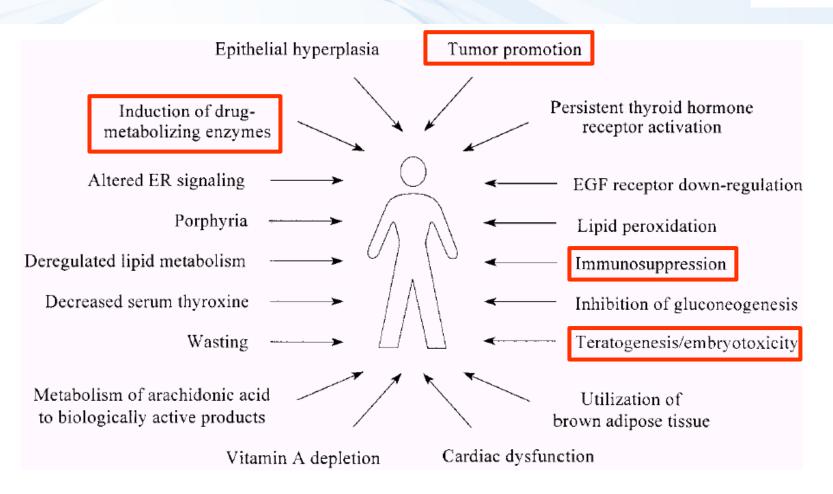


Figure 1 Biological responses to TCDD. A wide variety of cellular processes have been shown to be affected by TCDD.

Toxic equivalency factors (TEF)/TEQ concept

- Toxicity of compounds with similar toxicological properties as TCDD (activating AhR) may be evaluated by TEF/TEQ concept
 - TEF = Toxic Equivalency Factor ("characteristic" of the Chemical)
 - TEQ = Toxic Equivalent (sum of TEFs x concentrations)
- TEFs are consensus values based on REPs (relative potencies) across multiple species and/or endpoints.
 - TEFs are based upon a number of endpoints, from chronic in vivo toxicity to in vitro toxicity with the former having the greatest importance in determining overall TEF.
- TEQs provide a simple, single number that is indicative of overall toxicity of a sample (water, sediment, food) containing a mixture of dioxins and dioxin-like compounds.
- The total potency of a mixture can be expressed in TCDD TEQ concentration
 - i.e. TEQ = concentration corresponding to the effect that would be induced by TCDD

$$TEQ = \Sigma \{compound_1 \times TEF_1 + \dots \}$$

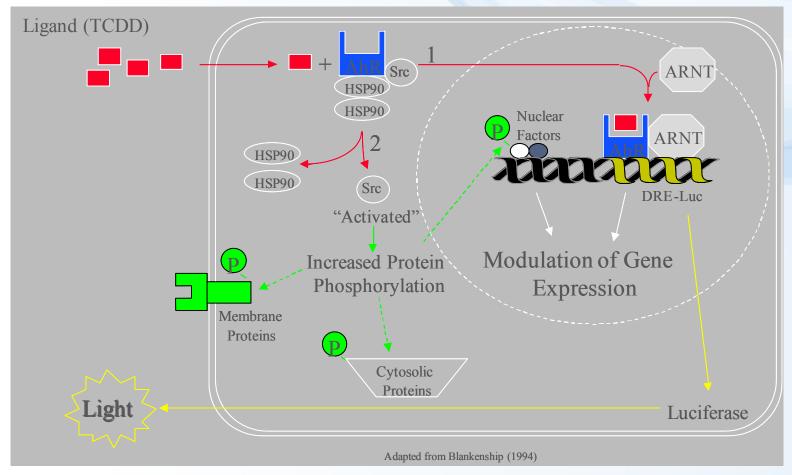
 $+ compound_n \times TEF_n$

Toxic equivalency factors for PCDDs, PCDFs and PCBs:

PCDD Congener	WHO-TEF	PCDF Congener	WHO-TEF	PCB Congener	WHO-TEF
2,3,7,8-TCDD	1	2,3,7,8-TCDF	0.1	Non-ortho	
12,3,7,8-PeCDD	1	12,3,7,8-PeCDF	0.05	PCB#81	0.0005
123478-HxCDD	0.1	23478-PeCDF	0.5	PCB#77	0.0005
123678-HxCDD	0.1	123478-HxCDF	0.01	PCB#126	0.1
12,3,7,89-HxCDD	0.1	123678-HxCDF	0.1	PCB#169	0.01
1234678-HpCDD	0.01	234678-HxCDF	0.1	Mono-ortho	
OCDD	0.0001	12,3,7,89-HxCDF	0.1	PCB#105	0.0001
		1234678-HpCDF	0.01	PCB#114	0.0005
		1234789-HpCDF	0.01	PCB#118	0.0001
		OCDF	0.0001	PCB#123	0.0001
				PCB#156	0.0005
				PCB#157	0.0005
				PCB#167	0.00001
				PCB#189	0.0001

Eljarrat & Barceló, Trends Anal. Chem.22: 655

Final concentration is expressed as "Equivalents of TCDD" (e.g. ng TEQ / kg = ng TCDD / kg)


Biomarkers/bioanalytical methods for AhR toxicity

- In vivo studies
 - liver enlargement, reduction of thymus weight, wasting syndrome, reproductive and developmental disorders
- In vivo biomarkers
 - EROD activity, CYP 1A1 and 1B1 expression (discussed in biomarker section)
- in vitro assessment of chemical potencies
 - EROD (ethoxyresorufin-O-deethylase activity) in cell cultures;
 - CALUX/CAFLUX assays (luciferase expression – reporter gene assays)
 - GRAB assay (AhR-DNA binding)
 - yeast bioassay;
 - immunoassays;
 - detection of CYP1A mRNA (qPCR) or AhR protein (western blotting)

In vitro CALUX/CAFLUX assays

CALUX – Chemical Assisted Luciferase Expression
DR-CALUX (Dioxin Responsive CALUX)
(i.e. Luciferase Reporter Gene Assay with H4IIE.luc cells)

M. Till et al. / Chemico-Biological Interactions 117 (1999) 135–150

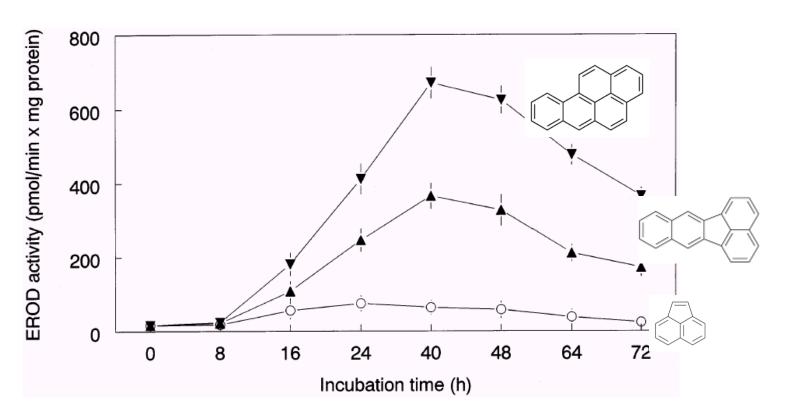
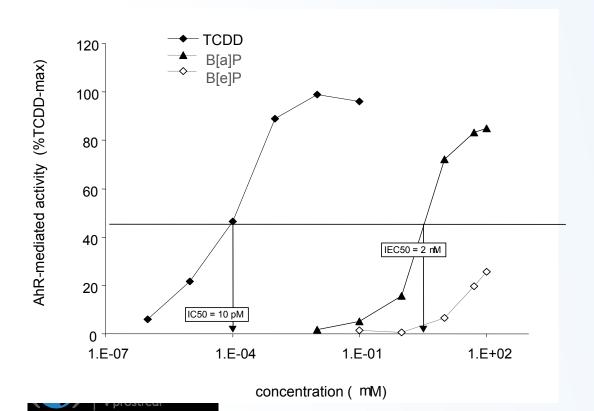
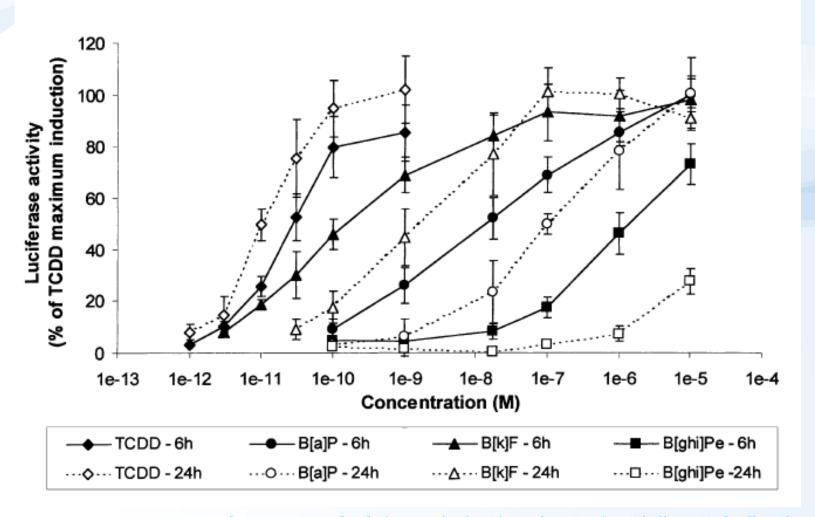



Fig. 2. Time course of induction of CYP1A1-catalyzed 7-ethoxyresorufin O-deethylase (EROD) activity in primary cultures of rat hepatocytes, after addition of 1.7×10^{-5} M benzo[a]pyrene (- ∇ -), 1.9×10^{-6} M benzo[k]fluoranthene (- Δ -) or 9.4×10^{-5} M acenaphthylene (- \bigcirc -). EROD activity was determined in cell homogenates. The data represent means \pm S.D. from four independent experiments.

Comparing toxicity of compounds → Application in Risk Assessment

- Quantification of effects (EC₅₀)
- Comparison with the effect of reference toxicant (2,3,7,8-TCDD)
 - → relative potencies (REPs) to TCDD
 (= in vitro "Toxic Equivalency Factors" ~ TEFs)


TCDD: IC_{50} PAH: IEC_{50}

Relative Potency (REP)
= Induction Equivalency Factor
IEF = IC₅₀ / IEC₅₀

REP interpretation: How many times is the compound "weaker" inducer than TCDD?

Example - relative potencies of PAHs (two exposure periods) "CALUX" assay

M. Machala et al./Mutation Research 497 (2001) 49-62

Longer period: lower induction due to (partial) metabolization of PAHs (CYPs, oxidation) to products less potent to AhR

Table 2 IEFs of PAHs relative to TCDD or B[a]P derived from EC50 or EC25 values in 24 and 6h exposure assays

Derived from	IEF _{TCDD(24h)}		$\mathrm{IEF}_{TCDD(6h)}$	IEF _{TCDD(6h)}		IEF _{B[a]P(6h)}	
	EC50	EC25	EC50	EC25	EC50	EC25	
Flu	ni ^a	ni	ni	ni	ni	ni	
Ant	ni	ni	ni	ni	ni	ni	
Fla	2.27E-8	9.31E-7	9.84E-5	1.11E-4	1.05E-2	5.59E-3	
Py	1.78E-6	3.38E-6	2.59E-5	4.45E-5	7.57E-3	6.21E-3	
B[a]A	7.04E-6	9.60E-6	7.64E-7	2.40E-6	0.39	0.50	
Chry	1.01E-4	1.07E-4	1.41E-2	3.26E-2	3.25	2.04	
B[b]F	3.35E-5	4.82E-5	4.90E-2	2.32E-1	8.83	12.81	
B[k]F	1.64E-3	2.94E-3	0.28	0.57	67.76	36.33	
B[a]P	9.01E-5	1.99E-4	1.11E-2	2.02E-2	1.0	1.0	
DB[ah]A	1.17E-3	1.52E-3	0.06	0.20	11.46	11.72	
I[123-cd]P	2.96E-4	5.01E-4	0.86	1.24	44.20	29.70	
B[ghi]Pe	ni	ni	2.27E-5	4.68E-5	5.47E-3	2.99E-3	
DB[al]P	4.90E-6	1.13E-6	2.52E-5	3.26E-5	2.36E-2	1.88E-2	
NPyr	2.05E-4	3.83E-4	5.80E-3	1.31E-2	1.10	0.88	
CPP	2.48E-7	6.53E-7	6.20E-6	1.72E-5	4.23E - 3	3.38E-3	
B[a]Pe	6.19E-6	6.28E-6	2.27E-4	3.05E-4	3.37E-2	1.68E-2	
DB[ae]F	9.30E-6	1.18E-5	2.75E-5	1.33E-4	1.74E-3	6.74E-3	
DB[ai]P	1.65E-4	4.41E-4	4.29E-2	3.82E-2	2.59	1.75	
DB[ae]P	1.80E-5	3.90E-5	1.08E-3	3.90E-3	0.49	0.13	
DB[ah]P	7.14E-5	3.70E-4	2.65E-2	5.43E-2	2.80	2.68	
DB[ak]F	1.23E-3	1.37E-3	1.55E-2	2.02E-2	2.69	1.65	
5-MeChry	9.48E-5	1.59E-4	4.05E-2	5.08E-2	3.07	2.46	
DB[aj]A	3.70E-4	5.21E-4	3.07E-2	4.04E-2	2.16	2.16	
B[j]F	3.68E-4	7.40E-4	4.05E-2	6.33E-2	2.25	2.51	
B[c]Phe	4.49E-7	1.07E-6	6.21E-5	7.51E-5	4.64E-3	3.76E-3	
B[e]P	5.15E-7	6.30E-7	3.71E-5	8.17E-5	2.27E-3	2.86E-3	
DMBA	5.41E-6	1.30E-5	4.71E-2	3.98E-2	0.46	0.9	
1-MePyr	2.07E-6	2.82E-6	4.80E-5	7.20E-5	8.54E-3	6.33E-3	
DB[ac]A	1.92E-4	4.23E-4	3.53E-2	7.80E-2	1.75	2.78	
Pic	4.11E-5	5.54E-5	1.90E-3	5.20E-3	0.12	0.25	

a ni, no induction observed.

M. Machala et al./Mutation Research 497 (2001) 49-62

Summary – Nuclear receptors

- Important physiological functions,
- Important roles in pathologies and chemical toxicity (ENDOCRINE DISRUPTION)
- NRs with well studied roles in toxicity: ER and AhR
 - Other NRs (AR, RAR/RXR, ThR) important but less explored
- All NRs share similar structure and mechanisms of action.
 - Act as direct transcription factors on DNA
- Natural ligands of NRs are small lipophilic hormones
 - steroids, thyroids, retinoids
 - Various regulatory functions
 - Role in toxicity: NR interact with structurally similar xenobiotics
- Various mechanisms beyond the toxicity
 - Adverse are both STIMULATIONS and INHIBITIONS directly at the receptor site (e.g. "antiandrogenicity)
 - Additional mechanisms –in blood (Thyroids), metabolism (Thyroids) clearance (Retinoids), heterodimerization and transport of hormones, "crosstalk" of different NRs
- Other key information to remember
 - REPORTER GENE ASSAYS (principle, use, what is CALUX?)
 - Characterization of chemical "toxic potentials"
 - General concept of "REPs" (valid for activation of all NRs)
 - Specifically for AhR concept of TEFs / TEQs

